diff options
author | Stanley Lim <slim679975@gmail.com> | 2019-11-21 10:54:24 -0500 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-11-21 10:54:24 -0500 |
commit | 2b1e1cca08eac0d4dc8f685dbe98d80683ca9d3a (patch) | |
tree | 460bb7d5cbc1141f8e710e3704f6d03dc25ea193 /pt-br/asymptotic-notation-pt.html.markdown | |
parent | d4c5ff14cc8a0717f68746b4fe84cfb4efbdecf6 (diff) | |
parent | f1d03b0318a43441bb96bfdaabbd914eaa985879 (diff) |
Merge pull request #1 from adambard/master
Merging from master.
Diffstat (limited to 'pt-br/asymptotic-notation-pt.html.markdown')
-rw-r--r-- | pt-br/asymptotic-notation-pt.html.markdown | 26 |
1 files changed, 13 insertions, 13 deletions
diff --git a/pt-br/asymptotic-notation-pt.html.markdown b/pt-br/asymptotic-notation-pt.html.markdown index aecc2194..b70d26b7 100644 --- a/pt-br/asymptotic-notation-pt.html.markdown +++ b/pt-br/asymptotic-notation-pt.html.markdown @@ -13,7 +13,7 @@ lang: pt-br ## O que é? Notação Assintótica é uma linguagem que nos permite analisar o tempo de execução - de um algoritmo através da indentificação de seu comportamento com o + de um algoritmo através da identificação de seu comportamento com o crescimento da entrada oferecida. Isso também é conhecido como taxa de crescimento do algoritmo. O algoritmo de repente torna-se lento quando o tamanho da entrada cresce? O algoritmo mantém, em geral, seu tempo de execução @@ -33,12 +33,12 @@ Um modo seria contar o número de operações primitivas com diferentes tamanhos ## Tipos de Notação Assintótica -Na primeira seção desse documento, descrevemos como Notação Assintótica identifica o comportamento de um algoritmo +Na primeira seção deste documento, descrevemos como Notação Assintótica identifica o comportamento de um algoritmo a medida que o tamanho da entrada cresce. Imaginemos um algoritmo como uma função *f*, *n* como o tamanho da entrada e *f(n)* sendo o tempo de execução. Então, para dado algoritmo *f*, com entrada de tamanho *n*, você terá tempo de execução - *f(n)*. Isto resulta em um gráfico onde a coordernada Y é o tempo de execução -, a coordernada X representa o tamanho da entrada e os pontos representam o tempo + *f(n)*. Isto resulta em um gráfico onde a coordenada Y é o tempo de execução, + a coordenada X representa o tamanho da entrada e os pontos representam o tempo de execução para dado tamanho de entrada. Você pode representar a função, ou o algoritmo, com Notação Assintótica de várias @@ -49,7 +49,7 @@ não avalia o melhor caso, porque essas condições não são atingidas com freq Um bom exemplo disto seria em algoritmos de ordenação; especificamente, na adição de elementos à árvores. O melhor caso na maioria de algoritmos pode ser de apenas uma operação. Entretanto, na maioria dos casos, o elemento a ser adicionado terá -que percorrer a árvore de forma apropriada, o que pode causar a analise de um +que percorrer a árvore de forma apropriada, o que pode causar a análise de um ramo inteiro. Este é o pior caso, e isto é o que você está se preparando. @@ -63,16 +63,16 @@ Função Polinomial - an^z + . . . + an^2 + a*n^1 + a*n^0, onde *z* é uma const Função Exponencial - a^n, onde a é alguma constante ``` Estas são as funções básicas de crescimento usadas em várias notações. A lista - começa com a de crescimento mais lento (logarítima, a de execução mais rápida) + começa com a de crescimento mais lento (logarítmica, a de execução mais rápida) e segue para a de crescimento mais rápido (exponencial, de execução mais lenta). -Repare que enquando *n*, a entrada, cresce, cada uma dessas funções cresce mais -rápido que quadrático, polinimial e exponencial, comparadas com logaritma e linear. +Repare que enquanto *n*, a entrada, cresce, cada uma dessas funções cresce mais +rápido que quadrático, polinomial e exponencial, comparadas com logarítmica e linear. Uma nota extremamente importante para notações é tentar usar os termos mais simples. Isto significa descartar constantes e termos de ordem mais baixa, pois quando o tamanho da entrada cresce para o infinito (limites matemáticos), os termos de ordem mais baixa e constantes tornam-se irrelevantes. Por exemplo, se você tiver uma -constante muito grande, 2^9001, a simplificação não afeterá sua notação. +constante muito grande, 2^9001, a simplificação não afetará sua notação. Já que queremos as formas mais simples, mudemos nossa tabela um pouco... @@ -87,8 +87,8 @@ Função Exponencial - a^n, onde *a* é uma constante ### Big-O Big-O, também escrita como O, é uma Notação Assintótica para o pior caso. Digamos -*f(n)* seja o tempo de exeução de um algoritmo e *g(n)) um tempo de complexidade -arbritário que você quer relacionar com seu algoritmo. *f(n)* é O(g(n)), se, para +*f(n)* seja o tempo de execução de um algoritmo e *g(n)) um tempo de complexidade +arbitrário que você quer relacionar com seu algoritmo. *f(n)* é O(g(n)), se, para quando constante real c (c > 0), *f(n)* <= *c g(n)* para todo tamanho de entrada n (n > 0). @@ -116,7 +116,7 @@ Há alguma constante c que satisfaça a definição para todo n? 3log n + 100 <= 150 * log n, n > 2 (Indefinido em n = 1) ``` -Sim! A definição de Big-I for atentida, portante `f(n)` é `O(g(n))`. +Sim! A definição de Big-O foi atendida, portanto `f(n)` é `O(g(n))`. *Exemplo 2* @@ -146,7 +146,7 @@ Big-Omega, também escrita como Ω, é uma Notação Assintótica para o melhor Sinta-se livre para adicionar mais exemplos. Big-O é a notação primária usada para medir complexidade de algoritmos. ### Notas Finais -É difícil manter esse tipo de tópico curto e você deveria ler os livros e artigos listados abaixo. Eles cobrem muito mais profundamente definições e exemplos. Mais x='Algoritms & Data Structures' virá; teremos um documento sobre analisar código em breve. +É difícil manter esse tipo de tópico curto e você deveria ler os livros e artigos listados abaixo. Eles cobrem muito mais profundamente definições e exemplos. Mais x='Algorithms & Data Structures' virá; teremos um documento sobre analisar código em breve. ## Livros |