diff options
| author | Zachary Ferguson <zfergus2@users.noreply.github.com> | 2015-10-07 23:53:53 -0400 | 
|---|---|---|
| committer | Zachary Ferguson <zfergus2@users.noreply.github.com> | 2015-10-07 23:53:53 -0400 | 
| commit | 342488f6a8de5ab91f555a6463f5d9dc85a3079a (patch) | |
| tree | 1afa96957269a218ef2a84d9c9a2d4ab462e8fef /c.html.markdown | |
| parent | 4e4072f2528bdbc69cbcee72951e4c3c7644a745 (diff) | |
| parent | abd7444f9e5343f597b561a69297122142881fc8 (diff) | |
Merge remote-tracking branch 'adambard/master' into adambard/master-cn
Diffstat (limited to 'c.html.markdown')
| -rw-r--r-- | c.html.markdown | 837 | 
1 files changed, 541 insertions, 296 deletions
| diff --git a/c.html.markdown b/c.html.markdown index 132f75dc..db2ac930 100644 --- a/c.html.markdown +++ b/c.html.markdown @@ -3,289 +3,432 @@ language: c  filename: learnc.c  contributors:      - ["Adam Bard", "http://adambard.com/"] +    - ["Árpád Goretity", "http://twitter.com/H2CO3_iOS"] +    - ["Jakub Trzebiatowski", "http://cbs.stgn.pl"] +    - ["Marco Scannadinari", "https://marcoms.github.io"] +  --- -Ah, C. Still the language of modern high-performance computing. +Ah, C. Still **the** language of modern high-performance computing.  C is the lowest-level language most programmers will ever use, but  it more than makes up for it with raw speed. Just be aware of its manual  memory management and C will take you as far as you need to go.  ```c -// Single-line comments start with // +// Single-line comments start with // - only available in C99 and later.  /* -Multi-line comments look like this. +Multi-line comments look like this. They work in C89 as well.  */ +/* +Multi-line comments don't nest /* Be careful */  // comment ends on this line... +*/ // ...not this one! + +// Constants: #define <keyword> +#define DAYS_IN_YEAR 365 + +// Enumeration constants are also ways to declare constants. +// All statements must end with a semicolon +enum days {SUN = 1, MON, TUE, WED, THU, FRI, SAT}; +// MON gets 2 automatically, TUE gets 3, etc. + +  // Import headers with #include  #include <stdlib.h>  #include <stdio.h>  #include <string.h> +// (File names between <angle brackets> are headers from the C standard library.) +// For your own headers, use double quotes instead of angle brackets: +//#include "my_header.h" +  // Declare function signatures in advance in a .h file, or at the top of  // your .c file.  void function_1(); -void function_2(); +int function_2(void); + +// Must declare a 'function prototype' before main() when functions occur after +// your main() function. +int add_two_ints(int x1, int x2); // function prototype  // Your program's entry point is a function called  // main with an integer return type. -int main() { - -// print output using printf, for "print formatted" -// %d is an integer, \n is a newline -printf("%d\n", 0); // => Prints 0 -// All statements must end with a semicolon - -/////////////////////////////////////// -// Types -/////////////////////////////////////// - -// You have to declare variables before using them. A variable declaration -// requires you to specify its type; a variable's type determines its size -// in bytes. - -// ints are usually 4 bytes  -int x_int = 0; - -// shorts are usually 2 bytes -short x_short = 0; - -// chars are guaranteed to be 1 byte -char x_char = 0; -char y_char = 'y'; // Char literals are quoted with '' - -// longs are often 4 to 8 bytes; long longs are guaranteed to be at least -// 64 bits -long x_long = 0; -long long x_long_long = 0;  - -// floats are usually 32-bit floating point numbers -float x_float = 0.0; - -// doubles are usually 64-bit floating-point numbers -double x_double = 0.0; - -// Integral types may be unsigned. This means they can't be negative, but -// the maximum value of an unsigned variable is greater than the maximum -// value of the same size. -unsigned char ux_char; -unsigned short ux_short; -unsigned int ux_int; -unsigned long long ux_long_long; - -// Other than char, which is always 1 byte, these types vary in size depending -// on your machine. sizeof(T) gives you the size of a variable with type T in  -// bytes so you can express the size of these types in a portable way. -// For example, -printf("%lu\n", sizeof(int)); // => 4 (on machines with 4-byte words) - -// Arrays must be initialized with a concrete size. -char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes -int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes -                      // (assuming 4-byte words) - - -// You can initialize an array to 0 thusly: -char my_array[20] = {0}; - -// Indexing an array is like other languages -- or, -// rather, other languages are like C -my_array[0]; // => 0 - -// Arrays are mutable; it's just memory! -my_array[1] = 2; -printf("%d\n", my_array[1]); // => 2 - -// Strings are just arrays of chars terminated by a NUL (0x00) byte, -// represented in strings as the special character '\0'. -// (We don't have to include the NUL byte in string literals; the compiler -//  inserts it at the end of the array for us.) -char a_string[20] = "This is a string"; -printf("%s\n", a_string); // %s formats a string - -/* -You may have noticed that a_string is only 16 chars long. -Char #17 is the NUL byte.  -Chars #18, 19 and 20 have undefined values. -*/ - -printf("%d\n", a_string[16]); // => 0 - -/////////////////////////////////////// -// Operators -/////////////////////////////////////// - -int i1 = 1, i2 = 2; // Shorthand for multiple declaration -float f1 = 1.0, f2 = 2.0; - -// Arithmetic is straightforward -i1 + i2; // => 3 -i2 - i1; // => 1 -i2 * i1; // => 2 -i1 / i2; // => 0 (0.5, but truncated towards 0) - -f1 / f2; // => 0.5, plus or minus epsilon - -// Modulo is there as well -11 % 3; // => 2 - -// Comparison operators are probably familiar, but -// there is no boolean type in c. We use ints instead. -// 0 is false, anything else is true. (The comparison  -// operators always return 0 or 1.) -3 == 2; // => 0 (false) -3 != 2; // => 1 (true) -3 > 2; // => 1 -3 < 2; // => 0 -2 <= 2; // => 1 -2 >= 2; // => 1 - -// Logic works on ints -!3; // => 0 (Logical not) -!0; // => 1 -1 && 1; // => 1 (Logical and) -0 && 1; // => 0 -0 || 1; // => 1 (Logical or) -0 || 0; // => 0 - -// Bitwise operators! -~0x0F; // => 0xF0 (bitwise negation) -0x0F & 0xF0; // => 0x00 (bitwise AND) -0x0F | 0xF0; // => 0xFF (bitwise OR) -0x04 ^ 0x0F; // => 0x0B (bitwise XOR) -0x01 << 1; // => 0x02 (bitwise left shift (by 1)) -0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) - -/////////////////////////////////////// -// Control Structures -/////////////////////////////////////// - -if (0) { -  printf("I am never run\n"); -} else if (0) { -  printf("I am also never run\n"); -} else { -  printf("I print\n"); -} - -// While loops exist -int ii = 0; -while (ii < 10) { -    printf("%d, ", ii++); // ii++ increments ii in-place, after using its value. -} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -printf("\n"); - -int kk = 0; -do { +int main(void) { +  // print output using printf, for "print formatted" +  // %d is an integer, \n is a newline +  printf("%d\n", 0); // => Prints 0 + +  /////////////////////////////////////// +  // Types +  /////////////////////////////////////// + +  // ints are usually 4 bytes +  int x_int = 0; + +  // shorts are usually 2 bytes +  short x_short = 0; + +  // chars are guaranteed to be 1 byte +  char x_char = 0; +  char y_char = 'y'; // Char literals are quoted with '' + +  // longs are often 4 to 8 bytes; long longs are guaranteed to be at least +  // 64 bits +  long x_long = 0; +  long long x_long_long = 0; + +  // floats are usually 32-bit floating point numbers +  float x_float = 0.0f; // 'f' suffix here denotes floating point literal + +  // doubles are usually 64-bit floating-point numbers +  double x_double = 0.0; // real numbers without any suffix are doubles + +  // integer types may be unsigned (greater than or equal to zero) +  unsigned short ux_short; +  unsigned int ux_int; +  unsigned long long ux_long_long; + +  // chars inside single quotes are integers in machine's character set. +  '0'; // => 48 in the ASCII character set. +  'A'; // => 65 in the ASCII character set. + +  // sizeof(T) gives you the size of a variable with type T in bytes +  // sizeof(obj) yields the size of the expression (variable, literal, etc.). +  printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words) + + +  // If the argument of the `sizeof` operator is an expression, then its argument +  // is not evaluated (except VLAs (see below)). +  // The value it yields in this case is a compile-time constant. +  int a = 1; +  // size_t is an unsigned integer type of at least 2 bytes used to represent +  // the size of an object. +  size_t size = sizeof(a++); // a++ is not evaluated +  printf("sizeof(a++) = %zu where a = %d\n", size, a); +  // prints "sizeof(a++) = 4 where a = 1" (on a 32-bit architecture) + +  // Arrays must be initialized with a concrete size. +  char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes +  int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes +  // (assuming 4-byte words) + + +  // You can initialize an array to 0 thusly: +  char my_array[20] = {0}; + +  // Indexing an array is like other languages -- or, +  // rather, other languages are like C +  my_array[0]; // => 0 + +  // Arrays are mutable; it's just memory! +  my_array[1] = 2; +  printf("%d\n", my_array[1]); // => 2 + +  // In C99 (and as an optional feature in C11), variable-length arrays (VLAs) +  // can be declared as well. The size of such an array need not be a compile +  // time constant: +  printf("Enter the array size: "); // ask the user for an array size +  int size; +  fscanf(stdin, "%d", &size); +  char buf[size]; +  fgets(buf, sizeof buf, stdin); + +  // strtoul parses a string to an unsigned integer +  size_t size2 = strtoul(buf, NULL, 10); +  int var_length_array[size2]; // declare the VLA +  printf("sizeof array = %zu\n", sizeof var_length_array); + +  // A possible outcome of this program may be: +  // > Enter the array size: 10 +  // > sizeof array = 40 + +  // Strings are just arrays of chars terminated by a NULL (0x00) byte, +  // represented in strings as the special character '\0'. +  // (We don't have to include the NULL byte in string literals; the compiler +  //  inserts it at the end of the array for us.) +  char a_string[20] = "This is a string"; +  printf("%s\n", a_string); // %s formats a string + +  printf("%d\n", a_string[16]); // => 0 +  // i.e., byte #17 is 0 (as are 18, 19, and 20) + +  // If we have characters between single quotes, that's a character literal. +  // It's of type `int`, and *not* `char` (for historical reasons). +  int cha = 'a'; // fine +  char chb = 'a'; // fine too (implicit conversion from int to char) + +  // Multi-dimensional arrays: +  int multi_array[2][5] = { +    {1, 2, 3, 4, 5}, +    {6, 7, 8, 9, 0} +  }; +  // access elements: +  int array_int = multi_array[0][2]; // => 3 + +  /////////////////////////////////////// +  // Operators +  /////////////////////////////////////// + +  // Shorthands for multiple declarations: +  int i1 = 1, i2 = 2; +  float f1 = 1.0, f2 = 2.0; + +  int b, c; +  b = c = 0; + +  // Arithmetic is straightforward +  i1 + i2; // => 3 +  i2 - i1; // => 1 +  i2 * i1; // => 2 +  i1 / i2; // => 0 (0.5, but truncated towards 0) + +  // You need to cast at least one integer to float to get a floating-point result +  (float)i1 / i2; // => 0.5f +  i1 / (double)i2; // => 0.5 // Same with double +  f1 / f2; // => 0.5, plus or minus epsilon +  // Floating-point numbers and calculations are not exact + +  // Modulo is there as well +  11 % 3; // => 2 + +  // Comparison operators are probably familiar, but +  // there is no Boolean type in c. We use ints instead. +  // (Or _Bool or bool in C99.) +  // 0 is false, anything else is true. (The comparison +  // operators always yield 0 or 1.) +  3 == 2; // => 0 (false) +  3 != 2; // => 1 (true) +  3 > 2; // => 1 +  3 < 2; // => 0 +  2 <= 2; // => 1 +  2 >= 2; // => 1 + +  // C is not Python - comparisons don't chain. +  // Warning: The line below will compile, but it means `(0 < a) < 2`. +  // This expression is always true, because (0 < a) could be either 1 or 0. +  // In this case it's 1, because (0 < 1). +  int between_0_and_2 = 0 < a < 2; +  // Instead use: +  int between_0_and_2 = 0 < a && a < 2; + +  // Logic works on ints +  !3; // => 0 (Logical not) +  !0; // => 1 +  1 && 1; // => 1 (Logical and) +  0 && 1; // => 0 +  0 || 1; // => 1 (Logical or) +  0 || 0; // => 0 + +  // Conditional expression ( ? : ) +  int e = 5; +  int f = 10; +  int z; +  z = (e > f) ? e : f; // => 10 "if e > f return e, else return f." + +  // Increment and decrement operators: +  char *s = "iLoveC"; +  int j = 0; +  s[j++]; // => "i". Returns the j-th item of s THEN increments value of j. +  j = 0; +  s[++j]; // => "L". Increments value of j THEN returns j-th value of s. +  // same with j-- and --j + +  // Bitwise operators! +  ~0x0F; // => 0xFFFFFFF0 (bitwise negation, "1's complement", example result for 32-bit int) +  0x0F & 0xF0; // => 0x00 (bitwise AND) +  0x0F | 0xF0; // => 0xFF (bitwise OR) +  0x04 ^ 0x0F; // => 0x0B (bitwise XOR) +  0x01 << 1; // => 0x02 (bitwise left shift (by 1)) +  0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) + +  // Be careful when shifting signed integers - the following are undefined: +  // - shifting into the sign bit of a signed integer (int a = 1 << 31) +  // - left-shifting a negative number (int a = -1 << 2) +  // - shifting by an offset which is >= the width of the type of the LHS: +  //   int a = 1 << 32; // UB if int is 32 bits wide + +  /////////////////////////////////////// +  // Control Structures +  /////////////////////////////////////// + +  if (0) { +    printf("I am never run\n"); +  } else if (0) { +    printf("I am also never run\n"); +  } else { +    printf("I print\n"); +  } + +  // While loops exist +  int ii = 0; +  while (ii < 10) { //ANY value not zero is true. +    printf("%d, ", ii++); // ii++ increments ii AFTER using its current value. +  } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +  printf("\n"); + +  int kk = 0; +  do {      printf("%d, ", kk); -} while (++kk < 10); // ++kk increments kk in-place, before using its value -// => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " +  } while (++kk < 10); // ++kk increments kk BEFORE using its current value. +  // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " -printf("\n"); +  printf("\n"); -// For loops too -int jj; -for (jj=0; jj < 10; jj++) { +  // For loops too +  int jj; +  for (jj=0; jj < 10; jj++) {      printf("%d, ", jj); -} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -printf("\n"); - -/////////////////////////////////////// -// Typecasting -/////////////////////////////////////// - -// Every value in C has a type, but you can cast one value into another type -// if you want. - -int x_hex = 0x01; // You can assign vars with hex literals - -// Casting between types will attempt to preserve their numeric values -printf("%d\n", x_hex); // => Prints 1 -printf("%d\n", (short) x_hex); // => Prints 1 -printf("%d\n", (char) x_hex); // => Prints 1 - -// Types will overflow without warning -printf("%d\n", (char) 257); // => 1 (Max char = 255) - -// Integral types can be cast to floating-point types, and vice-versa. -printf("%f\n", (float)100); // %f formats a float -printf("%lf\n", (double)100); // %lf formats a double -printf("%d\n", (char)100.0); - -/////////////////////////////////////// -// Pointers -/////////////////////////////////////// - -// A pointer is a variable declared to store a memory address. Its declaration will -// also tell you the type of data it points to. You can retrieve the memory address  -// of your variables, then mess with them. - -int x = 0; -printf("%p\n", &x); // Use & to retrieve the address of a variable -// (%p formats a pointer) -// => Prints some address in memory; - -// Pointer types end with * in their declaration -int* px; // px is a pointer to an int -px = &x; // Stores the address of x in px -printf("%p\n", px); // => Prints some address in memory - -// To retreive the value at the address a pointer is pointing to, -// put * in front to de-reference it. -printf("%d\n", *px); // => Prints 0, the value of x, which is what px is pointing to the address of - -// You can also change the value the pointer is pointing to. -// We'll have to wrap the de-reference in parenthesis because -// ++ has a higher precedence than *. -(*px)++; // Increment the value px is pointing to by 1 -printf("%d\n", *px); // => Prints 1 -printf("%d\n", x); // => Prints 1 - -int x_array[20]; // Arrays are a good way to allocate a contiguous block of memory -int xx; -for (xx=0; xx<20; xx++) { +  } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +  printf("\n"); + +  // *****NOTES*****: +  // Loops and Functions MUST have a body. If no body is needed: +  int i; +  for (i = 0; i <= 5; i++) { +    ; // use semicolon to act as the body (null statement) +  } + +  // branching with multiple choices: switch() +  switch (a) { +  case 0: // labels need to be integral *constant* expressions +    printf("Hey, 'a' equals 0!\n"); +    break; // if you don't break, control flow falls over labels +  case 1: +    printf("Huh, 'a' equals 1!\n"); +    break; +  default: +    // if `some_integral_expression` didn't match any of the labels +    fputs("error!\n", stderr); +    exit(-1); +    break; +  } + +  /////////////////////////////////////// +  // Typecasting +  /////////////////////////////////////// + +  // Every value in C has a type, but you can cast one value into another type +  // if you want (with some constraints). + +  int x_hex = 0x01; // You can assign vars with hex literals + +  // Casting between types will attempt to preserve their numeric values +  printf("%d\n", x_hex); // => Prints 1 +  printf("%d\n", (short) x_hex); // => Prints 1 +  printf("%d\n", (char) x_hex); // => Prints 1 + +  // Types will overflow without warning +  printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long) + +  // For determining the max value of a `char`, a `signed char` and an `unsigned char`, +  // respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h> + +  // Integral types can be cast to floating-point types, and vice-versa. +  printf("%f\n", (float)100); // %f formats a float +  printf("%lf\n", (double)100); // %lf formats a double +  printf("%d\n", (char)100.0); + +  /////////////////////////////////////// +  // Pointers +  /////////////////////////////////////// + +  // A pointer is a variable declared to store a memory address. Its declaration will +  // also tell you the type of data it points to. You can retrieve the memory address +  // of your variables, then mess with them. + +  int x = 0; +  printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable +  // (%p formats an object pointer of type void *) +  // => Prints some address in memory; + + +  // Pointers start with * in their declaration +  int *px, not_a_pointer; // px is a pointer to an int +  px = &x; // Stores the address of x in px +  printf("%p\n", (void *)px); // => Prints some address in memory +  printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer)); +  // => Prints "8, 4" on a typical 64-bit system + +  // To retrieve the value at the address a pointer is pointing to, +  // put * in front to dereference it. +  // Note: yes, it may be confusing that '*' is used for _both_ declaring a +  // pointer and dereferencing it. +  printf("%d\n", *px); // => Prints 0, the value of x + +  // You can also change the value the pointer is pointing to. +  // We'll have to wrap the dereference in parenthesis because +  // ++ has a higher precedence than *. +  (*px)++; // Increment the value px is pointing to by 1 +  printf("%d\n", *px); // => Prints 1 +  printf("%d\n", x); // => Prints 1 + +  // Arrays are a good way to allocate a contiguous block of memory +  int x_array[20]; //declares array of size 20 (cannot change size) +  int xx; +  for (xx = 0; xx < 20; xx++) {      x_array[xx] = 20 - xx; -} // Initialize x_array to 20, 19, 18,... 2, 1 - -// Declare a pointer of type int and initialize it to point to x_array -int* x_ptr = x_array; -// x_ptr now points to the first element in the array (the integer 20).  -// This works because arrays are actually just pointers to their first element. - -// Arrays are pointers to their first element -printf("%d\n", *(x_ptr)); // => Prints 20 -printf("%d\n", x_array[0]); // => Prints 20 - -// Pointers are incremented and decremented based on their type -printf("%d\n", *(x_ptr + 1)); // => Prints 19 -printf("%d\n", x_array[1]); // => Prints 19 - -// You can also dynamically allocate contiguous blocks of memory with the -// standard library function malloc, which takes one integer argument  -// representing the number of bytes to allocate from the heap. -int* my_ptr = (int*) malloc(sizeof(int) * 20); -for (xx=0; xx<20; xx++) { -    *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx would also work here -} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) - -// Dereferencing memory that you haven't allocated gives -// unpredictable results -printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? - -// When you're done with a malloc'd block of memory, you need to free it,  -// or else no one else can use it until your program terminates -free(my_ptr); - -// Strings can be char arrays, but are usually represented as char -// pointers: -char* my_str = "This is my very own string"; - -printf("%c\n", *my_str); // => 'T' - -function_1(); +  } // Initialize x_array to 20, 19, 18,... 2, 1 + +  // Declare a pointer of type int and initialize it to point to x_array +  int* x_ptr = x_array; +  // x_ptr now points to the first element in the array (the integer 20). +  // This works because arrays often decay into pointers to their first element. +  // For example, when an array is passed to a function or is assigned to a pointer, +  // it decays into (implicitly converted to) a pointer. +  // Exceptions: when the array is the argument of the `&` (address-of) operator: +  int arr[10]; +  int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`! +  // It's of type "pointer to array" (of ten `int`s). +  // or when the array is a string literal used for initializing a char array: +  char otherarr[] = "foobarbazquirk"; +  // or when it's the argument of the `sizeof` or `alignof` operator: +  int arraythethird[10]; +  int *ptr = arraythethird; // equivalent with int *ptr = &arr[0]; +  printf("%zu, %zu\n", sizeof arraythethird, sizeof ptr); +  // probably prints "40, 4" or "40, 8" + + +  // Pointers are incremented and decremented based on their type +  // (this is called pointer arithmetic) +  printf("%d\n", *(x_ptr + 1)); // => Prints 19 +  printf("%d\n", x_array[1]); // => Prints 19 + +  // You can also dynamically allocate contiguous blocks of memory with the +  // standard library function malloc, which takes one argument of type size_t +  // representing the number of bytes to allocate (usually from the heap, although this +  // may not be true on e.g. embedded systems - the C standard says nothing about it). +  int *my_ptr = malloc(sizeof(*my_ptr) * 20); +  for (xx = 0; xx < 20; xx++) { +    *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx +  } // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) + +  // Dereferencing memory that you haven't allocated gives +  // "unpredictable results" - the program is said to invoke "undefined behavior" +  printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash. + +  // When you're done with a malloc'd block of memory, you need to free it, +  // or else no one else can use it until your program terminates +  // (this is called a "memory leak"): +  free(my_ptr); + +  // Strings are arrays of char, but they are usually represented as a +  // pointer-to-char (which is a pointer to the first element of the array). +  // It's good practice to use `const char *' when referring to a string literal, +  // since string literals shall not be modified (i.e. "foo"[0] = 'a' is ILLEGAL.) +  const char *my_str = "This is my very own string literal"; +  printf("%c\n", *my_str); // => 'T' + +  // This is not the case if the string is an array +  // (potentially initialized with a string literal) +  // that resides in writable memory, as in: +  char foo[] = "foo"; +  foo[0] = 'a'; // this is legal, foo now contains "aoo" + +  function_1();  } // end main function  /////////////////////////////////////// @@ -295,26 +438,33 @@ function_1();  // Function declaration syntax:  // <return type> <function name>(<args>) -int add_two_ints(int x1, int x2){ -    return x1 + x2; // Use return to return a value +int add_two_ints(int x1, int x2) +{ +  return x1 + x2; // Use return to return a value  }  /* -Functions are pass-by-value, but you can make your own references -with pointers so functions can mutate their values. +Functions are call by value. When a function is called, the arguments passed to +≈the function are copies of the original arguments (except arrays). Anything you +do to the arguments in the function do not change the value of the original +argument where the function was called. + +Use pointers if you need to edit the original argument values.  Example: in-place string reversal  */  // A void function returns no value -void str_reverse(char* str_in){ -    char tmp; -    int ii=0, len = strlen(str_in); // Strlen is part of the c standard library -    for(ii=0; ii<len/2; ii++){ -        tmp = str_in[ii]; -        str_in[ii] = str_in[len - ii - 1]; // ii-th char from end -        str_in[len - ii - 1] = tmp; -    } +void str_reverse(char *str_in) +{ +  char tmp; +  int ii = 0; +  size_t len = strlen(str_in); // `strlen()` is part of the c standard library +  for (ii = 0; ii < len / 2; ii++) { +    tmp = str_in[ii]; +    str_in[ii] = str_in[len - ii - 1]; // ii-th char from end +    str_in[len - ii - 1] = tmp; +  }  }  /* @@ -323,6 +473,21 @@ str_reverse(c);  printf("%s\n", c); // => ".tset a si sihT"  */ +// if referring to external variables outside function, must use extern keyword. +int i = 0; +void testFunc() { +  extern int i; //i here is now using external variable i +} + +// make external variables private to source file with static: +static int j = 0; //other files using testFunc2() cannot access variable j +void testFunc2() { +  extern int j; +} +//**You may also declare functions as static to make them private** + + +  ///////////////////////////////////////  // User-defined types and structs  /////////////////////////////////////// @@ -331,55 +496,69 @@ printf("%s\n", c); // => ".tset a si sihT"  typedef int my_type;  my_type my_type_var = 0; -// Structs are just collections of data +// Structs are just collections of data, the members are allocated sequentially, +// in the order they are written:  struct rectangle { -    int width; -    int height; +  int width; +  int height;  }; +// It's not generally true that +// sizeof(struct rectangle) == sizeof(int) + sizeof(int) +// due to potential padding between the structure members (this is for alignment +// reasons). [1] -void function_1(){ +void function_1() +{ +  struct rectangle my_rec; -    struct rectangle my_rec; +  // Access struct members with . +  my_rec.width = 10; +  my_rec.height = 20; -    // Access struct members with . -    my_rec.width = 10; -    my_rec.height = 20; +  // You can declare pointers to structs +  struct rectangle *my_rec_ptr = &my_rec; -    // You can declare pointers to structs -    struct rectangle* my_rec_ptr = &my_rec; +  // Use dereferencing to set struct pointer members... +  (*my_rec_ptr).width = 30; -    // Use dereferencing to set struct pointer members... -    (*my_rec_ptr).width = 30; - -    // ... or use the -> shorthand -    my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10; +  // ... or even better: prefer the -> shorthand for the sake of readability +  my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10;  }  // You can apply a typedef to a struct for convenience  typedef struct rectangle rect; -int area(rect r){ -    return r.width * r.height; +int area(rect r) +{ +  return r.width * r.height; +} + +// if you have large structs, you can pass them "by pointer" to avoid copying +// the whole struct: +int areaptr(const rect *r) +{ +  return r->width * r->height;  }  /////////////////////////////////////// -// Function pointers  +// Function pointers  ///////////////////////////////////////  /* -At runtime, functions are located at known memory addresses. Function pointers are -much likely any other pointer (they just store a memory address), but can be used  +At run time, functions are located at known memory addresses. Function pointers are +much like any other pointer (they just store a memory address), but can be used  to invoke functions directly, and to pass handlers (or callback functions) around.  However, definition syntax may be initially confusing.  Example: use str_reverse from a pointer  */ -void str_reverse_through_pointer(char * str_in) { -    // Define a function pointer variable, named f.  -    void (*f)(char *); // Signature should exactly match the target function. -    f = &str_reverse; // Assign the address for the actual function (determined at runtime) -    (*f)(str_in); // Just calling the function through the pointer -    // f(str_in); // That's an alternative but equally valid syntax for calling it. +void str_reverse_through_pointer(char *str_in) { +  // Define a function pointer variable, named f. +  void (*f)(char *); // Signature should exactly match the target function. +  f = &str_reverse; // Assign the address for the actual function (determined at run time) +  // f = str_reverse; would work as well - functions decay into pointers, similar to arrays +  (*f)(str_in); // Just calling the function through the pointer +  // f(str_in); // That's an alternative but equally valid syntax for calling it.  }  /* @@ -389,16 +568,82 @@ Function pointers are usually typedef'd for simplicity and readability, as follo  typedef void (*my_fnp_type)(char *); -// The used when declaring the actual pointer variable: +// Then used when declaring the actual pointer variable:  // ... -// my_fnp_type f;  +// my_fnp_type f; + +//Special characters: +/* +'\a'; // alert (bell) character +'\n'; // newline character +'\t'; // tab character (left justifies text) +'\v'; // vertical tab +'\f'; // new page (form feed) +'\r'; // carriage return +'\b'; // backspace character +'\0'; // NULL character. Usually put at end of strings in C. +//   hello\n\0. \0 used by convention to mark end of string. +'\\'; // backslash +'\?'; // question mark +'\''; // single quote +'\"'; // double quote +'\xhh'; // hexadecimal number. Example: '\xb' = vertical tab character +'\0oo'; // octal number. Example: '\013' = vertical tab character + +//print formatting: +"%d";    // integer +"%3d";   // integer with minimum of length 3 digits (right justifies text) +"%s";    // string +"%f";    // float +"%ld";   // long +"%3.2f"; // minimum 3 digits left and 2 digits right decimal float +"%7.4s"; // (can do with strings too) +"%c";    // char +"%p";    // pointer +"%x";    // hexadecimal +"%o";    // octal +"%%";    // prints % +*/ +/////////////////////////////////////// +// Order of Evaluation +/////////////////////////////////////// + +//---------------------------------------------------// +//        Operators                  | Associativity // +//---------------------------------------------------// +// () [] -> .                        | left to right // +// ! ~ ++ -- + = *(type)sizeof       | right to left // +// * / %                             | left to right // +// + -                               | left to right // +// << >>                             | left to right // +// < <= > >=                         | left to right // +// == !=                             | left to right // +// &                                 | left to right // +// ^                                 | left to right // +// |                                 | left to right // +// &&                                | left to right // +// ||                                | left to right // +// ?:                                | right to left // +// = += -= *= /= %= &= ^= |= <<= >>= | right to left // +// ,                                 | left to right // +//---------------------------------------------------//  ```  ## Further Reading  Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language) +It is *the* book about C, written by Dennis Ritchie, the creator of C, and Brian Kernighan. Be careful, though - it's ancient and it contains some +inaccuracies (well, ideas that are not considered good anymore) or now-changed practices. + +Another good resource is [Learn C The Hard Way](http://c.learncodethehardway.org/book/). -Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/) +If you have a question, read the [compl.lang.c Frequently Asked Questions](http://c-faq.com). + +It's very important to use proper spacing, indentation and to be consistent with your coding style in general. +Readable code is better than clever code and fast code. For a good, sane coding style to adopt, see the +[Linux kernel coding style](https://www.kernel.org/doc/Documentation/CodingStyle).  Other than that, Google is your friend. + +[1] http://stackoverflow.com/questions/119123/why-isnt-sizeof-for-a-struct-equal-to-the-sum-of-sizeof-of-each-member | 
