summaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorpru-mike <pru.mike@gmail.com>2017-03-15 12:07:05 +0300
committerven <vendethiel@hotmail.fr>2017-03-15 10:07:05 +0100
commiteb2bd9e81266dcfa23867907dc00f05711807b7e (patch)
tree1a4ee692534d98eb68c47c3caedc030075f2fb78
parent2b4fe43f7187fcc3df0772a36f4264269f98c5c1 (diff)
[asymptotic-notation/ru] Added russian translation (#2679)
-rw-r--r--ru-ru/asymptotic-notation-ru.html.markdown225
1 files changed, 225 insertions, 0 deletions
diff --git a/ru-ru/asymptotic-notation-ru.html.markdown b/ru-ru/asymptotic-notation-ru.html.markdown
new file mode 100644
index 00000000..73ad80ba
--- /dev/null
+++ b/ru-ru/asymptotic-notation-ru.html.markdown
@@ -0,0 +1,225 @@
+---
+category: Algorithms & Data Structures
+name: Asymptotic Notation
+contributors:
+ - ["Jake Prather", "http://github.com/JakeHP"]
+ - ["Divay Prakash", "http://github.com/divayprakash"]
+translators:
+ - ["pru-mike", "http://gihub.com/pru-mike"]
+lang: ru-ru
+---
+
+# О-cимволика
+
+## Что это такое?
+
+О-cимволика или асимптотическая запись это система символов позволяющая оценить
+время выполнения алгоритма, устанавливая зависимость времени выполнения от
+увеличения объема входных данных, так же известна как оценка
+сложности алгоритмов. Быстро-ли алгоритм станет невероятно медленным, когда
+объем входных данных увеличится? Будет-ли алгоритм выполняться достаточно быстро,
+если объем входных данных возрастет? О-символика позволяет ответить на эти
+вопросы.
+
+## Можно-ли по-другому найти ответы на эти вопросы?
+
+Один способ это подсчитать число элементарных операций в зависимости от
+различных объемов входных данных. Хотя это и приемлемое решение, тот объем
+работы которого оно потребует, даже для простых алгоритмов, делает его
+использование неоправданным.
+
+Другой способ это измерить какое время алгоритм потребует для завершения на
+различных объемах входных данных. В тоже время, точность и относительность
+(полученное время будет относиться только к той машине на которой оно
+вычислено) этого метода зависит от среды выполнения: компьютерного аппаратного
+обеспечения, мощности процессора и т.д.
+
+## Виды О-символики
+
+В первом разделе этого документа мы определили, что О-символика
+позволяет оценивать алгоритмы в зависимости от изменения размера входных
+данных. Представим что алгоритм это функция f, n размер входных данных и
+f(n) время выполнения. Тогда для данного алгоритма f c размером входных
+данных n получим какое-то результирующее время выполнения f(n).
+Из этого можно построить график, где ось Y время выполнения, ось X размер входных
+данных и точки на графике это время выполнения для заданного размера входных
+данных.
+
+С помощью О-символики можно оценить функцию или алгоритм
+несколькими различными способами. Например можно оценить алгоритм исходя
+из нижней оценки, верхней оценки, тождественной оценки. Чаще всего встречается
+анализ на основе верхней оценки. Как правило не используется нижняя оценка,
+потому что она не подходит под планируемые условия. Отличный пример алгоритмы
+сортировки, особенно добавление элементов в древовидную структуру. Нижняя оценка
+большинства таких алгоритмов может быть дана как одна операция. В то время как в
+большинстве случаев, добавляемые элементы должны быть отсортированы
+соответствующим образом при помощи дерева, что может потребовать обхода целой
+ветви. Это и есть худший случай, для которого планируется верхняя оценка.
+
+### Виды функций, пределы и упрощения
+
+```
+Логарифмическая функция - log n
+Линейная функция - an + b
+Квадратическая функция - an^2 + bn +c
+Полиномиальная функция - an^z + . . . + an^2 + a*n^1 + a*n^0, где z константа
+Экспоненциальная функция - a^n, где a константа
+```
+
+Приведены несколько базовых функций используемых при определении сложности в
+различных оценках. Список начинается с самой медленно возрастающей функции
+(логарифм, наиболее быстрое время выполнения) и следует до самой быстро
+возрастающей функции (экспонента, самое медленное время выполнения). Отметим,
+что в то время как 'n' или размер входных данных, возрастает в каждой из этих функций,
+результат намного быстрее возрастает в квадратической, полиномиальной
+и экспоненциальной по сравнению с логарифмической и линейной.
+
+Крайне важно понимать, что при использовании описанной далее нотации необходимо
+использовать упрощенные выражения.
+Это означает, что необходимо отбрасывать константы и слагаемые младших порядков,
+потому что если размер входных данных (n в функции f(n) нашего примера)
+увеличивается до бесконечности (в пределе), тогда слагаемые младших порядков
+и константы становятся пренебрежительно малыми. Таким образом, если есть
+константа например размера 2^9001 или любого другого невообразимого размера,
+надо понимать, что её упрощение внесёт значительные искажения в точность
+оценки.
+
+Т.к. нам нужны упрощенные выражения, немного скорректируем нашу таблицу...
+
+```
+Логарифм - log n
+Линейная функция - n
+Квадратическая функция - n^2
+Полиномиальная функция - n^z, где z константа
+Экспонента - a^n, где a константа
+```
+
+### О-Большое
+О-Большое, записывается как **О**, это асимптотическая запись для оценки худшего
+случая или для ограничения заданой функции сверху. Это позволяет сделать
+_**асимптотическую оценку верхней границы**_ скорости роста времени выполнения
+алгоритма. Допустим `f(n)` время выполнения алгоритма и `g(n)` заданная временная
+сложность которая проверяется для алгоритма. Тогда `f(n)` это O(g(n)), если
+существуют действительные константы с (с > 0) и n<sub>0</sub>, такие
+что `f(n)` <= `c g(n)` выполняется для всех n начиная с некоторого n<sub>0</sub> (n > n<sub>0</sub>).
+
+*Пример 1*
+
+```
+f(n) = 3log n + 100
+g(n) = log n
+```
+
+Является-ли `f(n)` O(g(n))?
+Является-ли `3 log n + 100` O(log n)?
+Посмотрим на определение О-Большого:
+
+```
+3log n + 100 <= c * log n
+```
+
+Существуют-ли константы c, n<sub>0</sub> такие что выражение верно для всех n > n<sub>0</sub>
+
+```
+3log n + 100 <= 150 * log n, n > 2 (неопределенно для n = 1)
+```
+
+Да! По определению О-Большого `f(n)` является O(g(n)).
+
+*Пример 2*
+
+```
+f(n) = 3 * n^2
+g(n) = n
+```
+
+Является-ли `f(n)` O(g(n))?
+Является-ли `3 * n^2` O(n)?
+Посмотрим на определение О-Большого:
+
+```
+3 * n^2 <= c * n
+```
+
+Существуют-ли константы c, n<sub>0</sub> такие что выражение верно для всех n > n<sub>0</sub>?
+Нет, не существуют. `f(n)` НЕ ЯВЛЯЕТСЯ O(g(n)).
+
+### Омега-Большое
+Омега-Большое, записывается как **Ω**, это асимптотическая запись для оценки
+лучшего случая или для ограничения заданой функции снизу. Это позволяет сделать
+_**асимптотическую оценку нижней границы**_ скорости роста времени выполнения
+алгоритма.
+
+`f(n)` принадлежит Ω(g(n)), если существуют действительные константы
+с (с > 0) и <sub>0</sub> (n<sub>0</sub> > 0), такие что `f(n)` >= `c g(n)` для всех n > n<sub>0</sub>.
+
+### Примечание
+
+Асимптотические оценки сделаные при помощи О-Большое и Омега-Большое могут
+как быть так и не быть точными. Для того что бы обозначить что границы не
+являются асимптотически точными используются записи о-малое и омега-малое.
+
+### О-Малое
+O-Малое, записывается как **о**, это асимптотическая запись для оценки верхней
+границы времени выполнения алгоритма, при условии что граница не является
+асимптотически точной.
+
+`f(n)` является o(g(n)), если можно подобрать такие действительные константы,
+что для всех c (c > 0) найдется n<sub>0</sub> (n<sub>0</sub> > 0), так
+что `f(n)` < `c g(n)` выполняется для всех n (n > n<sub>0</sub>).
+
+Определения О-символики для О-Большое и О-Малое похожи. Главное отличие в том,
+что если f(n) = O(g(n)), тогда условие f(n) <= c g(n) выполняется если _**существует**_
+константа c > 0, но если f(n) = o(g(n)), тогда условие f(n) < c g(n) выполняется
+для _**всех**_ констант с > 0.
+
+### Омега-малое
+Омега-малое, записывается как **ω**, это асимптотическая запись для оценки
+верней границы времени выполнения алгоритма, при условии что граница не является
+асимптотически точной.
+
+`f(n)` является ω(g(n)), если можно подобрать такие действительные константы,
+что для всех c (c > 0) найдется n<sub>0</sub> (n<sub>0</sub> > 0), так
+что `f(n)` > `c g(n)` выполняется для всех n (n > n<sub>0</sub>)
+
+Определения Ω-символики и ω-символики похожи. Главное отличие в том, что
+если f(n) = Ω(g(n)), тогда условие f(n) >= c g(n) выполняется если _**существует**_
+константа c > 0, но если f(n) = ω(g(n)), тогда условие f(n) > c g(n)
+выполняется для _**всех**_ констант с > 0.
+
+### Тета
+Тета, записывается как **Θ**, это асимптотическая запись для оценки
+_***асимптотически точной границы***_ времени выполнения алгоритма.
+
+`f(n)` является Θ(g(n)), если для некоторых действительных
+констант c1, c2 и n<sub>0</sub> (c1 > 0, c2 > 0, n<sub>0</sub> > 0),
+`c1 g(n)` < `f(n)` < `c2 g(n)` для всех n (n > n<sub>0</sub>).
+
+∴ `f(n)` является Θ(g(n)) означает что `f(n)` является O(g(n))
+и `f(n)` является Ω(g(n)).
+
+О-Большое основной инструмент для анализа сложности алгоритмов.
+Так же смотрите примеры по ссылкам.
+
+### Заключение
+Такую тему сложно изложить кратко, поэтому обязательно стоит пройти по ссылкам и
+посмотреть дополнительную литературу. В них дается более глубокое описание с
+определениями и примерами.
+
+
+## Дополнительная литература
+
+* [Алгоритмы на Java](https://www.ozon.ru/context/detail/id/18319699/)
+* [Алгоритмы. Построение и анализ](https://www.ozon.ru/context/detail/id/33769775/)
+
+## Ссылки
+
+* [Оценки времени исполнения. Cимвол O()](http://algolist.manual.ru/misc/o_n.php)
+* [Асимптотический анализ и теория вероятностей](https://www.lektorium.tv/course/22903)
+
+## Ссылки (Eng)
+
+* [Algorithms, Part I](https://www.coursera.org/learn/algorithms-part1)
+* [Cheatsheet 1](http://web.mit.edu/broder/Public/asymptotics-cheatsheet.pdf)
+* [Cheatsheet 2](http://bigocheatsheet.com/)
+