summaryrefslogtreecommitdiffhomepage
path: root/d.html.markdown
diff options
context:
space:
mode:
authorZachary Ferguson <zfergus2@users.noreply.github.com>2015-10-07 23:53:53 -0400
committerZachary Ferguson <zfergus2@users.noreply.github.com>2015-10-07 23:53:53 -0400
commit342488f6a8de5ab91f555a6463f5d9dc85a3079a (patch)
tree1afa96957269a218ef2a84d9c9a2d4ab462e8fef /d.html.markdown
parent4e4072f2528bdbc69cbcee72951e4c3c7644a745 (diff)
parentabd7444f9e5343f597b561a69297122142881fc8 (diff)
Merge remote-tracking branch 'adambard/master' into adambard/master-cn
Diffstat (limited to 'd.html.markdown')
-rw-r--r--d.html.markdown247
1 files changed, 247 insertions, 0 deletions
diff --git a/d.html.markdown b/d.html.markdown
new file mode 100644
index 00000000..ba24b60f
--- /dev/null
+++ b/d.html.markdown
@@ -0,0 +1,247 @@
+---
+language: D
+filename: learnd.d
+contributors:
+ - ["Nick Papanastasiou", "www.nickpapanastasiou.github.io"]
+lang: en
+---
+
+```c
+// You know what's coming...
+module hello;
+
+import std.stdio;
+
+// args is optional
+void main(string[] args) {
+ writeln("Hello, World!");
+}
+```
+
+If you're like me and spend way too much time on the internet, odds are you've heard
+about [D](http://dlang.org/). The D programming language is a modern, general-purpose,
+multi-paradigm language with support for everything from low-level features to
+expressive high-level abstractions.
+
+D is actively developed by Walter Bright and Andrei Alexandrescu, two super smart, really cool
+dudes. With all that out of the way, let's look at some examples!
+
+```c
+import std.stdio;
+
+void main() {
+
+ // Conditionals and loops work as expected.
+ for(int i = 0; i < 10000; i++) {
+ writeln(i);
+ }
+
+ auto n = 1; // use auto for type inferred variables
+
+ // Numeric literals can use _ as a digit seperator for clarity
+ while(n < 10_000) {
+ n += n;
+ }
+
+ do {
+ n -= (n / 2);
+ } while(n > 0);
+
+ // For and while are nice, but in D-land we prefer foreach
+ // The .. creates a continuous range, excluding the end
+ foreach(i; 1..1_000_000) {
+ if(n % 2 == 0)
+ writeln(i);
+ }
+
+ foreach_reverse(i; 1..int.max) {
+ if(n % 2 == 1) {
+ writeln(i);
+ } else {
+ writeln("No!");
+ }
+ }
+}
+```
+
+We can define new types with `struct`, `class`, `union`, and `enum`. Structs and unions
+are passed to functions by value (i.e. copied) and classes are passed by reference. Futhermore,
+we can use templates to parameterize all of these on both types and values!
+
+```c
+// Here, T is a type parameter. Think <T> from C++/C#/Java
+struct LinkedList(T) {
+ T data = null;
+ LinkedList!(T)* next; // The ! is used to instaniate a parameterized type. Again, think <T>
+}
+
+class BinTree(T) {
+ T data = null;
+
+ // If there is only one template parameter, we can omit parens
+ BinTree!T left;
+ BinTree!T right;
+}
+
+enum Day {
+ Sunday,
+ Monday,
+ Tuesday,
+ Wednesday,
+ Thursday,
+ Friday,
+ Saturday,
+}
+
+// Use alias to create abbreviations for types
+
+alias IntList = LinkedList!int;
+alias NumTree = BinTree!double;
+
+// We can create function templates as well!
+
+T max(T)(T a, T b) {
+ if(a < b)
+ return b;
+
+ return a;
+}
+
+// Use the ref keyword to ensure pass by referece.
+// That is, even if a and b are value types, they
+// will always be passed by reference to swap
+void swap(T)(ref T a, ref T b) {
+ auto temp = a;
+
+ a = b;
+ b = temp;
+}
+
+// With templates, we can also parameterize on values, not just types
+class Matrix(uint m, uint n, T = int) {
+ T[m] rows;
+ T[n] columns;
+}
+
+auto mat = new Matrix!(3, 3); // We've defaulted type T to int
+
+```
+
+Speaking of classes, let's talk about properties for a second. A property
+is roughly a function that may act like an lvalue, so we can
+have the syntax of POD structures (`structure.x = 7`) with the semantics of
+getter and setter methods (`object.setX(7)`)!
+
+```c
+// Consider a class parameterized on a types T, U
+
+class MyClass(T, U) {
+ T _data;
+ U _other;
+
+}
+
+// And "getter" and "setter" methods like so
+class MyClass(T, U) {
+ T _data;
+ U _other;
+
+ // Constructors are always named `this`
+ this(T t, U u) {
+ data = t;
+ other = u;
+ }
+
+ // getters
+ @property T data() {
+ return _data;
+ }
+
+ @property U other() {
+ return _other;
+ }
+
+ // setters
+ @property void data(T t) {
+ _data = t;
+ }
+
+ @property void other(U u) {
+ _other = u;
+ }
+}
+// And we use them in this manner
+
+void main() {
+ auto mc = MyClass!(int, string);
+
+ mc.data = 7;
+ mc.other = "seven";
+
+ writeln(mc.data);
+ writeln(mc.other);
+}
+```
+
+With properties, we can add any amount of logic to
+our getter and setter methods, and keep the clean syntax of
+accessing members directly!
+
+Other object-oriented goodies at our disposal
+include `interface`s, `abstract class`es,
+and `override`ing methods. D does inheritance just like Java:
+Extend one class, implement as many interfaces as you please.
+
+We've seen D's OOP facilities, but let's switch gears. D offers
+functional programming with first-class functions, `pure`
+functions, and immutable data. In addition, all of your favorite
+functional algorithms (map, filter, reduce and friends) can be
+found in the wonderful `std.algorithm` module!
+
+```c
+import std.algorithm : map, filter, reduce;
+import std.range : iota; // builds an end-exclusive range
+
+void main() {
+ // We want to print the sum of a list of squares of even ints
+ // from 1 to 100. Easy!
+
+ // Just pass lambda expressions as template parameters!
+ // You can pass any old function you like, but lambdas are convenient here.
+ auto num = iota(1, 101).filter!(x => x % 2 == 0)
+ .map!(y => y ^^ 2)
+ .reduce!((a, b) => a + b);
+
+ writeln(num);
+}
+```
+
+Notice how we got to build a nice Haskellian pipeline to compute num?
+That's thanks to a D innovation know as Uniform Function Call Syntax.
+With UFCS, we can choose whether to write a function call as a method
+or free function call! Walter wrote a nice article on this
+[here.](http://www.drdobbs.com/cpp/uniform-function-call-syntax/232700394)
+In short, you can call functions whose first parameter
+is of some type A on any expression of type A as a method.
+
+I like parallelism. Anyone else like parallelism? Sure you do. Let's do some!
+
+```c
+import std.stdio;
+import std.parallelism : parallel;
+import std.math : sqrt;
+
+void main() {
+ // We want take the square root every number in our array,
+ // and take advantage of as many cores as we have available.
+ auto arr = new double[1_000_000];
+
+ // Use an index, and an array element by referece,
+ // and just call parallel on the array!
+ foreach(i, ref elem; parallel(arr)) {
+ ref = sqrt(i + 1.0);
+ }
+}
+
+
+```