summaryrefslogtreecommitdiffhomepage
path: root/lambda-calculus.html.markdown
diff options
context:
space:
mode:
authorDivay Prakash <divayprakash@users.noreply.github.com>2018-10-24 11:04:05 +0530
committerGitHub <noreply@github.com>2018-10-24 11:04:05 +0530
commit4a7d678c2553bc379542a5901177b8bb2730ce65 (patch)
treeb2896f9f02b5a752f860a71a36b1e16c566a8ed7 /lambda-calculus.html.markdown
parente2949649f054ca069e95a05b04d99bccc30ba45d (diff)
parent8f5a67190705c9a3101653901d8f8a7b48eb1775 (diff)
Merge branch 'master' into master
Diffstat (limited to 'lambda-calculus.html.markdown')
-rw-r--r--lambda-calculus.html.markdown214
1 files changed, 214 insertions, 0 deletions
diff --git a/lambda-calculus.html.markdown b/lambda-calculus.html.markdown
new file mode 100644
index 00000000..3d080de7
--- /dev/null
+++ b/lambda-calculus.html.markdown
@@ -0,0 +1,214 @@
+---
+category: Algorithms & Data Structures
+name: Lambda Calculus
+contributors:
+ - ["Max Sun", "http://github.com/maxsun"]
+ - ["Yan Hui Hang", "http://github.com/yanhh0"]
+---
+
+# Lambda Calculus
+
+Lambda calculus (λ-calculus), originally created by
+[Alonzo Church](https://en.wikipedia.org/wiki/Alonzo_Church),
+is the world's smallest programming language.
+Despite not having numbers, strings, booleans, or any non-function datatype,
+lambda calculus can be used to represent any Turing Machine!
+
+Lambda calculus is composed of 3 elements: **variables**, **functions**, and
+**applications**.
+
+
+| Name | Syntax | Example | Explanation |
+|-------------|------------------------------------|-----------|-----------------------------------------------|
+| Variable | `<name>` | `x` | a variable named "x" |
+| Function | `λ<parameters>.<body>` | `λx.x` | a function with parameter "x" and body "x" |
+| Application | `<function><variable or function>` | `(λx.x)a` | calling the function "λx.x" with argument "a" |
+
+The most basic function is the identity function: `λx.x` which is equivalent to
+`f(x) = x`. The first "x" is the function's argument, and the second is the
+body of the function.
+
+## Free vs. Bound Variables:
+
+- In the function `λx.x`, "x" is called a bound variable because it is both in
+the body of the function and a parameter.
+- In `λx.y`, "y" is called a free variable because it is never declared before hand.
+
+## Evaluation:
+
+Evaluation is done via
+[β-Reduction](https://en.wikipedia.org/wiki/Lambda_calculus#Beta_reduction),
+which is essentially lexically-scoped substitution.
+
+When evaluating the
+expression `(λx.x)a`, we replace all occurences of "x" in the function's body
+with "a".
+
+- `(λx.x)a` evaluates to: `a`
+- `(λx.y)a` evaluates to: `y`
+
+You can even create higher-order functions:
+
+- `(λx.(λy.x))a` evaluates to: `λy.a`
+
+Although lambda calculus traditionally supports only single parameter
+functions, we can create multi-parameter functions using a technique called
+[currying](https://en.wikipedia.org/wiki/Currying).
+
+- `(λx.λy.λz.xyz)` is equivalent to `f(x, y, z) = ((x y) z)`
+
+Sometimes `λxy.<body>` is used interchangeably with: `λx.λy.<body>`
+
+----
+
+It's important to recognize that traditional **lambda calculus doesn't have
+numbers, characters, or any non-function datatype!**
+
+## Boolean Logic:
+
+There is no "True" or "False" in lambda calculus. There isn't even a 1 or 0.
+
+Instead:
+
+`T` is represented by: `λx.λy.x`
+
+`F` is represented by: `λx.λy.y`
+
+First, we can define an "if" function `λbtf` that
+returns `t` if `b` is True and `f` if `b` is False
+
+`IF` is equivalent to: `λb.λt.λf.b t f`
+
+Using `IF`, we can define the basic boolean logic operators:
+
+`a AND b` is equivalent to: `λab.IF a b F`
+
+`a OR b` is equivalent to: `λab.IF a T b`
+
+`a NOT b` is equivalent to: `λa.IF a F T`
+
+*Note: `IF a b c` is essentially saying: `IF((a b) c)`*
+
+## Numbers:
+
+Although there are no numbers in lambda calculus, we can encode numbers using
+[Church numerals](https://en.wikipedia.org/wiki/Church_encoding).
+
+For any number n: <code>n = λf.f<sup>n</sup></code> so:
+
+`0 = λf.λx.x`
+
+`1 = λf.λx.f x`
+
+`2 = λf.λx.f(f x)`
+
+`3 = λf.λx.f(f(f x))`
+
+To increment a Church numeral,
+we use the successor function `S(n) = n + 1` which is:
+
+`S = λn.λf.λx.f((n f) x)`
+
+Using successor, we can define add:
+
+`ADD = λab.(a S)n`
+
+**Challenge:** try defining your own multiplication function!
+
+## Get even smaller: SKI, SK and Iota
+
+### SKI Combinator Calculus
+
+Let S, K, I be the following functions:
+
+`I x = x`
+
+`K x y = x`
+
+`S x y z = x z (y z)`
+
+We can convert an expression in the lambda calculus to an expression
+in the SKI combinator calculus:
+
+1. `λx.x = I`
+2. `λx.c = Kc`
+3. `λx.(y z) = S (λx.y) (λx.z)`
+
+Take the church number 2 for example:
+
+`2 = λf.λx.f(f x)`
+
+For the inner part `λx.f(f x)`:
+```
+ λx.f(f x)
+= S (λx.f) (λx.(f x)) (case 3)
+= S (K f) (S (λx.f) (λx.x)) (case 2, 3)
+= S (K f) (S (K f) I) (case 2, 1)
+```
+
+So:
+```
+ 2
+= λf.λx.f(f x)
+= λf.(S (K f) (S (K f) I))
+= λf.((S (K f)) (S (K f) I))
+= S (λf.(S (K f))) (λf.(S (K f) I)) (case 3)
+```
+
+For the first argument `λf.(S (K f))`:
+```
+ λf.(S (K f))
+= S (λf.S) (λf.(K f)) (case 3)
+= S (K S) (S (λf.K) (λf.f)) (case 2, 3)
+= S (K S) (S (K K) I) (case 2, 3)
+```
+
+For the second argument `λf.(S (K f) I)`:
+```
+ λf.(S (K f) I)
+= λf.((S (K f)) I)
+= S (λf.(S (K f))) (λf.I) (case 3)
+= S (S (λf.S) (λf.(K f))) (K I) (case 2, 3)
+= S (S (K S) (S (λf.K) (λf.f))) (K I) (case 1, 3)
+= S (S (K S) (S (K K) I)) (K I) (case 1, 2)
+```
+
+Merging them up:
+```
+ 2
+= S (λf.(S (K f))) (λf.(S (K f) I))
+= S (S (K S) (S (K K) I)) (S (S (K S) (S (K K) I)) (K I))
+```
+
+Expanding this, we would end up with the same expression for the
+church number 2 again.
+
+### SK Combinator Calculus
+
+The SKI combinator calculus can still be reduced further. We can
+remove the I combinator by noting that `I = SKK`. We can substitute
+all `I`'s with `SKK`.
+
+### Iota Combinator
+
+The SK combinator calculus is still not minimal. Defining:
+
+```
+ι = λf.((f S) K)
+```
+
+We have:
+
+```
+I = ιι
+K = ι(ιI) = ι(ι(ιι))
+S = ι(K) = ι(ι(ι(ιι)))
+```
+
+## For more advanced reading:
+
+1. [A Tutorial Introduction to the Lambda Calculus](http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf)
+2. [Cornell CS 312 Recitation 26: The Lambda Calculus](http://www.cs.cornell.edu/courses/cs3110/2008fa/recitations/rec26.html)
+3. [Wikipedia - Lambda Calculus](https://en.wikipedia.org/wiki/Lambda_calculus)
+4. [Wikipedia - SKI combinator calculus](https://en.wikipedia.org/wiki/SKI_combinator_calculus)
+5. [Wikipedia - Iota and Jot](https://en.wikipedia.org/wiki/Iota_and_Jot)