diff options
author | Vojta Svoboda <vojtasvoboda.cz@gmail.com> | 2015-10-08 22:15:32 +0200 |
---|---|---|
committer | Vojta Svoboda <vojtasvoboda.cz@gmail.com> | 2015-10-08 22:15:32 +0200 |
commit | 838701b917bb914f3483b6e9233920a752d20f82 (patch) | |
tree | a430654109b2f8e6a47eddf057f86d73630314a7 /asymptotic-notation.html.markdown | |
parent | 4d619e9b0fc4a061fa720b47b22068c8661e9be6 (diff) | |
parent | abd7444f9e5343f597b561a69297122142881fc8 (diff) |
Merge branch 'master' into translation/json-cs
Diffstat (limited to 'asymptotic-notation.html.markdown')
-rw-r--r-- | asymptotic-notation.html.markdown | 26 |
1 files changed, 13 insertions, 13 deletions
diff --git a/asymptotic-notation.html.markdown b/asymptotic-notation.html.markdown index e1f961f8..a516737e 100644 --- a/asymptotic-notation.html.markdown +++ b/asymptotic-notation.html.markdown @@ -72,45 +72,45 @@ for a given function. Say `f(n)` is your algorithm runtime, and `g(n)` is an arb you are trying to relate to your algorithm. `f(n)` is O(g(n)), if for any real constant c (c > 0), `f(n)` <= `c g(n)` for every input size n (n > 0). -*Example 1* +*Example 1* ``` -f(n) = 3log n + 100 +f(n) = 3log n + 100 g(n) = log n ``` -Is `f(n)` O(g(n))? -Is `3 log n + 100` O(log n)? +Is `f(n)` O(g(n))? +Is `3 log n + 100` O(log n)? Let's look to the definition of Big-O. ``` -3log n + 100 <= c * log n +3log n + 100 <= c * log n ``` -Is there some constant c that satisfies this for all n? +Is there some constant c that satisfies this for all n? ``` -3log n + 100 <= 150 * log n, n > 2 (undefined at n = 1) +3log n + 100 <= 150 * log n, n > 2 (undefined at n = 1) ``` Yes! The definition of Big-O has been met therefore `f(n)` is O(g(n)). -*Example 2* +*Example 2* ``` -f(n) = 3*n^2 +f(n) = 3*n^2 g(n) = n ``` -Is `f(n)` O(g(n))? -Is `3 * n^2` O(n)? +Is `f(n)` O(g(n))? +Is `3 * n^2` O(n)? Let's look at the definition of Big-O. ``` -3 * n^2 <= c * n +3 * n^2 <= c * n ``` -Is there some constant c that satisfies this for all n? +Is there some constant c that satisfies this for all n? No, there isn't. `f(n)` is NOT O(g(n)). ### Big-Omega |