diff options
author | Levi Bostian <levi.bostian@banno.com> | 2013-11-25 09:42:37 -0600 |
---|---|---|
committer | Levi Bostian <levi.bostian@banno.com> | 2013-11-25 09:42:37 -0600 |
commit | af6701904b459b16cf65709cd8c70fd2f5519457 (patch) | |
tree | 68cb4bf9ead32686f492e68528e9f0761e41c500 /es-es/clojure-es.html.markdown | |
parent | df3cc00f5233dac96c0e063d87d3552f493e25f6 (diff) | |
parent | d24c824d388669181eed99c3e94bb25c2914304a (diff) |
Fix conflict bash.
Diffstat (limited to 'es-es/clojure-es.html.markdown')
-rw-r--r-- | es-es/clojure-es.html.markdown | 393 |
1 files changed, 393 insertions, 0 deletions
diff --git a/es-es/clojure-es.html.markdown b/es-es/clojure-es.html.markdown new file mode 100644 index 00000000..150d0bb2 --- /dev/null +++ b/es-es/clojure-es.html.markdown @@ -0,0 +1,393 @@ +--- +language: clojure +filename: learnclojure-es.clj +contributors: + - ["Adam Bard", "http://adambard.com/"] +translators: + - ["Antonio Hernández Blas", "https://twitter.com/nihilipster"] + - ["Guillermo Vayá Pérez", "http://willyfrog.es"] +lang: es-es +--- + +Clojure es un lenguaje de la familia Lisp desarrollado sobre la Máquina Virtual +de Java. Tiene un énfasis mayor en la [programación funcional](https://es.wikipedia.org/wiki/Programación_funcional) pura +que Common Lisp, pero incluyendo la posibilidad de usar [SMT](https://es.wikipedia.org/wiki/Memoria_transacional) para manipular +el estado según se presente. + +Esta combinación le permite gestionar la concurrencia de manera muy sencilla +y a menudo automáticamente. + +(Necesitas la versión de Clojure 1.2 o posterior) + + +```clojure +; Los comentatios comienzan con punto y coma. + +; Clojure se escribe mediante "forms" (patrones), los cuales son +; listas de objectos entre paréntesis, separados por espacios en blanco. + +; El "reader" (lector) de Clojure asume que el primer objeto es una +; función o una macro que se va a llamar, y que el resto son argumentos. + +; El primer form en un archivo debe ser ns, para establecer el namespace (espacio de +; nombres) +(ns learnclojure) + +; Algunos ejemplos básicos: + +; str crea una cadena de caracteres a partir de sus argumentos +(str "Hello" " " "World") ; => "Hello World" + +; Las operaciones matemáticas son sencillas +(+ 1 1) ; => 2 +(- 2 1) ; => 1 +(* 1 2) ; => 2 +(/ 2 1) ; => 2 + +; La igualdad es = +(= 1 1) ; => true +(= 2 1) ; => false + +; También es necesaria la negación para las operaciones lógicas +(not true) ; => false + +; Cuando se anidan Los patrones, estos funcionan de la manera esperada +(+ 1 (- 3 2)) ; = 1 + (3 - 2) => 2 + +; Tipos +;;;;;;;;;;;;; + +; Clojure usa los tipos de objetos de Java para booleanos, strings (cadenas de +; caracteres) y números. +; Usa class para saber de qué tipo es. +(class 1); Los enteros son java.lang.Long por defecto +(class 1.); Los numeros en coma flotante son java.lang.Double +(class ""); Los strings van entre comillas dobles, y son +; son java.lang.String +(class false); Los Booleanos son java.lang.Boolean +(class nil); El valor "null" se escribe nil + +; Si quieres crear una lista de datos, precedela con una comilla +; simple para evitar su evaluación +'(+ 1 2) ; => (+ 1 2) +; (que es una abreviatura de (quote (+ 1 2)) ) + +; Puedes evaluar una lista precedida por comilla con eval +(eval '(+ 1 2)) ; => 3 + +; Colecciones & Secuencias +;;;;;;;;;;;;;;;;;;; + +; Las Listas están basadas en las listas enlazadas, mientras que los Vectores en +; arrays. +; ¡Los Vectores y las Listas también son clases de Java! +(class [1 2 3]); => clojure.lang.PersistentVector +(class '(1 2 3)); => clojure.lang.PersistentList + +; Una lista podría ser escrita como (1 2 3), pero debemos ponerle una +; comilla simple delante para evitar que el reader piense que es una función. +; Además, (list 1 2 3) es lo mismo que '(1 2 3) + +; Las "Colecciones" son solo grupos de datos +; Tanto las listas como los vectores son colecciones: +(coll? '(1 2 3)) ; => true +(coll? [1 2 3]) ; => true + +; Las "Secuencias" (seqs) son descripciones abstractas de listas de datos. +; Solo las listas son seqs. +(seq? '(1 2 3)) ; => true +(seq? [1 2 3]) ; => false + +; Una seq solo necesita proporcionar una entrada cuando es accedida. +; Así que, las seqs pueden ser perezosas -- pueden establecer series infinitas: +(range 4) ; => (0 1 2 3) +(range) ; => (0 1 2 3 4 ...) (una serie infinita) +(take 4 (range)) ; (0 1 2 3) + +; Usa cons para agregar un elemento al inicio de una lista o vector +(cons 4 [1 2 3]) ; => (4 1 2 3) +(cons 4 '(1 2 3)) ; => (4 1 2 3) + +; conj agregará un elemento a una colección en la forma más eficiente. +; Para listas, se añade al inicio. Para vectores, al final. +(conj [1 2 3] 4) ; => [1 2 3 4] +(conj '(1 2 3) 4) ; => (4 1 2 3) + +; Usa concat para concatenar listas o vectores +(concat [1 2] '(3 4)) ; => (1 2 3 4) + +; Usa filter y map para actuar sobre colecciones +(map inc [1 2 3]) ; => (2 3 4) +(filter even? [1 2 3]) ; => (2) + +; Usa reduce para combinar sus elementos +(reduce + [1 2 3 4]) +; = (+ (+ (+ 1 2) 3) 4) +; => 10 + +; reduce puede tener un argumento indicando su valor inicial. +(reduce conj [] '(3 2 1)) +; = (conj (conj (conj [] 3) 2) 1) +; => [3 2 1] + +; Funciones +;;;;;;;;;;;;;;;;;;;;; + +; Usa fn para crear nuevas funciones. Una función siempre devuelve +; su última expresión +(fn [] "Hello World") ; => fn + +; (Necesitas rodearlo con paréntesis para invocarla) +((fn [] "Hello World")) ; => "Hello World" + +; Puedes crear una var (variable) mediante def +(def x 1) +x ; => 1 + +; Asigna una función a una var +(def hello-world (fn [] "Hello World")) +(hello-world) ; => "Hello World" + +; Puedes defn como atajo para lo anterior +(defn hello-world [] "Hello World") + +; El [] es el vector de argumentos de la función. +(defn hello [name] + (str "Hello " name)) +(hello "Steve") ; => "Hello Steve" + +; Otra abreviatura para crear funciones es: +(def hello2 #(str "Hello " %1)) +(hello2 "Fanny") ; => "Hello Fanny" + +; Puedes tener funciones multi-variadic: funciones con un numero variable de +; argumentos +(defn hello3 + ([] "Hello World") + ([name] (str "Hello " name))) +(hello3 "Jake") ; => "Hello Jake" +(hello3) ; => "Hello World" + +; Las funciones pueden usar argumentos extras dentro de un seq utilizable en la función +(defn count-args [& args] + (str "You passed " (count args) " args: " args)) +(count-args 1 2 3) ; => "You passed 3 args: (1 2 3)" + +; Y puedes mezclarlos con el resto de argumentos declarados de la función. +(defn hello-count [name & args] + (str "Hello " name ", you passed " (count args) " extra args")) +(hello-count "Finn" 1 2 3) +; => "Hello Finn, you passed 3 extra args" + + +; Mapas +;;;;;;;;;; + +; Mapas de Hash y mapas de arrays comparten una misma interfaz. Los mapas de Hash +; tienen búsquedas más rápidas pero no mantienen el orden de las claves. +(class {:a 1 :b 2 :c 3}) ; => clojure.lang.PersistentArrayMap +(class (hash-map :a 1 :b 2 :c 3)) ; => clojure.lang.PersistentHashMap + +; Los mapas de arrays se convertidos en mapas de Hash en la mayoría de +; operaciones si crecen mucho, por lo que no debes preocuparte. + +; Los mapas pueden usar cualquier tipo para sus claves, pero generalmente las +; keywords (palabras clave) son lo habitual. +; Las keywords son parecidas a cadenas de caracteres con algunas ventajas de eficiencia +(class :a) ; => clojure.lang.Keyword + +(def stringmap {"a" 1, "b" 2, "c" 3}) +stringmap ; => {"a" 1, "b" 2, "c" 3} + +(def keymap {:a 1, :b 2, :c 3}) +keymap ; => {:a 1, :c 3, :b 2} + +; Por cierto, las comas son equivalentes a espacios en blanco y no hacen +; nada. + +; Recupera un valor de un mapa tratandolo como una función +(stringmap "a") ; => 1 +(keymap :a) ; => 1 + +; ¡Las keywords pueden ser usadas para recuperar su valor del mapa, también! +(:b keymap) ; => 2 + +; No lo intentes con strings. +;("a" stringmap) +; => Exception: java.lang.String cannot be cast to clojure.lang.IFn + +; Si preguntamos por una clave que no existe nos devuelve nil +(stringmap "d") ; => nil + +; Usa assoc para añadir nuevas claves a los mapas de Hash +(def newkeymap (assoc keymap :d 4)) +newkeymap ; => {:a 1, :b 2, :c 3, :d 4} + +; Pero recuerda, ¡los tipos de Clojure son inmutables! +keymap ; => {:a 1, :b 2, :c 3} + +; Usa dissoc para eliminar llaves +(dissoc keymap :a :b) ; => {:c 3} + +; Conjuntos +;;;;;; + +(class #{1 2 3}) ; => clojure.lang.PersistentHashSet +(set [1 2 3 1 2 3 3 2 1 3 2 1]) ; => #{1 2 3} + +; Añade un elemento con conj +(conj #{1 2 3} 4) ; => #{1 2 3 4} + +; Elimina elementos con disj +(disj #{1 2 3} 1) ; => #{2 3} + +; Comprueba su existencia usando el conjunto como una función: +(#{1 2 3} 1) ; => 1 +(#{1 2 3} 4) ; => nil + +; Hay más funciones en el namespace clojure.sets + +; Patrones útiles +;;;;;;;;;;;;;;;;; + +; Las construcciones lógicas en clojure son macros, y presentan el mismo aspecto +; que el resto de forms. +(if false "a" "b") ; => "b" +(if false "a") ; => nil + +; Usa let para crear un binding (asociación) temporal +(let [a 1 b 2] + (> a b)) ; => false + +; Agrupa expresiones mediante do +(do + (print "Hello") + "World") ; => "World" (prints "Hello") + +; Las funciones tienen implicita la llamada a do +(defn print-and-say-hello [name] + (print "Saying hello to " name) + (str "Hello " name)) +(print-and-say-hello "Jeff") ;=> "Hello Jeff" (prints "Saying hello to Jeff") + +; Y el let también +(let [name "Urkel"] + (print "Saying hello to " name) + (str "Hello " name)) ; => "Hello Urkel" (prints "Saying hello to Urkel") + +; Módulos +;;;;;;;;;;;;;;; + +; Usa use para obtener todas las funciones del módulo +(use 'clojure.set) + +; Ahora podemos usar más operaciones de conjuntos +(intersection #{1 2 3} #{2 3 4}) ; => #{2 3} +(difference #{1 2 3} #{2 3 4}) ; => #{1} + +; Puedes escoger un subgrupo de funciones a importar, también +(use '[clojure.set :only [intersection]]) + +; Usa require para importar un módulo +(require 'clojure.string) + +; Usa / para llamar a las funciones de un módulo +; Aquí, el módulo es clojure.string y la función es blank? +(clojure.string/blank? "") ; => true + +; Puedes asignarle una abreviatura a un modulo al importarlo +(require '[clojure.string :as str]) +(str/replace "This is a test." #"[a-o]" str/upper-case) ; => "THIs Is A tEst." +; (#"" es una expresión regular) + +; Puedes usar require (y use, pero no lo hagas) desde un espacio de nombre +; usando :require, +; No necesitas preceder con comilla simple tus módulos si lo haces de esta +; forma. +(ns test + (:require + [clojure.string :as str] + [clojure.set :as set])) + +; Java +;;;;;;;;;;;;;;;;; + +; Java tiene una enorme librería estándar, por lo que resulta util +; aprender como interactuar con ella. + +; Usa import para cargar un módulo de java +(import java.util.Date) + +; Puedes importar desde un ns también. +(ns test + (:import java.util.Date + java.util.Calendar)) + +; Usa el nombre de la clase con un "." al final para crear una nueva instancia +(Date.) ; <un objeto Date> + +; Usa "." para llamar a métodos o usa el atajo ".método" +(. (Date.) getTime) ; <un timestamp> +(.getTime (Date.)) ; exactamente la misma cosa + +; Usa / para llamar métodos estáticos. +(System/currentTimeMillis) ; <un timestamp> (System siempre está presente) + +; Usa doto para hacer frente al uso de clases (mutables) más tolerable +(import java.util.Calendar) +(doto (Calendar/getInstance) + (.set 2000 1 1 0 0 0) + .getTime) ; => A Date. set to 2000-01-01 00:00:00 + +; STM +;;;;;;;;;;;;;;;;; + +; Software Transactional Memory es un mecanismo que usa clojure para gestionar +; el estado persistente. Hay unas cuantas construcciones en clojure que +; hacen uso de este mecanismo. + +; Un atom es el más sencillo. Se le da un valor inicial +(def my-atom (atom {})) + +; Actualiza un atom con swap! +; swap! toma una función y la llama con el valor actual del atom +; como su primer argumento, y cualquier argumento restante como el segundo +(swap! my-atom assoc :a 1) ; Establece my-atom al resultado de (assoc {} :a 1) +(swap! my-atom assoc :b 2) ; Establece my-atom al resultado de (assoc {:a 1} :b 2) + +; Usa '@' para no referenciar al atom sino para obtener su valor +my-atom ;=> Atom<#...> (Regresa el objeto Atom) +@my-atom ; => {:a 1 :b 2} + +; Un sencillo contador usando un atom sería +(def counter (atom 0)) +(defn inc-counter [] + (swap! counter inc)) + +(inc-counter) +(inc-counter) +(inc-counter) +(inc-counter) +(inc-counter) + +@counter ; => 5 + +; Otros forms que utilizan STM son refs y agents. +; Refs: http://clojure.org/refs +; Agents: http://clojure.org/agents +### Lectura adicional + +Ésto queda lejos de ser exhaustivo, pero espero que sea suficiente para que puedas empezar tu camino. + +Clojure.org tiene muchos artículos: +[http://clojure.org/](http://clojure.org/) + +Clojuredocs.org contiene documentación con ejemplos para la mayoría de +funciones principales (pertenecientes al core): +[http://clojuredocs.org/quickref/Clojure%20Core](http://clojuredocs.org/quickref/Clojure%20Core) + +4Clojure es una genial forma de mejorar tus habilidades con clojure/FP: +[http://www.4clojure.com/](http://www.4clojure.com/) + +Clojure-doc.org (sí, de verdad) tiene un buen número de artículos con los que iniciarse en Clojure: +[http://clojure-doc.org/](http://clojure-doc.org/) |