diff options
author | ven <vendethiel@hotmail.fr> | 2014-12-09 12:22:45 +0100 |
---|---|---|
committer | ven <vendethiel@hotmail.fr> | 2014-12-09 12:22:45 +0100 |
commit | 7a3290e825d1f1c16c792c17482bc47e3db3ce25 (patch) | |
tree | 59c32b214a5b41794b07ec4f43045bc202ff45b6 /pt-br/clojure-pt.html.markdown | |
parent | 658c09f6e4263e834153907cca87df00e4d9ab3b (diff) | |
parent | b3e0d276987dca1cb97aad2b39999ce7e63da6be (diff) |
Merge pull request #881 from mariane-sm/master
Clojure translation to pt-br
Diffstat (limited to 'pt-br/clojure-pt.html.markdown')
-rw-r--r-- | pt-br/clojure-pt.html.markdown | 384 |
1 files changed, 384 insertions, 0 deletions
diff --git a/pt-br/clojure-pt.html.markdown b/pt-br/clojure-pt.html.markdown new file mode 100644 index 00000000..7e8b3f7b --- /dev/null +++ b/pt-br/clojure-pt.html.markdown @@ -0,0 +1,384 @@ +--- +language: clojure +filename: learnclojure-pt.clj +contributors: + - ["Adam Bard", "http://adambard.com/"] +translators: + - ["Mariane Siqueira Machado", "https://twitter.com/mariane_sm"] +lang: pt-br +--- + +Clojure é uma linguagem da família do Lisp desenvolvida para a JVM (máquina virtual Java). Possui uma ênfase muito mais forte em [programação funcional] (https://pt.wikipedia.org/wiki/Programa%C3%A7%C3%A3o_funcional) pura do que Common Lisp, mas inclui diversas utilidades [STM](https://en.wikipedia.org/wiki/Software_transactional_memory) para lidar com estado a medida que isso se torna necessário. + +Essa combinação permite gerenciar processamento concorrente de maneira muito simples, e frequentemente de maneira automática. + +(Sua versão de clojure precisa ser pelo menos 1.2) + + +```clojure +; Comentários começam por ponto e vírgula + +; Clojure é escrito em "forms", os quais são simplesmente +; listas de coisas dentro de parênteses, separados por espaços em branco. + +; O "reader" (leitor) de Clojure presume que o primeiro elemento de +; uma par de parênteses é uma função ou macro, e que os resto são argumentos. + +: A primeira chamada de um arquivo deve ser ns, para configurar o namespace (espaço de nomes) +(ns learnclojure) + +; Alguns exemplos básicos: + +; str cria uma string concatenando seus argumentos +(str "Hello" " " "World") ; => "Hello World" + +; Cálculos são feitos de forma direta e intuitiva +(+ 1 1) ; => 2 +(- 2 1) ; => 1 +(* 1 2) ; => 2 +(/ 2 1) ; => 2 + +; Você pode comparar igualdade utilizando = +(= 1 1) ; => true +(= 2 1) ; => false + +; Negação para operações lógicas +(not true) ; => false + +; Aninhar "forms" funciona como esperado +(+ 1 (- 3 2)) ; = 1 + (3 - 2) => 2 + +; Tipos +;;;;;;;;;;;;; + +; Clojure usa os tipos de objetos de Java para booleanos, strings e números. +; Use `class` para inspecioná-los +(class 1) ; Literais Integer são java.lang.Long por padrão +(class 1.); Literais Float são java.lang.Double +(class ""); Strings são sempre com aspas duplas, e são java.lang.String +(class false) ; Booleanos são java.lang.Boolean +(class nil); O valor "null" é chamado nil + +; Se você quiser criar um lista de literais, use aspa simples para +; ela não ser avaliada +'(+ 1 2) ; => (+ 1 2) +; (que é uma abreviação de (quote (+ 1 2))) + +; É possível avaliar uma lista com aspa simples +(eval '(+ 1 2)) ; => 3 + +; Coleções e sequências +;;;;;;;;;;;;;;;;;;; + +; Listas são estruturas encadeadas, enquanto vetores são implementados como arrays. +; Listas e Vetores são classes Java também! +(class [1 2 3]); => clojure.lang.PersistentVector +(class '(1 2 3)); => clojure.lang.PersistentList + +; Uma lista é escrita como (1 2 3), mas temos que colocar a aspa +; simples para impedir o leitor (reader) de pensar que é uma função. +; Também, (list 1 2 3) é o mesmo que '(1 2 3) + +; "Coleções" são apenas grupos de dados +; Listas e vetores são ambos coleções: +(coll? '(1 2 3)) ; => true +(coll? [1 2 3]) ; => true + +; "Sequências" (seqs) são descrições abstratas de listas de dados. +; Apenas listas são seqs. +(seq? '(1 2 3)) ; => true +(seq? [1 2 3]) ; => false + +; Um seq precisa apenas prover uma entrada quando é acessada. +; Portanto, já que seqs podem ser avaliadas sob demanda (lazy) -- elas podem definir séries infinitas: +(range 4) ; => (0 1 2 3) +(range) ; => (0 1 2 3 4 ...) (uma série infinita) +(take 4 (range)) ; (0 1 2 3) + +; Use cons para adicionar um item no início de uma lista ou vetor +(cons 4 [1 2 3]) ; => (4 1 2 3) +(cons 4 '(1 2 3)) ; => (4 1 2 3) + +; Conj adiciona um item em uma coleção sempre do jeito mais eficiente. +; Para listas, elas inserem no início. Para vetores, é inserido no final. +(conj [1 2 3] 4) ; => [1 2 3 4] +(conj '(1 2 3) 4) ; => (4 1 2 3) + +; Use concat para concatenar listas e vetores +(concat [1 2] '(3 4)) ; => (1 2 3 4) + +; Use filter, map para interagir com coleções +(map inc [1 2 3]) ; => (2 3 4) +(filter even? [1 2 3]) ; => (2) + +; Use reduce para reduzi-los +(reduce + [1 2 3 4]) +; = (+ (+ (+ 1 2) 3) 4) +; => 10 + +; Reduce pode receber um argumento para o valor inicial +(reduce conj [] '(3 2 1)) +; = (conj (conj (conj [] 3) 2) 1) +; => [3 2 1] + +; Funções +;;;;;;;;;;;;;;;;;;;;; + +; Use fn para criar novas funções. Uma função sempre retorna +; sua última expressão. +(fn [] "Hello World") ; => fn + +; (É necessário colocar parênteses para chamá-los) +((fn [] "Hello World")) ; => "Hello World" + +; Você pode atribuir valores a variáveis utilizando def +(def x 1) +x ; => 1 + +; Atribua uma função para uma var +(def hello-world (fn [] "Hello World")) +(hello-world) ; => "Hello World" + +; Você pode abreviar esse processo usando defn +(defn hello-world [] "Hello World") + +; O [] é uma lista de argumentos para um função. +(defn hello [name] + (str "Hello " name)) +(hello "Steve") ; => "Hello Steve" + +; Você pode ainda usar essa abreviação para criar funcões: +(def hello2 #(str "Hello " %1)) +(hello2 "Fanny") ; => "Hello Fanny" + +; Vocé pode ter funções multi-variadic, isto é, com um número variável de argumentos +(defn hello3 + ([] "Hello World") + ([name] (str "Hello " name))) +(hello3 "Jake") ; => "Hello Jake" +(hello3) ; => "Hello World" + +; Funções podem agrupar argumentos extras em uma seq +(defn count-args [& args] + (str "You passed " (count args) " args: " args)) +(count-args 1 2 3) ; => "You passed 3 args: (1 2 3)" + +; Você pode misturar argumentos regulares e argumentos em seq +(defn hello-count [name & args] + (str "Hello " name ", you passed " (count args) " extra args")) +(hello-count "Finn" 1 2 3) +; => "Hello Finn, you passed 3 extra args" + + +; Mapas +;;;;;;;;;; + +; Hash maps e array maps compartilham uma mesma interface. Hash maps são mais +; rápidos para pesquisa mas não mantém a ordem da chave. +(class {:a 1 :b 2 :c 3}) ; => clojure.lang.PersistentArrayMap +(class (hash-map :a 1 :b 2 :c 3)) ; => clojure.lang.PersistentHashMap + +; Arraymaps pode automaticamente se tornar hashmaps através da maioria das +; operações se eles ficarem grandes o suficiente, portanto não há necessida de +; se preocupar com isso. + +;Mapas podem usar qualquer valor que se pode derivar um hash como chave + + +; Mapas podem usar qualquer valor em que se pode derivar um hash como chave, +; mas normalmente palavras-chave (keywords) são melhores. +; Keywords são como strings mas com algumas vantagens. +(class :a) ; => clojure.lang.Keyword + +(def stringmap {"a" 1, "b" 2, "c" 3}) +stringmap ; => {"a" 1, "b" 2, "c" 3} + +(def keymap {:a 1, :b 2, :c 3}) +keymap ; => {:a 1, :c 3, :b 2} + +; A propósito, vírgulas são sempre tratadas como espaçoes em branco e não fazem nada. + +; Recupere o valor de um mapa chamando ele como uma função +(stringmap "a") ; => 1 +(keymap :a) ; => 1 + +; Uma palavra-chave pode ser usada pra recuperar os valores de um mapa +(:b keymap) ; => 2 + +; Não tente isso com strings +;("a" stringmap) +; => Exception: java.lang.String cannot be cast to clojure.lang.IFn + +; Buscar uma chave não presente retorna nil +(stringmap "d") ; => nil + +; Use assoc para adicionar novas chaves para hash-maps +(def newkeymap (assoc keymap :d 4)) +newkeymap ; => {:a 1, :b 2, :c 3, :d 4} + +; Mas lembre-se, tipos em Clojure são sempre imutáveis! +keymap ; => {:a 1, :b 2, :c 3} + +; Use dissoc para remover chaves +(dissoc keymap :a :b) ; => {:c 3} + +; Conjuntos +;;;;;; + +(class #{1 2 3}) ; => clojure.lang.PersistentHashSet +(set [1 2 3 1 2 3 3 2 1 3 2 1]) ; => #{1 2 3} + +; Adicione um membro com conj +(conj #{1 2 3} 4) ; => #{1 2 3 4} + +; Remova um membro com disj +(disj #{1 2 3} 1) ; => #{2 3} + +; Test por existência usando set como função: +(#{1 2 3} 1) ; => 1 +(#{1 2 3} 4) ; => nil + +; Existem muitas outras funções no namespace clojure.sets + +; Forms úteis +;;;;;;;;;;;;;;;;; + +; Construções lógicas em Clojure são como macros, e +; se parecem com as demais +(if false "a" "b") ; => "b" +(if false "a") ; => nil + +; Use let para criar um novo escopo associando sîmbolos a valores (bindings) +(let [a 1 b 2] + (> a b)) ; => false + +; Agrupe comandos juntos com "do" +(do + (print "Hello") + "World") ; => "World" (prints "Hello") + +; Funções tem um do implícito +(defn print-and-say-hello [name] + (print "Saying hello to " name) + (str "Hello " name)) +(print-and-say-hello "Jeff") ;=> "Hello Jeff" (prints "Saying hello to Jeff") + +; Assim como let +(let [name "Urkel"] + (print "Saying hello to " name) + (str "Hello " name)) ; => "Hello Urkel" (prints "Saying hello to Urkel") + +; Módulos +;;;;;;;;;;;;;;; + +; Use "use" para poder usar todas as funções de um modulo +(use 'clojure.set) + +; Agora nós podemos usar operações com conjuntos +(intersection #{1 2 3} #{2 3 4}) ; => #{2 3} +(difference #{1 2 3} #{2 3 4}) ; => #{1} + +; Você pode escolher um subconjunto de funções para importar +(use '[clojure.set :only [intersection]]) + +; Use require para importar um módulo +(require 'clojure.string) + +; Use / para chamar funções de um módulo +; Aqui, o módulo é clojure.string e a função é blank? +(clojure.string/blank? "") ; => true + +; Você pode dar para um módulo um nome mais curto no import +(require '[clojure.string :as str]) +(str/replace "This is a test." #"[a-o]" str/upper-case) ; => "THIs Is A tEst." +; (#"" denota uma expressão regular literal) + +; Você pode usar require (e até "use", mas escolha require) de um namespace utilizando :require. +; Não é necessário usar aspa simples nos seus módulos se você usar desse jeito. +(ns test + (:require + [clojure.string :as str] + [clojure.set :as set])) + +; Java +;;;;;;;;;;;;;;;;; + +; Java tem uma biblioteca padrão enorme e muito útil, +; portanto é importante aprender como utiliza-la. + +; Use import para carregar um modulo java +(import java.util.Date) + +; Você pode importar usando ns também. +(ns test + (:import java.util.Date + java.util.Calendar)) + +; Use o nome da clase com um "." no final para criar uma nova instância +(Date.) ; <a date object> + +; Use . para chamar métodos. Ou, use o atalho ".method" +(. (Date.) getTime) ; <a timestamp> +(.getTime (Date.)) ; exatamente a mesma coisa. + +; Use / para chamar métodos estáticos +(System/currentTimeMillis) ; <a timestamp> (o módulo System está sempre presente) + +; Use doto para pode lidar com classe (mutáveis) de forma mais tolerável +(import java.util.Calendar) +(doto (Calendar/getInstance) + (.set 2000 1 1 0 0 0) + .getTime) ; => A Date. set to 2000-01-01 00:00:00 + +; STM +;;;;;;;;;;;;;;;;; + +; Software Transactional Memory é o mecanismo que Clojure usa para gerenciar +; estado persistente. Tem algumas construções em Clojure que o utilizam. + +; O atom é o mais simples. Passe pra ele um valor inicial +(def my-atom (atom {})) + +; Atualize o atom com um swap!. +; swap! pega uma funçnao and chama ela com o valor atual do atom +; como primeiro argumento, e qualquer argumento restante como o segundo +(swap! my-atom assoc :a 1) ; Coloca o valor do átomo my-atom como o resultado de (assoc {} :a 1) +(swap! my-atom assoc :b 2) ; Coloca o valor do átomo my-atom como o resultado de (assoc {:a 1} :b 2) + +; Use '@' para desreferenciar um atom e acessar seu valor +my-atom ;=> Atom<#...> (Retorna o objeto do Atom) +@my-atom ; => {:a 1 :b 2} + +; Abaixo um contador simples usando um atom +(def counter (atom 0)) +(defn inc-counter [] + (swap! counter inc)) + +(inc-counter) +(inc-counter) +(inc-counter) +(inc-counter) +(inc-counter) + +@counter ; => 5 + +; Outras construção STM são refs e agents. +; Refs: http://clojure.org/refs +; Agents: http://clojure.org/agents +``` + +### Leitura adicional + +Esse tutorial está longe de ser exaustivo, mas deve ser suficiente para que você possa começar. + +Clojure.org tem vários artigos: +[http://clojure.org/](http://clojure.org/) + +Clojuredocs.org tem documentação com exemplos para quase todas as funções principais (pertecentes ao core): +[http://clojuredocs.org/quickref/Clojure%20Core](http://clojuredocs.org/quickref/Clojure%20Core) + +4Clojure é um grande jeito de aperfeiçoar suas habilidades em Clojure/Programação Funcional: +[http://www.4clojure.com/](http://www.4clojure.com/) + +Clojure-doc.org tem um bom número de artigos para iniciantes: +[http://clojure-doc.org/](http://clojure-doc.org/) |