summaryrefslogtreecommitdiffhomepage
path: root/perl6.html.markdown
diff options
context:
space:
mode:
authorDmitrii Kuznetsov <torgeek@users.noreply.github.com>2021-02-22 18:36:35 +0300
committerGitHub <noreply@github.com>2021-02-22 18:36:35 +0300
commitbc8bd2646f068cfb402850f7c0f9b1dbfe81e5a0 (patch)
tree89213fd6afbf9cc9303c1c2fa08dafc840a9d99d /perl6.html.markdown
parent363d5281f1e3d5bee6339b5316405b0a4b592c49 (diff)
parent110511a10110f96b20f107c078f7d5ef4c01b109 (diff)
Merge pull request #1 from adambard/master
Merge from original adambard
Diffstat (limited to 'perl6.html.markdown')
-rw-r--r--perl6.html.markdown1639
1 files changed, 0 insertions, 1639 deletions
diff --git a/perl6.html.markdown b/perl6.html.markdown
deleted file mode 100644
index 34ad70b7..00000000
--- a/perl6.html.markdown
+++ /dev/null
@@ -1,1639 +0,0 @@
----
-category: language
-language: perl6
-filename: learnperl6.p6
-contributors:
- - ["vendethiel", "http://github.com/vendethiel"]
- - ["Samantha McVey", "https://cry.nu"]
----
-
-Perl 6 is a highly capable, feature-rich programming language made for at
-least the next hundred years.
-
-The primary Perl 6 compiler is called [Rakudo](http://rakudo.org), which runs on
-the JVM and [the MoarVM](http://moarvm.com).
-
-Meta-note : the triple pound signs are here to denote headlines,
-double paragraphs, and single notes.
-
-`#=>` represents the output of a command.
-
-```perl
-# Single line comment start with a pound
-
-#`(
- Multiline comments use #` and a quoting construct.
- (), [], {}, 「」, etc, will work.
-)
-
-### Variables
-
-# In Perl 6, you declare a lexical variable using `my`
-my $variable;
-# Perl 6 has 4 kinds of variables:
-
-## * Scalars. They represent a single value. They start with a `$`
-
-my $str = 'String';
-# double quotes allow for interpolation (which we'll see later):
-my $str2 = "String";
-
-# Variable names can contain but not end with simple quotes and dashes,
-# and can contain (and end with) underscores :
-# my $weird'variable-name_ = 5; # works !
-
-my $bool = True; # `True` and `False` are Perl 6's boolean values.
-my $inverse = !$bool; # You can invert a bool with the prefix `!` operator
-my $forced-bool = so $str; # And you can use the prefix `so` operator
- # which turns its operand into a Bool
-
-## * Lists. They represent multiple values. Their name start with `@`.
-
-my @array = 'a', 'b', 'c';
-# equivalent to :
-my @letters = <a b c>; # array of words, delimited by space.
- # Similar to perl5's qw, or Ruby's %w.
-my @array = 1, 2, 3;
-
-say @array[2]; # Array indices start at 0 -- This is the third element
-
-say "Interpolate all elements of an array using [] : @array[]";
-#=> Interpolate all elements of an array using [] : 1 2 3
-
-@array[0] = -1; # Assign a new value to an array index
-@array[0, 1] = 5, 6; # Assign multiple values
-
-my @keys = 0, 2;
-@array[@keys] = @letters; # Assignment using an array containing index values
-say @array; #=> a 6 b
-
-## * Hashes, or key-value Pairs.
-# Hashes are pairs of keys and values.
-# You can construct a Pair object using the syntax `Key => Value`.
-# Hash tables are very fast for lookup, and are stored unordered.
-# Keep in mind that keys get "flattened" in hash context, and any duplicated
-# keys are deduplicated.
-my %hash = 1 => 2,
- 3 => 4;
-my %hash = foo => "bar", # keys get auto-quoted
- "some other" => "value", # trailing commas are okay
- ;
-# Even though hashes are internally stored differently than arrays,
-# Perl 6 allows you to easily create a hash from an even numbered array:
-my %hash = <key1 value1 key2 value2>;
-
-my %hash = key1 => 'value1', key2 => 'value2'; # same result as above
-
-# You can also use the "colon pair" syntax:
-# (especially handy for named parameters that you'll see later)
-my %hash = :w(1), # equivalent to `w => 1`
- # this is useful for the `True` shortcut:
- :truey, # equivalent to `:truey(True)`, or `truey => True`
- # and for the `False` one:
- :!falsey, # equivalent to `:falsey(False)`, or `falsey => False`
- ;
-
-say %hash{'key1'}; # You can use {} to get the value from a key
-say %hash<key2>; # If it's a string, you can actually use <>
- # (`{key1}` doesn't work, as Perl6 doesn't have barewords)
-
-## * Subs: subroutines or functions as most other languages call them are
-# created with the `sub` keyword.
-sub say-hello { say "Hello, world" }
-
-sub say-hello-to(Str $name) { # You can provide the type of an argument
- # and it'll be checked at compile-time.
-
- say "Hello, $name !";
-}
-
-## It can also have optional arguments:
-sub with-optional($arg?) { # the "?" marks the argument optional
- say "I might return `(Any)` (Perl's 'null'-like value) if I don't have
- an argument passed, or I'll return my argument";
- $arg;
-}
-with-optional; # returns Any
-with-optional(); # returns Any
-with-optional(1); # returns 1
-
-## You can also give them a default value when they're not passed:
-sub hello-to($name = "World") {
- say "Hello, $name !";
-}
-hello-to; #=> Hello, World !
-hello-to(); #=> Hello, World !
-hello-to('You'); #=> Hello, You !
-
-## You can also, by using a syntax akin to the one of hashes (yay unified syntax !),
-## pass *named* arguments to a `sub`.
-# They're optional, and will default to "Any".
-sub with-named($normal-arg, :$named) {
- say $normal-arg + $named;
-}
-with-named(1, named => 6); #=> 7
-# There's one gotcha to be aware of, here:
-# If you quote your key, Perl 6 won't be able to see it at compile time,
-# and you'll have a single Pair object as a positional parameter,
-# which means this fails:
-with-named(1, 'named' => 6);
-
-with-named(2, :named(5)); #=> 7
-
-# To make a named argument mandatory, you can use `?`'s inverse, `!`
-sub with-mandatory-named(:$str!) {
- say "$str !";
-}
-with-mandatory-named(str => "My String"); #=> My String !
-with-mandatory-named; # run time error: "Required named parameter not passed"
-with-mandatory-named(3); # run time error: "Too many positional parameters passed"
-
-## If a sub takes a named boolean argument ...
-sub takes-a-bool($name, :$bool) {
- say "$name takes $bool";
-}
-# ... you can use the same "short boolean" hash syntax:
-takes-a-bool('config', :bool); # config takes True
-takes-a-bool('config', :!bool); # config takes False
-
-## You can also provide your named arguments with defaults:
-sub named-def(:$def = 5) {
- say $def;
-}
-named-def; #=> 5
-named-def(def => 15); #=> 15
-
-# Since you can omit parenthesis to call a function with no arguments,
-# you need "&" in the name to store `say-hello` in a variable.
-my &s = &say-hello;
-my &other-s = sub { say "Anonymous function !" }
-
-# A sub can have a "slurpy" parameter, or "doesn't-matter-how-many"
-sub as-many($head, *@rest) { # `*@` (slurpy) will basically "take everything else".
- # Note: you can have parameters *before* (like here)
- # a slurpy one, but not *after*.
- say @rest.join(' / ') ~ " !";
-}
-say as-many('Happy', 'Happy', 'Birthday'); #=> Happy / Birthday !
- # Note that the splat (the *) did not
- # consume the parameter before.
-
-## You can call a function with an array using the
-# "argument list flattening" operator `|`
-# (it's not actually the only role of this operator, but it's one of them)
-sub concat3($a, $b, $c) {
- say "$a, $b, $c";
-}
-concat3(|@array); #=> a, b, c
- # `@array` got "flattened" as a part of the argument list
-
-### Containers
-# In Perl 6, values are actually stored in "containers".
-# The assignment operator asks the container on the left to store the value on
-# its right. When passed around, containers are marked as immutable.
-# Which means that, in a function, you'll get an error if you try to
-# mutate one of your arguments.
-# If you really need to, you can ask for a mutable container using `is rw`:
-sub mutate($n is rw) {
- $n++;
- say "\$n is now $n !";
-}
-
-my $m = 42;
-mutate $m; # $n is now 43 !
-
-# This works because we are passing the container $m to mutate. If we try
-# to just pass a number instead of passing a variable it won't work because
-# there is no container being passed and integers are immutable by themselves:
-
-mutate 42; # Parameter '$n' expected a writable container, but got Int value
-
-# If what you want a copy instead, use `is copy`.
-
-# A sub itself returns a container, which means it can be marked as rw:
-my $x = 42;
-sub x-store() is rw { $x }
-x-store() = 52; # in this case, the parentheses are mandatory
- # (else Perl 6 thinks `x-store` is an identifier)
-say $x; #=> 52
-
-
-### Control Flow Structures
-## Conditionals
-
-# - `if`
-# Before talking about `if`, we need to know which values are "Truthy"
-# (represent True), and which are "Falsey" (or "Falsy") -- represent False.
-# Only these values are Falsey: 0, (), {}, "", Nil, A type (like `Str` or `Int`),
-# and of course False itself.
-# Every other value is Truthy.
-if True {
- say "It's true !";
-}
-
-unless False {
- say "It's not false !";
-}
-
-# As you can see, you don't need parentheses around conditions.
-# However, you do need the brackets around the "body" block:
-# if (true) say; # This doesn't work !
-
-# You can also use their postfix versions, with the keyword after:
-say "Quite truthy" if True;
-
-# - Ternary conditional, "?? !!" (like `x ? y : z` in some other languages)
-# returns $value-if-true if the condition is true and $value-if-false
-# if it is false.
-# my $result = $value condition ?? $value-if-true !! $value-if-false;
-
-my $age = 30;
-say $age > 18 ?? "You are an adult" !! "You are under 18";
-
-# - `given`-`when` looks like other languages' `switch`, but is much more
-# powerful thanks to smart matching and Perl 6's "topic variable", $_.
-#
-# This variable contains the default argument of a block,
-# a loop's current iteration (unless explicitly named), etc.
-#
-# `given` simply puts its argument into `$_` (like a block would do),
-# and `when` compares it using the "smart matching" (`~~`) operator.
-#
-# Since other Perl 6 constructs use this variable (as said before, like `for`,
-# blocks, etc), this means the powerful `when` is not only applicable along with
-# a `given`, but instead anywhere a `$_` exists.
-
-given "foo bar" {
- say $_; #=> foo bar
- when /foo/ { # Don't worry about smart matching yet – just know `when` uses it.
- # This is equivalent to `if $_ ~~ /foo/`.
- say "Yay !";
- }
- when $_.chars > 50 { # smart matching anything with True (`$a ~~ True`) is True,
- # so you can also put "normal" conditionals.
- # This when is equivalent to this `if`:
- # if $_ ~~ ($_.chars > 50) {...}
- # Which means:
- # if $_.chars > 50 {...}
- say "Quite a long string !";
- }
- default { # same as `when *` (using the Whatever Star)
- say "Something else"
- }
-}
-
-## Looping constructs
-
-# - `loop` is an infinite loop if you don't pass it arguments,
-# but can also be a C-style `for` loop:
-loop {
- say "This is an infinite loop !";
- last; # last breaks out of the loop, like the `break` keyword in other languages
-}
-
-loop (my $i = 0; $i < 5; $i++) {
- next if $i == 3; # `next` skips to the next iteration, like `continue`
- # in other languages. Note that you can also use postfix
- # conditionals, loops, etc.
- say "This is a C-style for loop !";
-}
-
-# - `for` - Passes through an array
-for @array -> $variable {
- say "I've got $variable !";
-}
-
-# As we saw with given, for's default "current iteration" variable is `$_`.
-# That means you can use `when` in a `for` just like you were in a `given`.
-for @array {
- say "I've got $_";
-
- .say; # This is also allowed.
- # A dot call with no "topic" (receiver) is sent to `$_` by default
- $_.say; # the above and this are equivalent.
-}
-
-for @array {
- # You can...
- next if $_ == 3; # Skip to the next iteration (`continue` in C-like languages).
- redo if $_ == 4; # Re-do the iteration, keeping the same topic variable (`$_`).
- last if $_ == 5; # Or break out of a loop (like `break` in C-like languages).
-}
-
-# The "pointy block" syntax isn't specific to for.
-# It's just a way to express a block in Perl6.
-if long-computation() -> $result {
- say "The result is $result";
-}
-
-### Operators
-
-## Since Perl languages are very much operator-based languages,
-## Perl 6 operators are actually just funny-looking subroutines, in syntactic
-## categories, like infix:<+> (addition) or prefix:<!> (bool not).
-
-## The categories are:
-# - "prefix": before (like `!` in `!True`).
-# - "postfix": after (like `++` in `$a++`).
-# - "infix": in between (like `*` in `4 * 3`).
-# - "circumfix": around (like `[`-`]` in `[1, 2]`).
-# - "post-circumfix": around, after another term (like `{`-`}` in `%hash{'key'}`)
-
-## The associativity and precedence list are explained below.
-
-# Alright, you're set to go !
-
-## * Equality Checking
-
-# - `==` is numeric comparison
-3 == 4; # False
-3 != 4; # True
-
-# - `eq` is string comparison
-'a' eq 'b';
-'a' ne 'b'; # not equal
-'a' !eq 'b'; # same as above
-
-# - `eqv` is canonical equivalence (or "deep equality")
-(1, 2) eqv (1, 3);
-
-# - Smart Match Operator: `~~`
-# Aliases the left hand side to $_ and then evaluates the right hand side.
-# Here are some common comparison semantics:
-
-# String or Numeric Equality
-
-'Foo' ~~ 'Foo'; # True if strings are equal.
-12.5 ~~ 12.50; # True if numbers are equal.
-
-# Regex - For matching a regular expression against the left side.
-# Returns a (Match) object, which evaluates as True if regexp matches.
-
-my $obj = 'abc' ~~ /a/;
-say $obj; # 「a」
-say $obj.WHAT; # (Match)
-
-# Hashes
-'key' ~~ %hash; # True if key exists in hash
-
-# Type - Checks if left side "has type" (can check superclasses and roles)
-
-1 ~~ Int; # True
-
-# Smart-matching against a boolean always returns that boolean (and will warn).
-
-1 ~~ True; # True
-False ~~ True; # True
-
-# # General syntax is $arg ~~ &bool-returning-function;
-# For a complete list of combinations, use this table:
-# http://perlcabal.org/syn/S03.html#Smart_matching
-
-# You also, of course, have `<`, `<=`, `>`, `>=`.
-# Their string equivalent are also avaiable : `lt`, `le`, `gt`, `ge`.
-3 > 4;
-
-## * Range constructors
-3 .. 7; # 3 to 7, both included
-# `^` on either side them exclusive on that side :
-3 ^..^ 7; # 3 to 7, not included (basically `4 .. 6`)
-# This also works as a shortcut for `0..^N`:
-^10; # means 0..^10
-
-# This also allows us to demonstrate that Perl 6 has lazy/infinite arrays,
-# using the Whatever Star:
-my @array = 1..*; # 1 to Infinite ! `1..Inf` is the same.
-say @array[^10]; # you can pass arrays as subscripts and it'll return
- # an array of results. This will print
- # "1 2 3 4 5 6 7 8 9 10" (and not run out of memory !)
-# Note : when reading an infinite list, Perl 6 will "reify" the elements
-# it needs, then keep them in memory. They won't be calculated more than once.
-# It also will never calculate more elements that are needed.
-
-# An array subscript can also be a closure.
-# It'll be called with the length as the argument
-say join(' ', @array[15..*]); #=> 15 16 17 18 19
-# which is equivalent to:
-say join(' ', @array[-> $n { 15..$n }]);
-# Note: if you try to do either of those with an infinite array,
-# you'll trigger an infinite loop (your program won't finish)
-
-# You can use that in most places you'd expect, even assigning to an array
-my @numbers = ^20;
-
-# Here numbers increase by "6"; more on `...` operator later.
-my @seq = 3, 9 ... * > 95; # 3 9 15 21 27 [...] 81 87 93 99;
-@numbers[5..*] = 3, 9 ... *; # even though the sequence is infinite,
- # only the 15 needed values will be calculated.
-say @numbers; #=> 0 1 2 3 4 3 9 15 21 [...] 81 87
- # (only 20 values)
-
-## * And &&, Or ||
-3 && 4; # 4, which is Truthy. Calls `.Bool` on `4` and gets `True`.
-0 || False; # False. Calls `.Bool` on `0`
-
-## * Short-circuit (and tight) versions of the above
-# Returns the first argument that evaluates to False, or the last argument.
-
-my ( $a, $b, $c ) = 1, 0, 2;
-$a && $b && $c; # Returns 0, the first False value
-
-# || Returns the first argument that evaluates to True
-$b || $a; # 1
-
-# And because you're going to want them,
-# you also have compound assignment operators:
-$a *= 2; # multiply and assignment. Equivalent to $a = $a * 2;
-$b %%= 5; # divisible by and assignment
-@array .= sort; # calls the `sort` method and assigns the result back
-
-### More on subs !
-# As we said before, Perl 6 has *really* powerful subs. We're going to see
-# a few more key concepts that make them better than in any other language :-).
-
-## Unpacking !
-# It's the ability to "extract" arrays and keys (AKA "destructuring").
-# It'll work in `my`s and in parameter lists.
-my ($f, $g) = 1, 2;
-say $f; #=> 1
-my ($, $, $h) = 1, 2, 3; # keep the non-interesting anonymous
-say $h; #=> 3
-
-my ($head, *@tail) = 1, 2, 3; # Yes, it's the same as with "slurpy subs"
-my (*@small) = 1;
-
-sub unpack_array(@array [$fst, $snd]) {
- say "My first is $fst, my second is $snd ! All in all, I'm @array[].";
- # (^ remember the `[]` to interpolate the array)
-}
-unpack_array(@tail); #=> My first is 2, my second is 3 ! All in all, I'm 2 3
-
-
-# If you're not using the array itself, you can also keep it anonymous,
-# much like a scalar:
-sub first-of-array(@ [$fst]) { $fst }
-first-of-array(@small); #=> 1
-first-of-array(@tail); # Throws an error "Too many positional parameters passed"
- # (which means the array is too big).
-
-# You can also use a slurp ...
-sub slurp-in-array(@ [$fst, *@rest]) { # You could keep `*@rest` anonymous
- say $fst + @rest.elems; # `.elems` returns a list's length.
- # Here, `@rest` is `(3,)`, since `$fst` holds the `2`.
-}
-slurp-in-array(@tail); #=> 3
-
-# You could even extract on a slurpy (but it's pretty useless ;-).)
-sub fst(*@ [$fst]) { # or simply : `sub fst($fst) { ... }`
- say $fst;
-}
-fst(1); #=> 1
-fst(1, 2); # errors with "Too many positional parameters passed"
-
-# You can also destructure hashes (and classes, which you'll learn about later !)
-# The syntax is basically `%hash-name (:key($variable-to-store-value-in))`.
-# The hash can stay anonymous if you only need the values you extracted.
-sub key-of(% (:value($val), :qua($qua))) {
- say "Got val $val, $qua times.";
-}
-
-# Then call it with a hash: (you need to keep the brackets for it to be a hash)
-key-of({value => 'foo', qua => 1});
-#key-of(%hash); # the same (for an equivalent `%hash`)
-
-## The last expression of a sub is returned automatically
-# (though you may use the `return` keyword, of course):
-sub next-index($n) {
- $n + 1;
-}
-my $new-n = next-index(3); # $new-n is now 4
-
-# This is true for everything, except for the looping constructs
-# (due to performance reasons): there's reason to build a list
-# if we're just going to discard all the results.
-# If you still want to build one, you can use the `do` statement prefix:
-# (or the `gather` prefix, which we'll see later)
-sub list-of($n) {
- do for ^$n { # note the use of the range-to prefix operator `^` (`0..^N`)
- $_ # current loop iteration
- }
-}
-my @list3 = list-of(3); #=> (0, 1, 2)
-
-## You can create a lambda with `-> {}` ("pointy block") or `{}` ("block")
-my &lambda = -> $argument { "The argument passed to this lambda is $argument" }
-# `-> {}` and `{}` are pretty much the same thing, except that the former can
-# take arguments, and that the latter can be mistaken as a hash by the parser.
-
-# We can, for example, add 3 to each value of an array using map:
-my @arrayplus3 = map({ $_ + 3 }, @array); # $_ is the implicit argument
-
-# A sub (`sub {}`) has different semantics than a block (`{}` or `-> {}`):
-# A block doesn't have a "function context" (though it can have arguments),
-# which means that if you return from it,
-# you're going to return from the parent function. Compare:
-sub is-in(@array, $elem) {
- # this will `return` out of the `is-in` sub
- # once the condition evaluated to True, the loop won't be run anymore
- map({ return True if $_ == $elem }, @array);
-}
-sub truthy-array(@array) {
- # this will produce an array of `True` and `False`:
- # (you can also say `anon sub` for "anonymous subroutine")
- map(sub ($i) { if $i { return True } else { return False } }, @array);
- # ^ the `return` only returns from the anonymous `sub`
-}
-
-# You can also use the "whatever star" to create an anonymous function
-# (it'll stop at the furthest operator in the current expression)
-my @arrayplus3 = map(*+3, @array); # `*+3` is the same as `{ $_ + 3 }`
-my @arrayplus3 = map(*+*+3, @array); # Same as `-> $a, $b { $a + $b + 3 }`
- # also `sub ($a, $b) { $a + $b + 3 }`
-say (*/2)(4); #=> 2
- # Immediatly execute the function Whatever created.
-say ((*+3)/5)(5); #=> 1.6
- # works even in parens !
-
-# But if you need to have more than one argument (`$_`)
-# in a block (without wanting to resort to `-> {}`),
-# you can also use the implicit argument syntax, `$^` :
-map({ $^a + $^b + 3 }, @array); # equivalent to following:
-map(sub ($a, $b) { $a + $b + 3 }, @array); # (here with `sub`)
-
-# Note : those are sorted lexicographically.
-# `{ $^b / $^a }` is like `-> $a, $b { $b / $a }`
-
-## About types...
-# Perl6 is gradually typed. This means you can specify the type
-# of your variables/arguments/return types, or you can omit them
-# and they'll default to "Any".
-# You obviously get access to a few base types, like Int and Str.
-# The constructs for declaring types are "class", "role",
-# which you'll see later.
-
-# For now, let us examine "subset":
-# a "subset" is a "sub-type" with additional checks.
-# For example: "a very big integer is an Int that's greater than 500"
-# You can specify the type you're subtyping (by default, Any),
-# and add additional checks with the "where" keyword:
-subset VeryBigInteger of Int where * > 500;
-
-## Multiple Dispatch
-# Perl 6 can decide which variant of a `sub` to call based on the type of the
-# arguments, or on arbitrary preconditions, like with a type or a `where`:
-
-# with types
-multi sub sayit(Int $n) { # note the `multi` keyword here
- say "Number: $n";
-}
-multi sayit(Str $s) { # a multi is a `sub` by default
- say "String: $s";
-}
-sayit("foo"); # prints "String: foo"
-sayit(True); # fails at *compile time* with
- # "calling 'sayit' will never work with arguments of types ..."
-
-# with arbitrary precondition (remember subsets?):
-multi is-big(Int $n where * > 50) { "Yes !" } # using a closure
-multi is-big(Int $ where 10..50) { "Quite." } # Using smart-matching
- # (could use a regexp, etc)
-multi is-big(Int $) { "No" }
-
-subset Even of Int where * %% 2;
-
-multi odd-or-even(Even) { "Even" } # The main case using the type.
- # We don't name the argument.
-multi odd-or-even($) { "Odd" } # "else"
-
-# You can even dispatch based on a positional's argument presence !
-multi with-or-without-you(:$with!) { # You need make it mandatory to
- # be able to dispatch against it.
- say "I can live ! Actually, I can't.";
-}
-multi with-or-without-you {
- say "Definitely can't live.";
-}
-# This is very, very useful for many purposes, like `MAIN` subs (covered later),
-# and even the language itself is using it in several places.
-#
-# - `is`, for example, is actually a `multi sub` named `trait_mod:<is>`,
-# and it works off that.
-# - `is rw`, is simply a dispatch to a function with this signature:
-# sub trait_mod:<is>(Routine $r, :$rw!) {}
-#
-# (commented because running this would be a terrible idea !)
-
-
-### Scoping
-# In Perl 6, unlike many scripting languages, (such as Python, Ruby, PHP),
-# you must declare your variables before using them. The `my` declarator
-# you have learned uses "lexical scoping". There are a few other declarators,
-# (`our`, `state`, ..., ) which we'll see later.
-# This is called "lexical scoping", where in inner blocks,
-# you can access variables from outer blocks.
-my $file_scoped = 'Foo';
-sub outer {
- my $outer_scoped = 'Bar';
- sub inner {
- say "$file_scoped $outer_scoped";
- }
- &inner; # return the function
-}
-outer()(); #=> 'Foo Bar'
-
-# As you can see, `$file_scoped` and `$outer_scoped` were captured.
-# But if we were to try and use `$bar` outside of `foo`,
-# the variable would be undefined (and you'd get a compile time error).
-
-### Twigils
-
-# There are many special `twigils` (composed sigil's) in Perl 6.
-# Twigils define the variables' scope.
-# The * and ? twigils work on standard variables:
-# * Dynamic variable
-# ? Compile-time variable
-# The ! and the . twigils are used with Perl 6's objects:
-# ! Attribute (class member)
-# . Method (not really a variable)
-
-# `*` Twigil: Dynamic Scope
-# These variables use the`*` twigil to mark dynamically-scoped variables.
-# Dynamically-scoped variables are looked up through the caller, not through
-# the outer scope
-
-my $*dyn_scoped_1 = 1;
-my $*dyn_scoped_2 = 10;
-
-sub say_dyn {
- say "$*dyn_scoped_1 $*dyn_scoped_2";
-}
-
-sub call_say_dyn {
- my $*dyn_scoped_1 = 25; # Defines $*dyn_scoped_1 only for this sub.
- $*dyn_scoped_2 = 100; # Will change the value of the file scoped variable.
- say_dyn(); #=> 25 100 $*dyn_scoped 1 and 2 will be looked for in the call.
- # It uses he value of $*dyn_scoped_1 from inside this sub's lexical
- # scope even though the blocks aren't nested (they're call-nested).
-}
-say_dyn(); #=> 1 10
-call_say_dyn(); #=> 25 100
- # Uses $*dyn_scoped_1 as defined in call_say_dyn even though
- # we are calling it from outside.
-say_dyn(); #=> 1 100 We changed the value of $*dyn_scoped_2 in call_say_dyn
- # so now its value has changed.
-
-### Object Model
-
-# To call a method on an object, add a dot followed by the method name:
-# => $object.method
-# Classes are declared with the `class` keyword. Attributes are declared
-# with the `has` keyword, and methods declared with `method`.
-# Every attribute that is private uses the ! twigil for example: `$!attr`.
-# Immutable public attributes use the `.` twigil.
-# (you can make them mutable with `is rw`)
-# The easiest way to remember the `$.` twigil is comparing it to how methods
-# are called.
-
-# Perl 6's object model ("SixModel") is very flexible,
-# and allows you to dynamically add methods, change semantics, etc ...
-# (these will not all be covered here, and you should refer to:
-# https://docs.perl6.org/language/objects.html.
-
-class Attrib-Class {
- has $.attrib; # `$.attrib` is immutable.
- # From inside the class, use `$!attrib` to modify it.
- has $.other-attrib is rw; # You can mark a public attribute `rw`.
- has Int $!private-attrib = 10;
-
- method get-value {
- $.attrib + $!private-attrib;
- }
-
- method set-value($param) { # Methods can take parameters
- $!attrib = $param; # This works, because `$!` is always mutable.
- # $.attrib = $param; # Wrong: You can't use the `$.` immutable version.
-
- $.other-attrib = 5; # This works, because `$.other-attrib` is `rw`.
- }
-
- method !private-method {
- say "This method is private to the class !";
- }
-};
-
-# Create a new instance of Attrib-Class with $.attrib set to 5 :
-# Note: you can't set private-attribute from here (more later on).
-my $class-obj = Attrib-Class.new(attrib => 5);
-say $class-obj.get-value; #=> 15
-#$class-obj.attrib = 5; # This fails, because the `has $.attrib` is immutable
-$class-obj.other-attrib = 10; # This, however, works, because the public
- # attribute is mutable (`rw`).
-
-## Object Inheritance
-# Perl 6 also has inheritance (along with multiple inheritance)
-# While `method`'s are inherited, `submethod`'s are not.
-# Submethods are useful for object construction and destruction tasks,
-# such as BUILD, or methods that must be overriden by subtypes.
-# We will learn about BUILD later on.
-
-class Parent {
- has $.age;
- has $.name;
- # This submethod won't be inherited by Child.
- submethod favorite-color {
- say "My favorite color is Blue";
- }
- # This method is inherited
- method talk { say "Hi, my name is $!name" }
-}
-# Inheritance uses the `is` keyword
-class Child is Parent {
- method talk { say "Goo goo ga ga" }
- # This shadows Parent's `talk` method, This child hasn't learned to speak yet!
-}
-my Parent $Richard .= new(age => 40, name => 'Richard');
-$Richard.favorite-color; #=> "My favorite color is Blue"
-$Richard.talk; #=> "Hi, my name is Richard"
-# # $Richard is able to access the submethod, he knows how to say his name.
-
-my Child $Madison .= new(age => 1, name => 'Madison');
-$Madison.talk; # prints "Goo goo ga ga" due to the overrided method.
-# $Madison.favorite-color does not work since it is not inherited
-
-# When you use `my T $var`, `$var` starts off with `T` itself in it,
-# so you can call `new` on it.
-# (`.=` is just the dot-call and the assignment operator:
-# `$a .= b` is the same as `$a = $a.b`)
-# Also note that `BUILD` (the method called inside `new`)
-# will set parent properties too, so you can pass `val => 5`.
-
-
-## Roles are supported too (also called Mixins in other languages)
-role PrintableVal {
- has $!counter = 0;
- method print {
- say $.val;
- }
-}
-
-# you "import" a mixin (a "role") with "does":
-class Item does PrintableVal {
- has $.val;
-
- # When `does`-ed, a `role` literally "mixes in" the class:
- # the methods and attributes are put together, which means a class can access
- # the private attributes/methods of its roles (but not the inverse !):
- method access {
- say $!counter++;
- }
-
- # However, this:
- # method print {}
- # is ONLY valid when `print` isn't a `multi` with the same dispatch.
- # (this means a parent class can shadow a child class's `multi print() {}`,
- # but it's an error if a role does)
-
- # NOTE: You can use a role as a class (with `is ROLE`). In this case, methods
- # will be shadowed, since the compiler will consider `ROLE` to be a class.
-}
-
-### Exceptions
-# Exceptions are built on top of classes, in the package `X` (like `X::IO`).
-# In Perl6 exceptions are automatically 'thrown'
-open 'foo'; #> Failed to open file foo: no such file or directory
-# It will also print out what line the error was thrown at and other error info
-
-# You can throw an exception using `die`:
-die 'Error!'; #=> Error!
-# Or more explicitly:
-die X::AdHoc.new(payload => 'Error!');
-
-# In Perl 6, `orelse` is similar to the `or` operator, except it only matches
-# undefined variables instead of anything evaluating as false.
-# Undefined values include: `Nil`, `Mu` and `Failure` as well as `Int`, `Str`
-# and other types that have not been initialized to any value yet.
-# You can check if something is defined or not using the defined method:
-my $uninitialized;
-say $uninitiazilzed.defined; #> False
-# When using `orelse` it will disarm the exception and alias $_ to that failure
-# This will avoid it being automatically handled and printing lots of scary
-# error messages to the screen.
-# We can use the exception method on $_ to access the exception
-open 'foo' orelse say "Something happened {.exception}";
-# This also works:
-open 'foo' orelse say "Something happened $_"; #> Something happened
- #> Failed to open file foo: no such file or directory
-# Both of those above work but in case we get an object from the left side that
-# is not a failure we will probably get a warning. We see below how we can use
-# `try` and `CATCH` to be more specific with the exceptions we catch.
-
-## Using `try` and `CATCH`
-# By using `try` and `CATCH` you can contain and handle exceptions without
-# disrupting the rest of the program. `try` will set the last exception to
-# the special variable `$!` Note: This has no relation to $!variables.
-try open 'foo';
-say "Well, I tried! $!" if defined $!; #> Well, I tried! Failed to open file
- #foo: no such file or directory
-# Now, what if we want more control over handling the exception?
-# Unlike many other languages, in Perl 6, you put the `CATCH` block *within*
-# the block to `try`. Similar to how $_ was set when we 'disarmed' the
-# exception with orelse, we also use $_ in the CATCH block.
-# Note: ($! is only set *after* the `try` block)
-# By default, a `try` has a `CATCH` block that catches
-# any exception (`CATCH { default {} }`).
-
-try { my $a = (0 %% 0); CATCH { say "Something happened: $_" } }
- #=> Something happened: Attempt to divide by zero using infix:<%%>
-
-# You can redefine it using `when`s (and `default`)
-# to handle the exceptions you want:
-try {
- open 'foo';
- CATCH { # In the `CATCH` block, the exception is set to $_
- when X::AdHoc { say "Error: $_" }
- #=>Error: Failed to open file /dir/foo: no such file or directory
-
- # Any other exception will be re-raised, since we don't have a `default`
- # Basically, if a `when` matches (or there's a `default`) marks the
- # exception as
- # "handled" so that it doesn't get re-thrown from the `CATCH`.
- # You still can re-throw the exception (see below) by hand.
- }
-}
-
-# There are also some subtleties to exceptions. Some Perl 6 subs return a
-# `Failure`, which is a kind of "unthrown exception". They're not thrown until
-# you tried to look at their content, unless you call `.Bool`/`.defined` on
-# them - then they're handled.
-# (the `.handled` method is `rw`, so you can mark it as `False` back yourself)
-#
-# You can throw a `Failure` using `fail`. Note that if the pragma `use fatal`
-# is on, `fail` will throw an exception (like `die`).
-fail "foo"; # We're not trying to access the value, so no problem.
-try {
- fail "foo";
- CATCH {
- default { say "It threw because we tried to get the fail's value!" }
- }
-}
-
-# There is also another kind of exception: Control exceptions.
-# Those are "good" exceptions, which happen when you change your program's flow,
-# using operators like `return`, `next` or `last`.
-# You can "catch" those with `CONTROL` (not 100% working in Rakudo yet).
-
-### Packages
-# Packages are a way to reuse code. Packages are like "namespaces", and any
-# element of the six model (`module`, `role`, `class`, `grammar`, `subset`
-# and `enum`) are actually packages. (Packages are the lowest common denominator)
-# Packages are important - especially as Perl is well-known for CPAN,
-# the Comprehensive Perl Archive Network.
-
-# You can use a module (bring its declarations into scope) with `use`
-use JSON::Tiny; # if you installed Rakudo* or Panda, you'll have this module
-say from-json('[1]').perl; #=> [1]
-
-# Declare your own packages like this:
-# `class Package::Name::Here;` to declare a class, or if you only want to
-# export variables/subs, you can use `module`. If you're coming from Perl 5
-# please note you're not usually supposed to use the `package` keyword.
-
-module Hello::World { # Bracketed form
- # If `Hello` doesn't exist yet, it'll just be a "stub",
- # that can be redeclared as something else later.
- # ... declarations here ...
-}
-unit module Parse::Text; # file-scoped form
-
-grammar Parse::Text::Grammar { # A grammar is a package, which you could `use`
-} # You will learn more about grammars in the regex section
-
-# As said before, any part of the six model is also a package.
-# Since `JSON::Tiny` uses (its own) `JSON::Tiny::Actions` class, you can use it:
-my $actions = JSON::Tiny::Actions.new;
-
-# We'll see how to export variables and subs in the next part:
-
-### Declarators
-# In Perl 6, you get different behaviors based on how you declare a variable.
-# You've already seen `my` and `has`, we'll now explore the others.
-
-## * `our` declarations happen at `INIT` time -- (see "Phasers" below)
-# It's like `my`, but it also creates a package variable.
-# (All packagish things (`class`, `role`, etc) are `our` by default)
-module Var::Increment {
- our $our-var = 1; # Note: you can't put a type constraint like Int on an
- my $my-var = 22; # `our` variable.
- our sub Inc {
-
- our sub available { # If you try to make inner `sub`s `our`...
- # Better know what you're doing (Don't !).
- say "Don't do that. Seriously. You'll get burned.";
- }
-
- my sub unavailable { # `my sub` is the default
- say "Can't access me from outside, I'm 'my'!";
- }
- say ++$our-var; # Increment the package variable and output its value
- }
-
-}
-say $Var::Increment::our-var; #=> 1 This works
-say $Var::Increment::my-var; #=> (Any) This will not work.
-
-Var::Increment::Inc; #=> 2
-Var::Increment::Inc; #=> 3 # Notice how the value of $our-var was
- # retained.
-Var::Increment::unavailable; #> Could not find symbol '&unavailable'
-
-## * `constant` (happens at `BEGIN` time)
-# You can use the `constant` keyword to declare a compile-time variable/symbol:
-constant Pi = 3.14;
-constant $var = 1;
-
-# And if you're wondering, yes, it can also contain infinite lists.
-constant why-not = 5, 15 ... *;
-say why-not[^5]; #=> 5 15 25 35 45
-
-## * `state` (happens at run time, but only once)
-# State variables are only initialized one time
-# (they exist in other langages such as C as `static`)
-sub fixed-rand {
- state $val = rand;
- say $val;
-}
-fixed-rand for ^10; # will print the same number 10 times
-
-# Note, however, that they exist separately in different enclosing contexts.
-# If you declare a function with a `state` within a loop, it'll re-create the
-# variable for each iteration of the loop. See:
-for ^5 -> $a {
- sub foo {
- state $val = rand; # This will be a different value for every value of `$a`
- }
- for ^5 -> $b {
- say foo; # This will print the same value 5 times, but only 5.
- # Next iteration will re-run `rand`.
- }
-}
-
-
-
-### Phasers
-# Phasers in Perl 6 are blocks that happen at determined points of time in your
-# program. They are called phasers because they mark a change in the phase
-# of a program. For example, when the program is compiled, a for loop runs,
-# you leave a block, or an exception gets thrown. (`CATCH` is actually a phaser !)
-# Some of them can be used for their return values, some of them can't
-# (those that can have a "[*]" in the beginning of their explanation text).
-# Let's have a look !
-
-## * Compile-time phasers
-BEGIN { say "[*] Runs at compile time, as soon as possible, only once" }
-CHECK { say "[*] Runs at compile time, as late as possible, only once" }
-
-## * Run-time phasers
-INIT { say "[*] Runs at run time, as soon as possible, only once" }
-END { say "Runs at run time, as late as possible, only once" }
-
-## * Block phasers
-ENTER { say "[*] Runs everytime you enter a block, repeats on loop blocks" }
-LEAVE { say "Runs everytime you leave a block, even when an exception
- happened. Repeats on loop blocks." }
-
-PRE { say "Asserts a precondition at every block entry,
- before ENTER (especially useful for loops)" }
-# exemple:
-for 0..2 {
- PRE { $_ > 1 } # This is going to blow up with "Precondition failed"
-}
-
-POST { say "Asserts a postcondition at every block exit,
- after LEAVE (especially useful for loops)" }
-for 0..2 {
- POST { $_ < 2 } # This is going to blow up with "Postcondition failed"
-}
-
-## * Block/exceptions phasers
-sub {
- KEEP { say "Runs when you exit a block successfully (without throwing an exception)" }
- UNDO { say "Runs when you exit a block unsuccessfully (by throwing an exception)" }
-}
-
-## * Loop phasers
-for ^5 {
- FIRST { say "[*] The first time the loop is run, before ENTER" }
- NEXT { say "At loop continuation time, before LEAVE" }
- LAST { say "At loop termination time, after LEAVE" }
-}
-
-## * Role/class phasers
-COMPOSE { "When a role is composed into a class. /!\ NOT YET IMPLEMENTED" }
-
-# They allow for cute tricks or clever code ...:
-say "This code took " ~ (time - CHECK time) ~ "s to compile";
-
-# ... or clever organization:
-sub do-db-stuff {
- $db.start-transaction; # start a new transaction
- KEEP $db.commit; # commit the transaction if all went well
- UNDO $db.rollback; # or rollback if all hell broke loose
-}
-
-### Statement prefixes
-# Those act a bit like phasers: they affect the behavior of the following code.
-# Though, they run in-line with the executable code, so they're in lowercase.
-# (`try` and `start` are theoretically in that list, but explained somewhere else)
-# Note: all of these (except start) don't need explicit brackets `{` and `}`.
-
-# - `do` (that you already saw) - runs a block or a statement as a term
-# You can't normally use a statement as a value (or "term"):
-#
-# my $value = if True { 1 } # `if` is a statement - parse error
-#
-# This works:
-my $a = do if True { 5 } # with `do`, `if` is now a term.
-
-# - `once` - Makes sure a piece of code only runs once
-for ^5 { once say 1 }; #=> 1
- # Only prints ... once.
-# Like `state`, they're cloned per-scope
-for ^5 { sub { once say 1 }() } #=> 1 1 1 1 1
- # Prints once per lexical scope
-
-# - `gather` - Co-routine thread
-# Gather allows you to `take` several values in an array,
-# much like `do`, but allows you to take any expression.
-say gather for ^5 {
- take $_ * 3 - 1;
- take $_ * 3 + 1;
-} #=> -1 1 2 4 5 7 8 10 11 13
-say join ',', gather if False {
- take 1;
- take 2;
- take 3;
-} # Doesn't print anything.
-
-# - `eager` - Evaluate statement eagerly (forces eager context)
-# Don't try this at home:
-#
-# eager 1..*; # this will probably hang for a while (and might crash ...).
-#
-# But consider:
-constant thrice = gather for ^3 { say take $_ }; # Doesn't print anything
-# versus:
-constant thrice = eager gather for ^3 { say take $_ }; #=> 0 1 2
-
-### Iterables
-# Iterables are objects that can be iterated similar to the `for` construct
-# `flat`, flattens iterables:
-say (1, 10, (20, 10) ); #> (1 10 (20 10)) Notice how grouping is maintained
-say (1, 10, (20, 10) ).flat; #> (1 10 20 10) Now the iterable is flat
-
-# - `lazy` - Defer actual evaluation until value is fetched (forces lazy context)
-my @lazy-array = (1..100).lazy;
-say @lazy-array.is-lazy; #> True # Check for lazyness with the `is-lazy` method.
-say @lazy-array; #> [...] List has not been iterated on!
-my @lazy-array { .print }; # This works and will only do as much work as is
-# needed.
-[//]: # ( TODO explain that gather/take and map are all lazy)
-# - `sink` - An `eager` that discards the results (forces sink context)
-constant nilthingie = sink for ^3 { .say } #=> 0 1 2
-say nilthingie.perl; #=> Nil
-
-# - `quietly` blocks will suppress warnings:
-quietly { warn 'This is a warning!' }; #=> No output
-
-# - `contend` - Attempts side effects under STM
-# Not yet implemented !
-
-### More operators thingies !
-
-## Everybody loves operators ! Let's get more of them
-
-# The precedence list can be found here:
-# https://docs.perl6.org/language/operators#Operator_Precedence
-# But first, we need a little explanation about associativity:
-
-# * Binary operators:
-$a ! $b ! $c; # with a left-associative `!`, this is `($a ! $b) ! $c`
-$a ! $b ! $c; # with a right-associative `!`, this is `$a ! ($b ! $c)`
-$a ! $b ! $c; # with a non-associative `!`, this is illegal
-$a ! $b ! $c; # with a chain-associative `!`, this is `($a ! $b) and ($b ! $c)`
-$a ! $b ! $c; # with a list-associative `!`, this is `infix:<>`
-
-# * Unary operators:
-!$a! # with left-associative `!`, this is `(!$a)!`
-!$a! # with right-associative `!`, this is `!($a!)`
-!$a! # with non-associative `!`, this is illegal
-
-## Create your own operators !
-# Okay, you've been reading all of that, so I guess I should try
-# to show you something exciting.
-# I'll tell you a little secret (or not-so-secret):
-# In Perl 6, all operators are actually just funny-looking subroutines.
-
-# You can declare an operator just like you declare a sub:
-sub prefix:<win>($winner) { # refer to the operator categories
- # (yes, it's the "words operator" `<>`)
- say "$winner Won !";
-}
-win "The King"; #=> The King Won !
- # (prefix is before)
-
-# you can still call the sub with its "full name"
-say prefix:<!>(True); #=> False
-
-sub postfix:<!>(Int $n) {
- [*] 2..$n; # using the reduce meta-operator ... See below ;-) !
-}
-say 5!; #=> 120
- # Postfix operators (after) have to come *directly* after the term.
- # No whitespace. You can use parentheses to disambiguate, i.e. `(5!)!`
-
-
-sub infix:<times>(Int $n, Block $r) { # infix in the middle
- for ^$n {
- $r(); # You need the explicit parentheses to call the function in `$r`,
- # else you'd be referring at the variable itself, like with `&r`.
- }
-}
-3 times -> { say "hello" }; #=> hello
- #=> hello
- #=> hello
- # You're very recommended to put spaces
- # around your infix operator calls.
-
-# For circumfix and post-circumfix ones
-sub circumfix:<[ ]>(Int $n) {
- $n ** $n
-}
-say [5]; #=> 3125
- # circumfix is around. Again, no whitespace.
-
-sub postcircumfix:<{ }>(Str $s, Int $idx) {
- # post-circumfix is
- # "after a term, around something"
- $s.substr($idx, 1);
-}
-say "abc"{1}; #=> b
- # after the term `"abc"`, and around the index (1)
-
-# This really means a lot -- because everything in Perl 6 uses this.
-# For example, to delete a key from a hash, you use the `:delete` adverb
-# (a simple named argument underneath):
-%h{$key}:delete;
-# equivalent to:
-postcircumfix:<{ }>(%h, $key, :delete); # (you can call operators like that)
-# It's *all* using the same building blocks!
-# Syntactic categories (prefix infix ...), named arguments (adverbs), ...,
-# - used to build the language - are available to you.
-
-# (you are, obviously, recommended against making an operator out of
-# *everything* -- with great power comes great responsibility)
-
-## Meta operators !
-# Oh boy, get ready. Get ready, because we're delving deep
-# into the rabbit's hole, and you probably won't want to go
-# back to other languages after reading that.
-# (I'm guessing you don't want to already at that point).
-# Meta-operators, as their name suggests, are *composed* operators.
-# Basically, they're operators that apply another operator.
-
-## * Reduce meta-operator
-# It's a prefix meta-operator that takes a binary function and
-# one or many lists. If it doesn't get passed any argument,
-# it either returns a "default value" for this operator
-# (a meaningless value) or `Any` if there's none (examples below).
-#
-# Otherwise, it pops an element from the list(s) one at a time, and applies
-# the binary function to the last result (or the list's first element)
-# and the popped element.
-#
-# To sum a list, you could use the reduce meta-operator with `+`, i.e.:
-say [+] 1, 2, 3; #=> 6
-# equivalent to `(1+2)+3`
-say [*] 1..5; #=> 120
-# equivalent to `((((1*2)*3)*4)*5)`.
-
-# You can reduce with any operator, not just with mathematical ones.
-# For example, you could reduce with `//` to get
-# the first defined element of a list:
-say [//] Nil, Any, False, 1, 5; #=> False
- # (Falsey, but still defined)
-
-
-# Default value examples:
-say [*] (); #=> 1
-say [+] (); #=> 0
- # meaningless values, since N*1=N and N+0=N.
-say [//]; #=> (Any)
- # There's no "default value" for `//`.
-
-# You can also call it with a function you made up, using double brackets:
-sub add($a, $b) { $a + $b }
-say [[&add]] 1, 2, 3; #=> 6
-
-## * Zip meta-operator
-# This one is an infix meta-operator than also can be used as a "normal"
-# operator. It takes an optional binary function (by default, it just creates
-# a pair), and will pop one value off of each array and call its binary function
-# on these until it runs out of elements. It returns an array with all of these
-# new elements.
-(1, 2) Z (3, 4); # ((1, 3), (2, 4)), since by default, the function makes an array
-1..3 Z+ 4..6; # (5, 7, 9), using the custom infix:<+> function
-
-# Since `Z` is list-associative (see the list above),
-# you can use it on more than one list
-(True, False) Z|| (False, False) Z|| (False, False); # (True, False)
-
-# And, as it turns out, you can also use the reduce meta-operator with it:
-[Z||] (True, False), (False, False), (False, False); # (True, False)
-
-
-## And to end the operator list:
-
-## * Sequence operator
-# The sequence operator is one of Perl 6's most powerful features:
-# it's composed of first, on the left, the list you want Perl 6 to deduce from
-# (and might include a closure), and on the right, a value or the predicate
-# that says when to stop (or Whatever for a lazy infinite list).
-my @list = 1, 2, 3 ... 10; # basic deducing
-#my @list = 1, 3, 6 ... 10; # this dies because Perl 6 can't figure out the end
-my @list = 1, 2, 3 ...^ 10; # as with ranges, you can exclude the last element
- # (the iteration when the predicate matches).
-my @list = 1, 3, 9 ... * > 30; # you can use a predicate
- # (with the Whatever Star, here).
-my @list = 1, 3, 9 ... { $_ > 30 }; # (equivalent to the above)
-
-my @fib = 1, 1, *+* ... *; # lazy infinite list of fibonacci series,
- # computed using a closure!
-my @fib = 1, 1, -> $a, $b { $a + $b } ... *; # (equivalent to the above)
-my @fib = 1, 1, { $^a + $^b } ... *; #(... also equivalent to the above)
-# $a and $b will always take the previous values, meaning here
-# they'll start with $a = 1 and $b = 1 (values we set by hand).
-# then $a = 1 and $b = 2 (result from previous $a+$b), and so on.
-
-say @fib[^10]; #=> 1 1 2 3 5 8 13 21 34 55
- # (using a range as the index)
-# Note : as for ranges, once reified, elements aren't re-calculated.
-# That's why `@primes[^100]` will take a long time the first time you print
-# it, then be instant.
-
-### Regular Expressions
-# I'm sure a lot of you have been waiting for this one.
-# Well, now that you know a good deal of Perl 6 already, we can get started.
-# First off, you'll have to forget about "PCRE regexps" (perl-compatible regexps).
-#
-# IMPORTANT: Don't skip them because you know PCRE. They're different.
-# Some things are the same (like `?`, `+`, and `*`),
-# but sometimes the semantics change (`|`).
-# Make sure you read carefully, because you might trip over a new behavior.
-#
-# Perl 6 has many features related to RegExps. After all, Rakudo parses itself.
-# We're first going to look at the syntax itself,
-# then talk about grammars (PEG-like), differences between
-# `token`, `regex` and `rule` declarators, and some more.
-# Side note: you still have access to PCRE regexps using the `:P5` modifier.
-# (we won't be discussing this in this tutorial, however)
-#
-# In essence, Perl 6 natively implements PEG ("Parsing Expression Grammars").
-# The pecking order for ambiguous parses is determined by a multi-level
-# tie-breaking test:
-# - Longest token matching. `foo\s+` beats `foo` (by 2 or more positions)
-# - Longest literal prefix. `food\w*` beats `foo\w*` (by 1)
-# - Declaration from most-derived to less derived grammars
-# (grammars are actually classes)
-# - Earliest declaration wins
-say so 'a' ~~ /a/; #=> True
-say so 'a' ~~ / a /; #=> True # More readable with some spaces!
-
-# In all our examples, we're going to use the smart-matching operator against
-# a regexp. We're converting the result using `so`, but in fact, it's
-# returning a `Match` object. They know how to respond to list indexing,
-# hash indexing, and return the matched string.
-# The results of the match are available as `$/` (implicitly lexically-scoped).
-# You can also use the capture variables which start at 0:
-# `$0`, `$1', `$2`...
-#
-# You can also note that `~~` does not perform start/end checking
-# (meaning the regexp can be matched with just one char of the string),
-# we're going to explain later how you can do it.
-
-# In Perl 6, you can have any alphanumeric as a literal,
-# everything else has to be escaped, using a backslash or quotes.
-say so 'a|b' ~~ / a '|' b /; # `True`. Wouldn't mean the same if `|` wasn't escaped
-say so 'a|b' ~~ / a \| b /; # `True`. Another way to escape it.
-
-# The whitespace in a regexp is actually not significant,
-# unless you use the `:s` (`:sigspace`, significant space) adverb.
-say so 'a b c' ~~ / a b c /; #> `False`. Space is not significant here
-say so 'a b c' ~~ /:s a b c /; #> `True`. We added the modifier `:s` here.
-# If we use only one space between strings in a regex, Perl 6 will warn us:
-say so 'a b c' ~~ / a b c /; #> 'False' #> Space is not significant here; please
-# use quotes or :s (:sigspace) modifier (or, to suppress this warning, omit the
-# space, or otherwise change the spacing)
-# To fix this and make the spaces less ambiguous, either use at least two
-# spaces between strings or use the `:s` adverb.
-
-# As we saw before, we can embed the `:s` inside the slash delimiters, but we can
-# also put it outside of them if we specify `m` for 'match':
-say so 'a b c' ~~ m:s/a b c/; #> `True`
-# By using `m` to specify 'match' we can also use delimiters other than slashes:
-say so 'abc' ~~ m{a b c}; #> `True`
-# Use the :i adverb to specify case insensitivity:
-say so 'ABC' ~~ m:i{a b c}; #> `True`
-# It is, however, important as for how modifiers (that you're gonna see just below)
-# are applied ...
-
-## Quantifying - `?`, `+`, `*` and `**`.
-# - `?` - 0 or 1
-so 'ac' ~~ / a b c /; # `False`
-so 'ac' ~~ / a b? c /; # `True`, the "b" matched 0 times.
-so 'abc' ~~ / a b? c /; # `True`, the "b" matched 1 time.
-
-# ... As you read just before, whitespace is important because it determines
-# which part of the regexp is the target of the modifier:
-so 'def' ~~ / a b c? /; # `False`. Only the `c` is optional
-so 'def' ~~ / a b? c /; # `False`. Whitespace is not significant
-so 'def' ~~ / 'abc'? /; # `True`. The whole "abc" group is optional.
-
-# Here (and below) the quantifier applies only to the `b`
-
-# - `+` - 1 or more
-so 'ac' ~~ / a b+ c /; # `False`; `+` wants at least one matching
-so 'abc' ~~ / a b+ c /; # `True`; one is enough
-so 'abbbbc' ~~ / a b+ c /; # `True`, matched 4 "b"s
-
-# - `*` - 0 or more
-so 'ac' ~~ / a b* c /; # `True`, they're all optional.
-so 'abc' ~~ / a b* c /; # `True`
-so 'abbbbc' ~~ / a b* c /; # `True`
-so 'aec' ~~ / a b* c /; # `False`. "b"(s) are optional, not replaceable.
-
-# - `**` - (Unbound) Quantifier
-# If you squint hard enough, you might understand
-# why exponentation is used for quantity.
-so 'abc' ~~ / a b**1 c /; # `True` (exactly one time)
-so 'abc' ~~ / a b**1..3 c /; # `True` (one to three times)
-so 'abbbc' ~~ / a b**1..3 c /; # `True`
-so 'abbbbbbc' ~~ / a b**1..3 c /; # `False` (too much)
-so 'abbbbbbc' ~~ / a b**3..* c /; # `True` (infinite ranges are okay)
-
-# - `<[]>` - Character classes
-# Character classes are the equivalent of PCRE's `[]` classes, but
-# they use a more perl6-ish syntax:
-say 'fooa' ~~ / f <[ o a ]>+ /; #=> 'fooa'
-# You can use ranges:
-say 'aeiou' ~~ / a <[ e..w ]> /; #=> 'ae'
-# Just like in normal regexes, if you want to use a special character, escape it
-# (the last one is escaping a space)
-say 'he-he !' ~~ / 'he-' <[ a..z \! \ ]> + /; #=> 'he-he !'
-# You'll get a warning if you put duplicate names
-# (which has the nice effect of catching the wrote quoting:)
-'he he' ~~ / <[ h e ' ' ]> /; # Warns "Repeated characters found in characters class"
-
-# You can also negate them ... (equivalent to `[^]` in PCRE)
-so 'foo' ~~ / <-[ f o ]> + /; # False
-
-# ... and compose them: :
-so 'foo' ~~ / <[ a..z ] - [ f o ]> + /; # False (any letter except f and o)
-so 'foo' ~~ / <-[ a..z ] + [ f o ]> + /; # True (no letter except f and o)
-so 'foo!' ~~ / <-[ a..z ] + [ f o ]> + /; # True (the + doesn't replace the left part)
-
-## Grouping and capturing
-# Group: you can group parts of your regexp with `[]`.
-# These groups are *not* captured (like PCRE's `(?:)`).
-so 'abc' ~~ / a [ b ] c /; # `True`. The grouping does pretty much nothing
-so 'foo012012bar' ~~ / foo [ '01' <[0..9]> ] + bar /;
-# The previous line returns `True`.
-# We match the "012" 1 or more time (the `+` was applied to the group).
-
-# But this does not go far enough, because we can't actually get back what
-# we matched.
-# Capture: We can actually *capture* the results of the regexp, using parentheses.
-so 'fooABCABCbar' ~~ / foo ( 'A' <[A..Z]> 'C' ) + bar /; # `True`. (using `so` here, `$/` below)
-
-# So, starting with the grouping explanations.
-# As we said before, our `Match` object is available as `$/`:
-say $/; # Will print some weird stuff (we'll explain) (or "Nil" if nothing matched).
-
-# As we also said before, it has array indexing:
-say $/[0]; #=> 「ABC」 「ABC」
- # These weird brackets are `Match` objects.
- # Here, we have an array of these.
-say $0; # The same as above.
-
-# Our capture is `$0` because it's the first and only one capture in the regexp.
-# You might be wondering why it's an array, and the answer is simple:
-# Some capture (indexed using `$0`, `$/[0]` or a named one) will be an array
-# IFF it can have more than one element
-# (so, with `*`, `+` and `**` (whatever the operands), but not with `?`).
-# Let's use examples to see that:
-so 'fooABCbar' ~~ / foo ( A B C )? bar /; # `True`
-say $/[0]; #=> 「ABC」
-say $0.WHAT; #=> (Match)
- # It can't be more than one, so it's only a single match object.
-so 'foobar' ~~ / foo ( A B C )? bar /; #=> True
-say $0.WHAT; #=> (Any)
- # This capture did not match, so it's empty
-so 'foobar' ~~ / foo ( A B C ) ** 0..1 bar /; # `True`
-say $0.WHAT; #=> (Array)
- # A specific quantifier will always capture an Array,
- # may it be a range or a specific value (even 1).
-
-# The captures are indexed per nesting. This means a group in a group will be nested
-# under its parent group: `$/[0][0]`, for this code:
-'hello-~-world' ~~ / ( 'hello' ( <[ \- \~ ]> + ) ) 'world' /;
-say $/[0].Str; #=> hello~
-say $/[0][0].Str; #=> ~
-
-# This stems from a very simple fact: `$/` does not contain strings, integers or arrays,
-# it only contains match objects. These contain the `.list`, `.hash` and `.Str` methods.
-# (but you can also just use `match<key>` for hash access
-# and `match[idx]` for array access)
-say $/[0].list.perl; #=> (Match.new(...),).list
- # We can see it's a list of Match objects. Those contain
- # a bunch of infos: where the match started/ended,
- # the "ast" (see actions later), etc.
- # You'll see named capture below with grammars.
-
-## Alternatives - the `or` of regexps
-# WARNING: They are DIFFERENT from PCRE regexps.
-so 'abc' ~~ / a [ b | y ] c /; # `True`. Either "b" or "y".
-so 'ayc' ~~ / a [ b | y ] c /; # `True`. Obviously enough ...
-
-# The difference between this `|` and the one you're used to is LTM.
-# LTM means "Longest Token Matching". This means that the engine will always
-# try to match as much as possible in the strng
-'foo' ~~ / fo | foo /; # `foo`, because it's longer.
-# To decide which part is the "longest", it first splits the regex in two parts:
-# The "declarative prefix" (the part that can be statically analyzed)
-# and the procedural parts.
-# Declarative prefixes include alternations (`|`), conjuctions (`&`),
-# sub-rule calls (not yet introduced), literals, characters classes and quantifiers.
-# The latter include everything else: back-references, code assertions,
-# and other things that can't traditionnaly be represented by normal regexps.
-#
-# Then, all the alternatives are tried at once, and the longest wins.
-# Exemples:
-# DECLARATIVE | PROCEDURAL
-/ 'foo' \d+ [ <subrule1> || <subrule2> ] /;
-# DECLARATIVE (nested groups are not a problem)
-/ \s* [ \w & b ] [ c | d ] /;
-# However, closures and recursion (of named regexps) are procedural.
-# ... There are also more complicated rules, like specificity
-# (literals win over character classes)
-
-# Note: the first-matching `or` still exists, but is now spelled `||`
-'foo' ~~ / fo || foo /; # `fo` now.
-
-
-
-
-### Extra: the MAIN subroutine
-# The `MAIN` subroutine is called when you run a Perl 6 file directly.
-# It's very powerful, because Perl 6 actually parses the arguments
-# and pass them as such to the sub. It also handles named argument (`--foo`)
-# and will even go as far as to autogenerate a `--help`
-sub MAIN($name) { say "Hello, $name !" }
-# This produces:
-# $ perl6 cli.pl
-# Usage:
-# t.pl <name>
-
-# And since it's a regular Perl 6 sub, you can haz multi-dispatch:
-# (using a "Bool" for the named argument so that we can do `--replace`
-# instead of `--replace=1`)
-subset File of Str where *.IO.d; # convert to IO object to check the file exists
-
-multi MAIN('add', $key, $value, Bool :$replace) { ... }
-multi MAIN('remove', $key) { ... }
-multi MAIN('import', File, Str :$as) { ... } # omitting parameter name
-# This produces:
-# $ perl6 cli.pl
-# Usage:
-# t.pl [--replace] add <key> <value>
-# t.pl remove <key>
-# t.pl [--as=<Str>] import (File)
-# As you can see, this is *very* powerful.
-# It even went as far as to show inline the constants.
-# (the type is only displayed if the argument is `$`/is named)
-
-###
-### APPENDIX A:
-###
-### List of things
-###
-
-# It's considered by now you know the Perl6 basics.
-# This section is just here to list some common operations,
-# but which are not in the "main part" of the tutorial to bloat it up
-
-## Operators
-
-
-## * Sort comparison
-# They return one value of the `Order` enum : `Less`, `Same` and `More`
-# (which numerify to -1, 0 or +1).
-1 <=> 4; # sort comparison for numerics
-'a' leg 'b'; # sort comparison for string
-$obj eqv $obj2; # sort comparison using eqv semantics
-
-## * Generic ordering
-3 before 4; # True
-'b' after 'a'; # True
-
-## * Short-circuit default operator
-# Like `or` and `||`, but instead returns the first *defined* value :
-say Any // Nil // 0 // 5; #=> 0
-
-## * Short-circuit exclusive or (XOR)
-# Returns `True` if one (and only one) of its arguments is true
-say True ^^ False; #=> True
-## * Flip Flop
-# The flip flop operators (`ff` and `fff`, equivalent to P5's `..`/`...`).
-# are operators that take two predicates to test:
-# They are `False` until their left side returns `True`, then are `True` until
-# their right side returns `True`.
-# Like for ranges, you can exclude the iteration when it became `True`/`False`
-# by using `^` on either side.
-# Let's start with an example :
-for <well met young hero we shall meet later> {
- # by default, `ff`/`fff` smart-match (`~~`) against `$_`:
- if 'met' ^ff 'meet' { # Won't enter the if for "met"
- # (explained in details below).
- .say
- }
-
- if rand == 0 ff rand == 1 { # compare variables other than `$_`
- say "This ... probably will never run ...";
- }
-}
-# This will print "young hero we shall meet" (excluding "met"):
-# the flip-flop will start returning `True` when it first encounters "met"
-# (but will still return `False` for "met" itself, due to the leading `^`
-# on `ff`), until it sees "meet", which is when it'll start returning `False`.
-
-# The difference between `ff` (awk-style) and `fff` (sed-style) is that
-# `ff` will test its right side right when its left side changes to `True`,
-# and can get back to `False` right away
-# (*except* it'll be `True` for the iteration that matched) -
-# While `fff` will wait for the next iteration to
-# try its right side, once its left side changed:
-.say if 'B' ff 'B' for <A B C B A>; #=> B B
- # because the right-hand-side was tested
- # directly (and returned `True`).
- # "B"s are printed since it matched that time
- # (it just went back to `False` right away).
-.say if 'B' fff 'B' for <A B C B A>; #=> B C B
- # The right-hand-side wasn't tested until
- # `$_` became "C"
- # (and thus did not match instantly).
-
-# A flip-flop can change state as many times as needed:
-for <test start print it stop not printing start print again stop not anymore> {
- .say if $_ eq 'start' ^ff^ $_ eq 'stop'; # exclude both "start" and "stop",
- #=> "print it print again"
-}
-
-# you might also use a Whatever Star,
-# which is equivalent to `True` for the left side or `False` for the right:
-for (1, 3, 60, 3, 40, 60) { # Note: the parenthesis are superfluous here
- # (sometimes called "superstitious parentheses")
- .say if $_ > 50 ff *; # Once the flip-flop reaches a number greater than 50,
- # it'll never go back to `False`
- #=> 60 3 40 60
-}
-
-# You can also use this property to create an `If`
-# that'll not go through the first time :
-for <a b c> {
- .say if * ^ff *; # the flip-flop is `True` and never goes back to `False`,
- # but the `^` makes it *not run* on the first iteration
- #=> b c
-}
-
-
-# - `===` is value identity and uses `.WHICH` on the objects to compare them
-# - `=:=` is container identity and uses `VAR()` on the objects to compare them
-
-```
-
-If you want to go further, you can:
-
- - Read the [Perl 6 Docs](https://docs.perl6.org/). This is a great
- resource on Perl6. If you are looking for something, use the search bar.
- This will give you a dropdown menu of all the pages referencing your search
- term (Much better than using Google to find Perl 6 documents!)
- - Read the [Perl 6 Advent Calendar](http://perl6advent.wordpress.com/). This
- is a great source of Perl 6 snippets and explainations. If the docs don't
- describe something well enough, you may find more detailed information here.
- This information may be a bit older but there are many great examples and
- explainations. Posts stopped at the end of 2015 when the language was declared
- stable and Perl 6.c was released.
- - Come along on `#perl6` at `irc.freenode.net`. The folks here are always helpful.
- - Check the [source of Perl 6's functions and classes](https://github.com/rakudo/rakudo/tree/nom/src/core). Rakudo is mainly written in Perl 6 (with a lot of NQP, "Not Quite Perl", a Perl 6 subset easier to implement and optimize).
- - Read [the language design documents](http://design.perl6.org). They explain P6 from an implementor point-of-view, but it's still very interesting.
-
- [//]: # ( vim: set filetype=perl softtabstop=2 shiftwidth=2 expandtab cc=80 : )