summaryrefslogtreecommitdiffhomepage
path: root/de-de
diff options
context:
space:
mode:
authorElijah Karari <eljhkrr@gmail.com>2015-11-02 15:52:27 +0300
committerElijah Karari <eljhkrr@gmail.com>2015-11-02 15:52:27 +0300
commit344518d2f60c6373f7814752fc53ef5603b605a9 (patch)
tree7e48a776ab06c741475b2189527b60a30d291ca8 /de-de
parentedfc99e198fd2e87802ea81d6779fbadfab64919 (diff)
parent824869ef99de73e87ef791bac880f4575cc9ddc9 (diff)
Merge pull request #2 from adambard/master
Update my fork to upstream
Diffstat (limited to 'de-de')
-rw-r--r--de-de/haskell-de.html.markdown101
-rw-r--r--de-de/scala-de.html.markdown518
-rw-r--r--de-de/yaml-de.html.markdown4
3 files changed, 332 insertions, 291 deletions
diff --git a/de-de/haskell-de.html.markdown b/de-de/haskell-de.html.markdown
index 2c548961..d1a0008e 100644
--- a/de-de/haskell-de.html.markdown
+++ b/de-de/haskell-de.html.markdown
@@ -5,6 +5,7 @@ contributors:
- ["Adit Bhargava", "http://adit.io"]
translators:
- ["Henrik Jürges", "https://github.com/santifa"]
+ - ["Nikolai Weh", "http://weh.hamburg"]
filename: haskell-de.hs
---
@@ -58,12 +59,13 @@ not False -- True
-- Strings und Zeichen
"Das ist ein String."
'a' -- Zeichen
-'Einfache Anfuehrungszeichen gehen nicht.' -- error!
+'Einfache Anführungszeichen gehen nicht.' -- error!
-- Strings können konkateniert werden.
"Hello " ++ "world!" -- "Hello world!"
-- Ein String ist eine Liste von Zeichen.
+['H', 'a', 'l', 'l', 'o', '!'] -- "Hallo!"
"Das ist eine String" !! 0 -- 'D'
@@ -76,11 +78,23 @@ not False -- True
[1, 2, 3, 4, 5]
[1..5]
--- Haskell unterstuetzt unendliche Listen!
-[1..] -- Die Liste aller natuerlichen Zahlen
+-- Die zweite Variante nennt sich die "range"-Syntax.
+-- Ranges sind recht flexibel:
+['A'..'F'] -- "ABCDEF"
+
+-- Es ist möglich eine Schrittweite anzugeben:
+[0,2..10] -- [0,2,4,6,8,10]
+[5..1] -- [], da Haskell standardmässig inkrementiert.
+[5,4..1] -- [5,4,3,2,1]
+
+-- Der "!!"-Operator extrahiert das Element an einem bestimmten Index:
+[1..10] !! 3 -- 4
+
+-- Haskell unterstützt unendliche Listen!
+[1..] -- Die Liste aller natürlichen Zahlen
-- Unendliche Listen funktionieren in Haskell, da es "lazy evaluation"
--- unterstuetzt. Haskell evaluiert erst etwas, wenn es benötigt wird.
+-- unterstützt. Haskell evaluiert erst etwas, wenn es benötigt wird.
-- Somit kannst du nach dem 1000. Element fragen und Haskell gibt es dir:
[1..] !! 999 -- 1000
@@ -92,12 +106,9 @@ not False -- True
-- Zwei Listen konkatenieren
[1..5] ++ [6..10]
--- Ein Element als Head hinzufuegen
+-- Ein Element als Head hinzufügen
0:[1..5] -- [0, 1, 2, 3, 4, 5]
--- Gibt den 5. Index zurueck
-[0..] !! 5 -- 5
-
-- Weitere Listenoperationen
head [1..5] -- 1
tail [1..5] -- [2, 3, 4, 5]
@@ -114,7 +125,8 @@ last [1..5] -- 5
-- Ein Tupel:
("haskell", 1)
--- Auf Elemente eines Tupels zugreifen:
+-- Ein Paar (Pair) ist ein Tupel mit 2 Elementen, auf die man wie folgt
+-- zugreifen kann:
fst ("haskell", 1) -- "haskell"
snd ("haskell", 1) -- 1
@@ -140,9 +152,9 @@ add 1 2 -- 3
(//) a b = a `div` b
35 // 4 -- 8
--- Guards sind eine einfache Möglichkeit fuer Fallunterscheidungen.
+-- Guards sind eine einfache Möglichkeit für Fallunterscheidungen.
fib x
- | x < 2 = x
+ | x < 2 = 1
| otherwise = fib (x - 1) + fib (x - 2)
-- Pattern Matching funktioniert ähnlich.
@@ -174,7 +186,7 @@ foldl1 (\acc x -> acc + x) [1..5] -- 15
-- 4. Mehr Funktionen
----------------------------------------------------
--- currying: Wenn man nicht alle Argumente an eine Funktion uebergibt,
+-- currying: Wenn man nicht alle Argumente an eine Funktion übergibt,
-- so wird sie eine neue Funktion gebildet ("curried").
-- Es findet eine partielle Applikation statt und die neue Funktion
-- nimmt die fehlenden Argumente auf.
@@ -190,23 +202,28 @@ foo 5 -- 15
-- Funktionskomposition
-- Die (.) Funktion verkettet Funktionen.
-- Zum Beispiel, die Funktion Foo nimmt ein Argument addiert 10 dazu und
--- multipliziert dieses Ergebnis mit 5.
-foo = (*5) . (+10)
+-- multipliziert dieses Ergebnis mit 4.
+foo = (*4) . (+10)
+
+-- (5 + 10) * 4 = 60
+foo 5 -- 60
--- (5 + 10) * 5 = 75
-foo 5 -- 75
+-- Haskell hat einen Operator `$`, welcher Funktionsapplikation durchführt.
+-- Im Gegenzug zu der Standard-Funktionsapplikation, welche linksassoziativ ist
+-- und die höchstmögliche Priorität von "10" hat, ist der `$`-Operator
+-- rechtsassoziativ und hat die Priorität 0. Dieses hat (idr.) den Effekt,
+-- dass der `komplette` Ausdruck auf der rechten Seite als Parameter für die
+-- Funktion auf der linken Seite verwendet wird.
+-- Mit `.` und `$` kann man sich so viele Klammern ersparen.
--- Haskell hat eine Funktion `$`. Diese ändert den Vorrang,
--- so dass alles links von ihr zuerst berechnet wird und
--- und dann an die rechte Seite weitergegeben wird.
--- Mit `.` und `$` kann man sich viele Klammern ersparen.
+(even (fib 7)) -- false
--- Vorher
-(even (fib 7)) -- true
+-- Äquivalent:
+even $ fib 7 -- false
--- Danach
-even . fib $ 7 -- true
+-- Funktionskomposition:
+even . fib $ 7 -- false
----------------------------------------------------
-- 5. Typensystem
@@ -221,31 +238,31 @@ even . fib $ 7 -- true
True :: Bool
-- Funktionen haben genauso Typen.
--- `not` ist Funktion die ein Bool annimmt und ein Bool zurueckgibt:
+-- `not` ist Funktion die ein Bool annimmt und ein Bool zurückgibt:
-- not :: Bool -> Bool
-- Eine Funktion die zwei Integer Argumente annimmt:
-- add :: Integer -> Integer -> Integer
-- Es ist guter Stil zu jeder Funktionsdefinition eine
--- Typdefinition darueber zu schreiben:
+-- Typdefinition darüber zu schreiben:
double :: Integer -> Integer
double x = x * 2
----------------------------------------------------
--- 6. If-Anweisung und Kontrollstrukturen
+-- 6. If-Ausdrücke und Kontrollstrukturen
----------------------------------------------------
--- If-Anweisung:
+-- If-Ausdruck:
haskell = if 1 == 1 then "awesome" else "awful" -- haskell = "awesome"
--- If-Anweisungen können auch ueber mehrere Zeilen verteilt sein.
--- Das Einruecken ist dabei äußerst wichtig.
+-- If-Ausdrücke können auch über mehrere Zeilen verteilt sein.
+-- Die Einrückung ist dabei wichtig.
haskell = if 1 == 1
then "awesome"
else "awful"
--- Case-Anweisung: Zum Beispiel "commandline" Argumente parsen.
+-- Case-Ausdruck: Am Beispiel vom Parsen von "commandline"-Argumenten.
case args of
"help" -> printHelp
"start" -> startProgram
@@ -276,7 +293,7 @@ foldl (\x y -> 2*x + y) 4 [1,2,3] -- 43
foldr (\x y -> 2*x + y) 4 [1,2,3] -- 16
-- die Abarbeitung sieht so aus:
-(2 * 3 + (2 * 2 + (2 * 1 + 4)))
+(2 * 1 + (2 * 2 + (2 * 3 + 4)))
----------------------------------------------------
-- 7. Datentypen
@@ -300,7 +317,7 @@ data Maybe a = Nothing | Just a
-- Diese sind alle vom Typ Maybe:
Just "hello" -- vom Typ `Maybe String`
Just 1 -- vom Typ `Maybe Int`
-Nothing -- vom Typ `Maybe a` fuer jedes `a`
+Nothing -- vom Typ `Maybe a` für jedes `a`
----------------------------------------------------
-- 8. Haskell IO
@@ -309,8 +326,8 @@ Nothing -- vom Typ `Maybe a` fuer jedes `a`
-- IO kann nicht völlig erklärt werden ohne Monaden zu erklären,
-- aber man kann die grundlegenden Dinge erklären.
--- Wenn eine Haskell Programm ausgefuehrt wird, so wird `main` aufgerufen.
--- Diese muss etwas vom Typ `IO ()` zurueckgeben. Zum Beispiel:
+-- Wenn eine Haskell Programm ausgeführt wird, so wird `main` aufgerufen.
+-- Diese muss etwas vom Typ `IO ()` zurückgeben. Zum Beispiel:
main :: IO ()
main = putStrLn $ "Hello, sky! " ++ (say Blue)
@@ -338,10 +355,10 @@ sayHello = do
-- an die Variable "name" gebunden
putStrLn $ "Hello, " ++ name
--- Uebung: Schreibe deine eigene Version von `interact`,
+-- Übung: Schreibe deine eigene Version von `interact`,
-- die nur eine Zeile einliest.
--- `sayHello` wird niemals ausgefuehrt, nur `main` wird ausgefuehrt.
+-- `sayHello` wird niemals ausgeführt, nur `main` wird ausgeführt.
-- Um `sayHello` laufen zulassen kommentiere die Definition von `main`
-- aus und ersetze sie mit:
-- main = sayHello
@@ -359,7 +376,7 @@ action = do
input1 <- getLine
input2 <- getLine
-- Der Typ von `do` ergibt sich aus der letzten Zeile.
- -- `return` ist eine Funktion und keine Schluesselwort
+ -- `return` ist eine Funktion und keine Schlüsselwort
return (input1 ++ "\n" ++ input2) -- return :: String -> IO String
-- Nun können wir `action` wie `getLine` benutzen:
@@ -370,7 +387,7 @@ main'' = do
putStrLn result
putStrLn "This was all, folks!"
--- Der Typ `IO` ist ein Beispiel fuer eine Monade.
+-- Der Typ `IO` ist ein Beispiel für eine Monade.
-- Haskell benutzt Monaden Seiteneffekte zu kapseln und somit
-- eine rein funktional Sprache zu sein.
-- Jede Funktion die mit der Außenwelt interagiert (z.B. IO)
@@ -387,7 +404,7 @@ main'' = do
-- Starte die REPL mit dem Befehl `ghci`
-- Nun kann man Haskell Code eingeben.
--- Alle neuen Werte muessen mit `let` gebunden werden:
+-- Alle neuen Werte müssen mit `let` gebunden werden:
let foo = 5
@@ -396,7 +413,7 @@ let foo = 5
>:t foo
foo :: Integer
--- Auch jede `IO ()` Funktion kann ausgefuehrt werden.
+-- Auch jede `IO ()` Funktion kann ausgeführt werden.
> sayHello
What is your name?
@@ -420,6 +437,6 @@ qsort (p:xs) = qsort lesser ++ [p] ++ qsort greater
Haskell ist sehr einfach zu installieren.
Hohl es dir von [hier](http://www.haskell.org/platform/).
-Eine sehr viele langsamere Einfuehrung findest du unter:
+Eine sehr viele langsamere Einführung findest du unter:
[Learn you a Haskell](http://learnyouahaskell.com/) oder
[Real World Haskell](http://book.realworldhaskell.org/).
diff --git a/de-de/scala-de.html.markdown b/de-de/scala-de.html.markdown
index 7fd299b4..456403a2 100644
--- a/de-de/scala-de.html.markdown
+++ b/de-de/scala-de.html.markdown
@@ -5,6 +5,7 @@ contributors:
- ["Dominic Bou-Samra", "http://dbousamra.github.com"]
- ["Geoff Liu", "http://geoffliu.me"]
- ["Ha-Duong Nguyen", "http://reference-error.org"]
+ - ["Dennis Keller", "github.com/denniskeller"]
translators:
- ["Christian Albrecht", "https://github.com/coastalchief"]
filename: learnscala-de.scala
@@ -16,167 +17,172 @@ für die Java Virtual Machine (JVM), um allgemeine Programmieraufgaben
zu erledigen. Scala hat einen akademischen Hintergrund und wurde an
der EPFL (Lausanne / Schweiz) unter der Leitung von Martin Odersky entwickelt.
-
-# 0. Umgebung einrichten
+```scala
+/*
Scala Umgebung einrichten:
1. Scala binaries herunterladen- http://www.scala-lang.org/downloads
2. Unzip/untar in ein Verzeichnis
3. das bin Unterverzeichnis der `PATH` Umgebungsvariable hinzufügen
4. Mit dem Kommando `scala` wird die REPL gestartet und zeigt als Prompt:
-```
+
scala>
-```
Die REPL (Read-Eval-Print Loop) ist der interaktive Scala Interpreter.
Hier kann man jeden Scala Ausdruck verwenden und das Ergebnis wird direkt
ausgegeben.
Als nächstes beschäftigen wir uns mit ein paar Scala Basics.
+*/
-# 1. Basics
-Einzeilige Kommentare beginnen mit zwei vorwärts Slash
+/////////////////////////////////////////////////
+// 1. Basics
+/////////////////////////////////////////////////
+
+// Einzeilige Kommentare beginnen mit zwei Slashes
/*
- Mehrzeilige Kommentare, werden starten
- mit Slash-Stern und enden mit Stern-Slash
+ Mehrzeilige Kommentare, starten
+ mit einem Slash-Stern und enden mit einem Stern-Slash
*/
// Einen Wert, und eine zusätzliche neue Zeile ausgeben
-```
+
println("Hello world!")
println(10)
-```
+
// Einen Wert, ohne eine zusätzliche neue Zeile ausgeben
-```
+
print("Hello world")
-```
-// Variablen werden entweder mit var oder val deklariert.
-// Deklarationen mit val sind immutable, also unveränderlich
-// Deklarationen mit var sind mutable, also veränderlich
-// Immutability ist gut.
-```
+/*
+ Variablen werden entweder mit var oder val deklariert.
+ Deklarationen mit val sind immutable, also unveränderlich
+ Deklarationen mit var sind mutable, also veränderlich
+ Immutability ist gut.
+*/
val x = 10 // x ist 10
x = 20 // error: reassignment to val
var y = 10
y = 20 // y ist jetzt 20
-```
-Scala ist eine statisch getypte Sprache, auch wenn in dem o.g. Beispiel
+/*
+Scala ist eine statisch getypte Sprache, auch wenn wir in dem o.g. Beispiel
keine Typen an x und y geschrieben haben.
-In Scala ist etwas eingebaut, was sich Type Inference nennt. D.h. das der
-Scala Compiler in den meisten Fällen erraten kann, von welchen Typ eine ist,
-so dass der Typ nicht jedes mal angegeben werden soll.
+In Scala ist etwas eingebaut, was sich Type Inference nennt. Das heißt das der
+Scala Compiler in den meisten Fällen erraten kann, von welchen Typ eine Variable ist,
+so dass der Typ nicht jedes mal angegeben werden muss.
Einen Typ gibt man bei einer Variablendeklaration wie folgt an:
-```
+*/
val z: Int = 10
val a: Double = 1.0
-```
+
// Bei automatischer Umwandlung von Int auf Double wird aus 10 eine 10.0
-```
+
val b: Double = 10
-```
+
// Boolean Werte
-```
+
true
false
-```
+
// Boolean Operationen
-```
+
!true // false
!false // true
true == false // false
10 > 5 // true
-```
+
// Mathematische Operationen sind wie gewohnt
-```
+
1 + 1 // 2
2 - 1 // 1
5 * 3 // 15
6 / 2 // 3
6 / 4 // 1
6.0 / 4 // 1.5
-```
+
// Die Auswertung eines Ausdrucks in der REPL gibt den Typ
// und das Ergebnis zurück.
-```
+
scala> 1 + 7
res29: Int = 8
-```
+/*
Das bedeutet, dass das Resultat der Auswertung von 1 + 7 ein Objekt
von Typ Int ist und einen Wert 0 hat.
"res29" ist ein sequentiell generierter name, um das Ergebnis des
Ausdrucks zu speichern. Dieser Wert kann bei Dir anders sein...
-
+*/
"Scala strings werden in doppelten Anführungszeichen eingeschlossen"
'a' // A Scala Char
// 'Einzeln ge-quotete strings gibt es nicht!' <= This causes an error
// Für Strings gibt es die üblichen Java Methoden
-```
+
"hello world".length
"hello world".substring(2, 6)
"hello world".replace("C", "3")
-```
+
// Zusätzlich gibt es noch extra Scala Methoden
// siehe: scala.collection.immutable.StringOps
-```
+
"hello world".take(5)
"hello world".drop(5)
-```
+
// String interpolation: prefix "s"
-```
+
val n = 45
s"We have $n apples" // => "We have 45 apples"
-```
-// Ausdrücke im innern von interpolierten Strings gibt es auch
-```
+
+// Ausdrücke im Innern von interpolierten Strings gibt es auch
+
val a = Array(11, 9, 6)
val n = 100
s"My second daughter is ${a(0) - a(2)} years old." // => "My second daughter is 5 years old."
s"We have double the amount of ${n / 2.0} in apples." // => "We have double the amount of 22.5 in apples."
s"Power of 2: ${math.pow(2, 2)}" // => "Power of 2: 4"
-```
+
// Formatierung der interpolierten Strings mit dem prefix "f"
-```
+
f"Power of 5: ${math.pow(5, 2)}%1.0f" // "Power of 5: 25"
f"Square root of 122: ${math.sqrt(122)}%1.4f" // "Square root of 122: 11.0454"
-```
+
// Raw Strings, ignorieren Sonderzeichen.
-```
+
raw"New line feed: \n. Carriage return: \r." // => "New line feed: \n. Carriage return: \r."
-```
+
// Manche Zeichen müssen "escaped" werden, z.B.
// ein doppeltes Anführungszeichen in innern eines Strings.
-```
+
"They stood outside the \"Rose and Crown\"" // => "They stood outside the "Rose and Crown""
-```
+
// Dreifache Anführungszeichen erlauben es, dass ein String über mehrere Zeilen geht
// und Anführungszeichen enthalten kann.
-```
+
val html = """<form id="daform">
<p>Press belo', Joe</p>
<input type="submit">
</form>"""
-```
-# 2. Funktionen
+
+/////////////////////////////////////////////////
+// 2. Funktionen
+/////////////////////////////////////////////////
// Funktionen werden so definiert
//
@@ -184,74 +190,74 @@ val html = """<form id="daform">
//
// Beachte: Es gibt kein return Schlüsselwort. In Scala ist der letzte Ausdruck
// in einer Funktion der Rückgabewert.
-```
+
def sumOfSquares(x: Int, y: Int): Int = {
val x2 = x * x
val y2 = y * y
x2 + y2
}
-```
+
// Die geschweiften Klammern können weggelassen werden, wenn
// die Funktion nur aus einem einzigen Ausdruck besteht:
-```
+
def sumOfSquaresShort(x: Int, y: Int): Int = x * x + y * y
-```
+
// Syntax für Funktionsaufrufe:
-```
+
sumOfSquares(3, 4) // => 25
-```
+
// In den meisten Fällen (mit Ausnahme von rekursiven Funktionen), können
// Rückgabetypen auch weggelassen werden, da dieselbe Typ Inference, wie bei
// Variablen, auch bei Funktionen greift:
-```
+
def sq(x: Int) = x * x // Compiler errät, dass der return type Int ist
-```
+
// Funktionen können default parameter haben:
-```
+
def addWithDefault(x: Int, y: Int = 5) = x + y
addWithDefault(1, 2) // => 3
addWithDefault(1) // => 6
-```
+
// Anonyme Funktionen sehen so aus:
-```
+
(x: Int) => x * x
-```
+
// Im Gegensatz zu def bei normalen Funktionen, kann bei anonymen Funktionen
// sogar der Eingabetyp weggelassen werden, wenn der Kontext klar ist.
// Beachte den Typ "Int => Int", dies beschreibt eine Funktion,
// welche Int als Parameter erwartet und Int zurückgibt.
-```
+
val sq: Int => Int = x => x * x
-```
+
// Anonyme Funktionen benutzt man ganz normal:
-```
+
sq(10) // => 100
-```
+
// Wenn ein Parameter einer anonymen Funktion nur einmal verwendet wird,
// bietet Scala einen sehr kurzen Weg diesen Parameter zu benutzen,
// indem die Parameter als Unterstrich "_" in der Parameterreihenfolge
// verwendet werden. Diese anonymen Funktionen werden sehr häufig
// verwendet.
-```
+
val addOne: Int => Int = _ + 1
val weirdSum: (Int, Int) => Int = (_ * 2 + _ * 3)
addOne(5) // => 6
weirdSum(2, 4) // => 16
-```
+
// Es gibt einen keyword return in Scala. Allerdings ist seine Verwendung
// nicht immer ratsam und kann fehlerbehaftet sein. "return" gibt nur aus
// dem innersten def, welches den return Ausdruck umgibt, zurück.
// "return" hat keinen Effekt in anonymen Funktionen:
-```
+
def foo(x: Int): Int = {
val anonFunc: Int => Int = { z =>
if (z > 5)
@@ -261,28 +267,30 @@ def foo(x: Int): Int = {
}
anonFunc(x) // Zeile ist der return Wert von foo
}
-```
-# 3. Flow Control
-## Wertebereiche und Schleifen
-```
+/////////////////////////////////////////////////
+// 3. Flow Control
+/////////////////////////////////////////////////
+
+// Wertebereiche und Schleifen
+
1 to 5
val r = 1 to 5
r.foreach(println)
r foreach println
(5 to 1 by -1) foreach (println)
-```
-// Scala ist syntaktisch sehr grosszügig, Semikolons am Zeilenende
+
+// Scala ist syntaktisch sehr großzügig, Semikolons am Zeilenende
// sind optional, beim Aufruf von Methoden können die Punkte
// und Klammern entfallen und Operatoren sind im Grunde austauschbare Methoden
// while Schleife
-```
+
var i = 0
while (i < 10) { println("i " + i); i += 1 }
i // i ausgeben, res3: Int = 10
-```
+
// Beachte: while ist eine Schleife im klassischen Sinne -
// Sie läuft sequentiell ab und verändert die loop-Variable.
@@ -291,28 +299,28 @@ i // i ausgeben, res3: Int = 10
// und zu parellelisieren.
// Ein do while Schleife
-```
+
do {
println("x ist immer noch weniger wie 10")
x += 1
} while (x < 10)
-```
+
// Endrekursionen sind ideomatisch um sich wiederholende
// Dinge in Scala zu lösen. Rekursive Funtionen benötigen explizit einen
// return Typ, der Compiler kann ihn nicht erraten.
// Unit, in diesem Beispiel.
-```
+
def showNumbersInRange(a: Int, b: Int): Unit = {
print(a)
if (a < b)
showNumbersInRange(a + 1, b)
}
showNumbersInRange(1, 14)
-```
-## Conditionals
-```
+
+// Conditionals
+
val x = 10
if (x == 1) println("yeah")
if (x == 10) println("yeah")
@@ -320,186 +328,193 @@ if (x == 11) println("yeah")
if (x == 11) println ("yeah") else println("nay")
println(if (x == 10) "yeah" else "nope")
val text = if (x == 10) "yeah" else "nope"
-```
-# 4. Daten Strukturen (Array, Map, Set, Tuples)
-## Array
-```
+/////////////////////////////////////////////////
+// 4. Daten Strukturen (Array, Map, Set, Tuples)
+/////////////////////////////////////////////////
+
+// Array
+
val a = Array(1, 2, 3, 5, 8, 13)
a(0)
a(3)
a(21) // Exception
-```
-## Map - Speichert Key-Value-Paare
-```
+
+// Map - Speichert Key-Value-Paare
+
val m = Map("fork" -> "tenedor", "spoon" -> "cuchara", "knife" -> "cuchillo")
m("fork")
m("spoon")
m("bottle") // Exception
val safeM = m.withDefaultValue("no lo se")
safeM("bottle")
-```
-## Set - Speichert Unikate, unsortiert (sortiert -> SortedSet)
-```
+
+// Set - Speichert Unikate, unsortiert (sortiert -> SortedSet)
+
val s = Set(1, 3, 7)
s(0) //false
s(1) //true
val s = Set(1,1,3,3,7)
s: scala.collection.immutable.Set[Int] = Set(1, 3, 7)
-```
-## Tuple - Speichert beliebige Daten und "verbindet" sie miteinander
+
+// Tuple - Speichert beliebige Daten und "verbindet" sie miteinander
// Ein Tuple ist keine Collection.
-```
+
(1, 2)
(4, 3, 2)
(1, 2, "three")
(a, 2, "three")
-```
+
// Hier ist der Rückgabewert der Funktion ein Tuple
// Die Funktion gibt das Ergebnis, so wie den Rest zurück.
-```
+
val divideInts = (x: Int, y: Int) => (x / y, x % y)
divideInts(10, 3)
-```
+
// Um die Elemente eines Tuples anzusprechen, benutzt man diese
// Notation: _._n wobei n der index des Elements ist (Index startet bei 1)
-```
+
val d = divideInts(10, 3)
d._1
d._2
-```
-# 5. Objekt Orientierte Programmierung
-Bislang waren alle gezeigten Sprachelemente einfache Ausdrücke, welche zwar
-zum Ausprobieren und Lernen in der REPL gut geeignet sind, jedoch in
-einem Scala file selten alleine zu finden sind.
-Die einzigen Top-Level Konstrukte in Scala sind nämlich:
-- Klassen (classes)
-- Objekte (objects)
-- case classes
-- traits
+/////////////////////////////////////////////////
+// 5. Objektorientierte Programmierung
+/////////////////////////////////////////////////
+
+/*
+ Bislang waren alle gezeigten Sprachelemente einfache Ausdrücke, welche zwar
+ zum Ausprobieren und Lernen in der REPL gut geeignet sind, jedoch in
+ einem Scala file selten alleine zu finden sind.
+ Die einzigen Top-Level Konstrukte in Scala sind nämlich:
+
+ - Klassen (classes)
+ - Objekte (objects)
+ - case classes
+ - traits
-Diesen Sprachelemente wenden wir uns jetzt zu.
+ Diesen Sprachelemente wenden wir uns jetzt zu.
+*/
-## Klassen
+// Klassen
// Zum Erstellen von Objekten benötigt man eine Klasse, wie in vielen
// anderen Sprachen auch.
// erzeugt Klasse mit default Konstruktor
-```
+
class Hund
scala> val t = new Hund
t: Hund = Hund@7103745
-```
+
// Der Konstruktor wird direkt hinter dem Klassennamen deklariert.
-```
+
class Hund(sorte: String)
scala> val t = new Hund("Dackel")
t: Hund = Hund@14be750c
scala> t.sorte //error: value sorte is not a member of Hund
-```
+
// Per val wird aus dem Attribut ein unveränderliches Feld der Klasse
// Per var wird aus dem Attribut ein veränderliches Feld der Klasse
-```
+
class Hund(val sorte: String)
scala> val t = new Hund("Dackel")
t: Hund = Hund@74a85515
scala> t.sorte
res18: String = Dackel
-```
+
// Methoden werden mit def geschrieben
-```
+
def bark = "Woof, woof!"
-```
+
// Felder und Methoden können public, protected und private sein
// default ist public
// private ist nur innerhalb des deklarierten Bereichs sichtbar
-```
+
class Hund {
private def x = ...
def y = ...
}
-```
+
// protected ist nur innerhalb des deklarierten und aller
// erbenden Bereiche sichtbar
-```
+
class Hund {
protected def x = ...
}
class Dackel extends Hund {
// x ist sichtbar
}
-```
-## Object
-Wird ein Objekt ohne das Schlüsselwort "new" instanziert, wird das sog.
-"companion object" aufgerufen. Mit dem "object" Schlüsselwort wird so
-ein Objekt (Typ UND Singleton) erstellt. Damit kann man dann eine Klasse
-benutzen ohne ein Objekt instanziieren zu müssen.
-Ein gültiges companion Objekt einer Klasse ist es aber erst dann, wenn
-es genauso heisst und in derselben Datei wie die Klasse definiert wurde.
-```
+
+// Object
+// Wird ein Objekt ohne das Schlüsselwort "new" instanziert, wird das sog.
+// "companion object" aufgerufen. Mit dem "object" Schlüsselwort wird so
+// ein Objekt (Typ UND Singleton) erstellt. Damit kann man dann eine Klasse
+// benutzen ohne ein Objekt instanziieren zu müssen.
+// Ein gültiges companion Objekt einer Klasse ist es aber erst dann, wenn
+// es genauso heisst und in derselben Datei wie die Klasse definiert wurde.
+
object Hund {
def alleSorten = List("Pitbull", "Dackel", "Retriever")
def createHund(sorte: String) = new Hund(sorte)
}
-```
-## Case classes
-Fallklassen bzw. Case classes sind Klassen die normale Klassen um extra
-Funktionalität erweitern. Mit Case Klassen bekommt man ein paar
-Dinge einfach dazu, ohne sich darum kümmern zu müssen. Z.B.
-ein companion object mit den entsprechenden Methoden,
-Hilfsmethoden wie toString(), equals() und hashCode() und auch noch
-Getter für unsere Attribute (das Angeben von val entfällt dadurch)
-```
+
+// Case classes
+// Fallklassen bzw. Case classes sind Klassen die normale Klassen um extra
+// Funktionalität erweitern. Mit Case Klassen bekommt man ein paar
+// Dinge einfach dazu, ohne sich darum kümmern zu müssen. Z.B.
+// ein companion object mit den entsprechenden Methoden,
+// Hilfsmethoden wie toString(), equals() und hashCode() und auch noch
+// Getter für unsere Attribute (das Angeben von val entfällt dadurch)
+
class Person(val name: String)
class Hund(val sorte: String, val farbe: String, val halter: Person)
-```
+
// Es genügt das Schlüsselwort case vor die Klasse zu schreiben.
-```
+
case class Person(name: String)
case class Hund(sorte: String, farbe: String, halter: Person)
-```
+
// Für neue Instanzen brauch man kein "new"
-```
+
val dackel = Hund("dackel", "grau", Person("peter"))
val dogge = Hund("dogge", "grau", Person("peter"))
-```
+
// getter
-```
+
dackel.halter // => Person = Person(peter)
-```
+
// equals
-```
+
dogge == dackel // => false
-```
+
// copy
// otherGeorge == Person("george", "9876")
-```
+
val otherGeorge = george.copy(phoneNumber = "9876")
-```
-## Traits
-Ähnlich wie Java interfaces, definiert man mit traits einen Objekttyp
-und Methodensignaturen. Scala erlaubt allerdings das teilweise
-implementieren dieser Methoden. Konstruktorparameter sind nicht erlaubt.
-Traits können von anderen Traits oder Klassen erben, aber nur von
-parameterlosen.
-```
+
+// Traits
+// Ähnlich wie Java interfaces, definiert man mit traits einen Objekttyp
+// und Methodensignaturen. Scala erlaubt allerdings das teilweise
+// implementieren dieser Methoden. Konstruktorparameter sind nicht erlaubt.
+// Traits können von anderen Traits oder Klassen erben, aber nur von
+// parameterlosen.
+
trait Hund {
def sorte: String
def farbe: String
@@ -511,9 +526,9 @@ class Bernhardiner extends Hund{
val farbe = "braun"
def beissen = false
}
-```
+
-```
+
scala> b
res0: Bernhardiner = Bernhardiner@3e57cd70
scala> b.sorte
@@ -522,10 +537,10 @@ scala> b.bellen
res2: Boolean = true
scala> b.beissen
res3: Boolean = false
-```
+
// Traits können auch via Mixins (Schlüsselwort "with") eingebunden werden
-```
+
trait Bellen {
def bellen: String = "Woof"
}
@@ -541,25 +556,27 @@ scala> val b = new Bernhardiner
b: Bernhardiner = Bernhardiner@7b69c6ba
scala> b.bellen
res0: String = Woof
-```
-# 6. Pattern Matching
-Pattern matching in Scala ist ein sehr nützliches und wesentlich
-mächtigeres Feature als Vergleichsfunktionen in Java. In Scala
-benötigt ein case Statement kein "break", ein fall-through gibt es nicht.
-Mehrere Überprüfungen können mit einem Statement gemacht werden.
-Pattern matching wird mit dem Schlüsselwort "match" gemacht.
-```
+/////////////////////////////////////////////////
+// 6. Pattern Matching
+/////////////////////////////////////////////////
+
+// Pattern matching in Scala ist ein sehr nützliches und wesentlich
+// mächtigeres Feature als Vergleichsfunktionen in Java. In Scala
+// benötigt ein case Statement kein "break", ein fall-through gibt es nicht.
+// Mehrere Überprüfungen können mit einem Statement gemacht werden.
+// Pattern matching wird mit dem Schlüsselwort "match" gemacht.
+
val x = ...
x match {
case 2 =>
case 3 =>
case _ =>
}
-```
+
// Pattern Matching kann auf beliebige Typen prüfen
-```
+
val any: Any = ...
val gleicht = any match {
case 2 | 3 | 5 => "Zahl"
@@ -568,19 +585,19 @@ val gleicht = any match {
case 45.35 => "Double"
case _ => "Unbekannt"
}
-```
+
// und auf Objektgleichheit
-```
+
def matchPerson(person: Person): String = person match {
case Person("George", nummer) => "George! Die Nummer ist " + number
case Person("Kate", nummer) => "Kate! Die Nummer ist " + nummer
case Person(name, nummer) => "Irgendjemand: " + name + ", Telefon: " + nummer
}
-```
+
// Und viele mehr...
-```
+
val email = "(.*)@(.*)".r // regex
def matchEverything(obj: Any): String = obj match {
// Werte:
@@ -600,18 +617,21 @@ def matchEverything(obj: Any): String = obj match {
// Patterns kann man ineinander schachteln:
case List(List((1, 2, "YAY"))) => "Got a list of list of tuple"
}
-```
+
// Jedes Objekt mit einer "unapply" Methode kann per Pattern geprüft werden
// Ganze Funktionen können Patterns sein
-```
+
val patternFunc: Person => String = {
case Person("George", number) => s"George's number: $number"
case Person(name, number) => s"Random person's number: $number"
}
-```
-# 7. Higher-order functions
+
+/////////////////////////////////////////////////
+// 37. Higher-order functions
+/////////////////////////////////////////////////
+
Scala erlaubt, das Methoden und Funktion wiederum Funtionen und Methoden
als Aufrufparameter oder Return Wert verwenden. Diese Methoden heissen
higher-order functions
@@ -621,116 +641,117 @@ Nennenswerte sind:
"filter", "map", "reduce", "foldLeft"/"foldRight", "exists", "forall"
## List
-```
+
def isGleichVier(a:Int) = a == 4
val list = List(1, 2, 3, 4)
val resultExists4 = list.exists(isEqualToFour)
-```
+
## map
// map nimmt eine Funktion und führt sie auf jedem Element aus und erzeugt
// eine neue Liste
// Funktion erwartet ein Int und returned ein Int
-```
+
val add10: Int => Int = _ + 10
-```
+
// add10 wird auf jedes Element angewendet
-```
+
List(1, 2, 3) map add10 // => List(11, 12, 13)
-```
+
// Anonyme Funktionen können anstatt definierter Funktionen verwendet werden
-```
+
List(1, 2, 3) map (x => x + 10)
-```
+
// Der Unterstrich wird anstelle eines Parameters einer anonymen Funktion
// verwendet. Er wird an die Variable gebunden.
-```
+
List(1, 2, 3) map (_ + 10)
-```
+
// Wenn der anonyme Block und die Funtion beide EIN Argument erwarten,
// kann sogar der Unterstrich weggelassen werden.
-```
+
List("Dom", "Bob", "Natalia") foreach println
-```
-## filter
+
+// filter
// filter nimmt ein Prädikat (eine Funktion von A -> Boolean) und findet
// alle Elemente die auf das Prädikat passen
-```
+
List(1, 2, 3) filter (_ > 2) // => List(3)
case class Person(name: String, age: Int)
List(
Person(name = "Dom", age = 23),
Person(name = "Bob", age = 30)
).filter(_.age > 25) // List(Person("Bob", 30))
-```
-## reduce
+
+// reduce
// reduce nimmt zwei Elemente und kombiniert sie zu einem Element,
// und zwar solange bis nur noch ein Element da ist.
-## foreach
+// foreach
// foreach gibt es für einige Collections
-```
+
val aListOfNumbers = List(1, 2, 3, 4, 10, 20, 100)
aListOfNumbers foreach (x => println(x))
aListOfNumbers foreach println
-```
-## For comprehensions
+
+// For comprehensions
// Eine for-comprehension definiert eine Beziehung zwischen zwei Datensets.
// Dies ist keine for-Schleife.
-```
+
for { n <- s } yield sq(n)
val nSquared2 = for { n <- s } yield sq(n)
for { n <- nSquared2 if n < 10 } yield n
for { n <- s; nSquared = n * n if nSquared < 10} yield nSquared
-```
+
/////////////////////////////////////////////////
-# 8. Implicits
+// 8. Implicits
/////////////////////////////////////////////////
-**ACHTUNG:**
-Implicits sind ein sehr mächtiges Sprachfeature von Scala. Es sehr einfach
-sie falsch zu benutzen und Anfänger sollten sie mit Vorsicht oder am
-besten erst dann benutzen, wenn man versteht wie sie funktionieren.
-Dieses Tutorial enthält Implicits, da sie in Scala an jeder Stelle
-vorkommen und man auch mit einer Lib die Implicits benutzt nichts sinnvolles
-machen kann.
-Hier soll ein Grundverständnis geschaffen werden, wie sie funktionieren.
+// **ACHTUNG:**
+// Implicits sind ein sehr mächtiges Sprachfeature von Scala.
+// Es sehr einfach
+// sie falsch zu benutzen und Anfänger sollten sie mit Vorsicht oder am
+// besten erst dann benutzen, wenn man versteht wie sie funktionieren.
+// Dieses Tutorial enthält Implicits, da sie in Scala an jeder Stelle
+// vorkommen und man auch mit einer Lib die Implicits benutzt nichts sinnvolles
+// machen kann.
+// Hier soll ein Grundverständnis geschaffen werden, wie sie funktionieren.
// Mit dem Schlüsselwort implicit können Methoden, Werte, Funktion, Objekte
// zu "implicit Methods" werden.
-```
+
implicit val myImplicitInt = 100
implicit def myImplicitFunction(sorte: String) = new Hund("Golden " + sorte)
-```
+
// implicit ändert nicht das Verhalten eines Wertes oder einer Funktion
-```
+
myImplicitInt + 2 // => 102
myImplicitFunction("Pitbull").sorte // => "Golden Pitbull"
-```
+
// Der Unterschied ist, dass diese Werte ausgewählt werden können, wenn ein
// anderer Codeteil einen implicit Wert benötigt, zum Beispiel innerhalb von
// implicit Funktionsparametern
// Diese Funktion hat zwei Parameter: einen normalen und einen implicit
-```
+
def sendGreetings(toWhom: String)(implicit howMany: Int) =
s"Hello $toWhom, $howMany blessings to you and yours!"
-```
+
// Werden beide Parameter gefüllt, verhält sich die Funktion wie erwartet
-```
+
sendGreetings("John")(1000) // => "Hello John, 1000 blessings to you and yours!"
-```
+
// Wird der implicit Parameter jedoch weggelassen, wird ein anderer
// implicit Wert vom gleichen Typ genommen. Der Compiler sucht im
@@ -739,66 +760,69 @@ sendGreetings("John")(1000) // => "Hello John, 1000 blessings to you and yours!
// geforderten Typ konvertieren kann.
// Hier also: "myImplicitInt", da ein Int gesucht wird
-```
+
sendGreetings("Jane") // => "Hello Jane, 100 blessings to you and yours!"
-```
+
// bzw. "myImplicitFunction"
// Der String wird erst mit Hilfe der Funktion in Hund konvertiert, und
// dann wird die Methode aufgerufen
-```
+
"Retriever".sorte // => "Golden Retriever"
-```
-# 9. Misc
-## Importe
-```
+
+/////////////////////////////////////////////////
+// 19. Misc
+/////////////////////////////////////////////////
+// Importe
+
import scala.collection.immutable.List
-```
+
// Importiere alle Unterpackages
-```
+
import scala.collection.immutable._
-```
+
// Importiere verschiedene Klassen mit einem Statement
-```
+
import scala.collection.immutable.{List, Map}
-```
+
// Einen Import kann man mit '=>' umbenennen
-```
+
import scala.collection.immutable.{List => ImmutableList}
-```
+
// Importiere alle Klasses, mit Ausnahem von....
// Hier ohne: Map and Set:
-```
+
import scala.collection.immutable.{Map => _, Set => _, _}
-```
-## Main
-```
+
+// Main
+
object Application {
def main(args: Array[String]): Unit = {
- // stuff goes here.
+ // Sachen kommen hierhin
}
}
-```
-## I/O
+
+// I/O
// Eine Datei Zeile für Zeile lesen
-```
+
import scala.io.Source
for(line <- Source.fromFile("myfile.txt").getLines())
println(line)
-```
+
// Eine Datei schreiben
-```
+
val writer = new PrintWriter("myfile.txt")
writer.write("Schreibe Zeile" + util.Properties.lineSeparator)
writer.write("Und noch eine Zeile" + util.Properties.lineSeparator)
writer.close()
+
```
## Weiterführende Hinweise
diff --git a/de-de/yaml-de.html.markdown b/de-de/yaml-de.html.markdown
index 19ea9e87..a46c30f6 100644
--- a/de-de/yaml-de.html.markdown
+++ b/de-de/yaml-de.html.markdown
@@ -30,7 +30,7 @@ null_Wert: null
Schlüssel mit Leerzeichen: value
# Strings müssen nicht immer mit Anführungszeichen umgeben sein, können aber:
jedoch: "Ein String in Anführungzeichen"
-"Ein Schlüssel in Anführungszeichen": "Nützlich, wenn du einen Doppelpunkt im Schluessel haben willst."
+"Ein Schlüssel in Anführungszeichen": "Nützlich, wenn du einen Doppelpunkt im Schlüssel haben willst."
# Mehrzeilige Strings schreibst du am besten als 'literal block' (| gefolgt vom Text)
# oder ein 'folded block' (> gefolgt vom text).
@@ -64,7 +64,7 @@ eine_verschachtelte_map:
hallo: hallo
# Schlüssel müssen nicht immer String sein.
-0.25: ein Float-Wert als Schluessel
+0.25: ein Float-Wert als Schlüssel
# Schlüssel können auch mehrzeilig sein, ? symbolisiert den Anfang des Schlüssels
? |