summaryrefslogtreecommitdiffhomepage
path: root/scala.html.markdown
diff options
context:
space:
mode:
authorElena Bolshakova <lena-san@yandex-team.ru>2015-06-10 11:34:14 +0300
committerElena Bolshakova <lena-san@yandex-team.ru>2015-06-10 11:34:14 +0300
commit193f66553fc114e83e7c4cfb4607e4a1b57c4f09 (patch)
tree30988e25d31ed6dff83cf409ad093c3c7ec9322c /scala.html.markdown
parent676568cca8731d0dbb2d2bdeff08cc092d283177 (diff)
parent5086480a04d27cff2380f04609210082000538d4 (diff)
Merge branch 'master' of https://github.com/adambard/learnxinyminutes-docs
Diffstat (limited to 'scala.html.markdown')
-rw-r--r--scala.html.markdown126
1 files changed, 98 insertions, 28 deletions
diff --git a/scala.html.markdown b/scala.html.markdown
index 529347be..e6638121 100644
--- a/scala.html.markdown
+++ b/scala.html.markdown
@@ -186,7 +186,7 @@ val sq: Int => Int = x => x * x
// Anonymous functions can be called as usual:
sq(10) // => 100
-// If your anonymous function has one or two arguments, and each argument is
+// If each argument in your anonymous function is
// used only once, Scala gives you an even shorter way to define them. These
// anonymous functions turn out to be extremely common, as will be obvious in
// the data structure section.
@@ -198,8 +198,10 @@ weirdSum(2, 4) // => 16
// The return keyword exists in Scala, but it only returns from the inner-most
-// def that surrounds it. It has no effect on anonymous functions. For example:
-def foo(x: Int) = {
+// def that surrounds it.
+// WARNING: Using return in Scala is error-prone and should be avoided.
+// It has no effect on anonymous functions. For example:
+def foo(x: Int): Int = {
val anonFunc: Int => Int = { z =>
if (z > 5)
return z // This line makes z the return value of foo!
@@ -405,41 +407,55 @@ val otherGeorge = george.copy(phoneNumber = "9876")
// 6. Pattern Matching
/////////////////////////////////////////////////
-val me = Person("George", "1234")
+// Pattern matching is a powerful and commonly used feature in Scala. Here's how
+// you pattern match a case class. NB: Unlike other languages, Scala cases do
+// not need breaks, fall-through does not happen.
-me match { case Person(name, number) => {
- "We matched someone : " + name + ", phone : " + number }}
-
-me match { case Person(name, number) => "Match : " + name; case _ => "Hm..." }
+def matchPerson(person: Person): String = person match {
+ // Then you specify the patterns:
+ case Person("George", number) => "We found George! His number is " + number
+ case Person("Kate", number) => "We found Kate! Her number is " + number
+ case Person(name, number) => "We matched someone : " + name + ", phone : " + number
+}
-me match { case Person("George", number) => "Match"; case _ => "Hm..." }
+val email = "(.*)@(.*)".r // Define a regex for the next example.
-me match { case Person("Kate", number) => "Match"; case _ => "Hm..." }
+// Pattern matching might look familiar to the switch statements in the C family
+// of languages, but this is much more powerful. In Scala, you can match much
+// more:
+def matchEverything(obj: Any): String = obj match {
+ // You can match values:
+ case "Hello world" => "Got the string Hello world"
-me match { case Person("Kate", _) => "Girl"; case Person("George", _) => "Boy" }
+ // You can match by type:
+ case x: Double => "Got a Double: " + x
-val kate = Person("Kate", "1234")
+ // You can specify conditions:
+ case x: Int if x > 10000 => "Got a pretty big number!"
-kate match { case Person("Kate", _) => "Girl"; case Person("George", _) => "Boy" }
+ // You can match case classes as before:
+ case Person(name, number) => s"Got contact info for $name!"
+ // You can match regular expressions:
+ case email(name, domain) => s"Got email address $name@$domain"
+ // You can match tuples:
+ case (a: Int, b: Double, c: String) => s"Got a tuple: $a, $b, $c"
-// Regular expressions
-val email = "(.*)@(.*)".r // Invoking r on String makes it a Regex
-val serialKey = """(\d{5})-(\d{5})-(\d{5})-(\d{5})""".r // Using verbatim (multiline) syntax
+ // You can match data structures:
+ case List(1, b, c) => s"Got a list with three elements and starts with 1: 1, $b, $c"
-val matcher = (value: String) => {
- println(value match {
- case email(name, domain) => s"It was an email: $name"
- case serialKey(p1, p2, p3, p4) => s"Serial key: $p1, $p2, $p3, $p4"
- case _ => s"No match on '$value'" // default if no match found
- })
+ // You can nest patterns:
+ case List(List((1, 2,"YAY"))) => "Got a list of list of tuple"
}
-matcher("mrbean@pyahoo.com") // => "It was an email: mrbean"
-matcher("nope..") // => "No match on 'nope..'"
-matcher("52917") // => "No match on '52917'"
-matcher("52752-16432-22178-47917") // => "Serial key: 52752, 16432, 22178, 47917"
+// In fact, you can pattern match any object with an "unapply" method. This
+// feature is so powerful that Scala lets you define whole functions as
+// patterns:
+val patternFunc: Person => String = {
+ case Person("George", number) => s"George's number: $number"
+ case Person(name, number) => s"Random person's number: $number"
+}
/////////////////////////////////////////////////
@@ -449,6 +465,7 @@ matcher("52752-16432-22178-47917") // => "Serial key: 52752, 16432, 22178, 47917
// Scala allows methods and functions to return, or take as parameters, other
// functions or methods.
+val add10: Int => Int = _ + 10 // A function taking an Int and returning an Int
List(1, 2, 3) map add10 // List(11, 12, 13) - add10 is applied to each element
// Anonymous functions can be used instead of named functions:
@@ -476,7 +493,7 @@ sSquared.reduce (_+_)
// The filter function takes a predicate (a function from A -> Boolean) and
// selects all elements which satisfy the predicate
List(1, 2, 3) filter (_ > 2) // List(3)
-case class Person(name:String, phoneNumber:String)
+case class Person(name:String, age:Int)
List(
Person(name = "Dom", age = 23),
Person(name = "Bob", age = 30)
@@ -507,7 +524,60 @@ for { n <- s; nSquared = n * n if nSquared < 10} yield nSquared
// 8. Implicits
/////////////////////////////////////////////////
-// Coming soon!
+/* WARNING WARNING: Implicits are a set of powerful features of Scala, and
+ * therefore it is easy to abuse them. Beginners to Scala should resist the
+ * temptation to use them until they understand not only how they work, but also
+ * best practices around them. We only include this section in the tutorial
+ * because they are so commonplace in Scala libraries that it is impossible to
+ * do anything meaningful without using a library that has implicits. This is
+ * meant for you to understand and work with implicts, not declare your own.
+ */
+
+// Any value (vals, functions, objects, etc) can be declared to be implicit by
+// using the, you guessed it, "implicit" keyword. Note we are using the Dog
+// class from section 5 in these examples.
+implicit val myImplicitInt = 100
+implicit def myImplicitFunction(breed: String) = new Dog("Golden " + breed)
+
+// By itself, implicit keyword doesn't change the behavior of the value, so
+// above values can be used as usual.
+myImplicitInt + 2 // => 102
+myImplicitFunction("Pitbull").breed // => "Golden Pitbull"
+
+// The difference is that these values are now eligible to be used when another
+// piece of code "needs" an implicit value. One such situation is implicit
+// function arguments:
+def sendGreetings(toWhom: String)(implicit howMany: Int) =
+ s"Hello $toWhom, $howMany blessings to you and yours!"
+
+// If we supply a value for "howMany", the function behaves as usual
+sendGreetings("John")(1000) // => "Hello John, 1000 blessings to you and yours!"
+
+// But if we omit the implicit parameter, an implicit value of the same type is
+// used, in this case, "myImplicitInt":
+sendGreetings("Jane") // => "Hello Jane, 100 blessings to you and yours!"
+
+// Implicit function parameters enable us to simulate type classes in other
+// functional languages. It is so often used that it gets its own shorthand. The
+// following two lines mean the same thing:
+def foo[T](implicit c: C[T]) = ...
+def foo[T : C] = ...
+
+
+// Another situation in which the compiler looks for an implicit is if you have
+// obj.method(...)
+// but "obj" doesn't have "method" as a method. In this case, if there is an
+// implicit conversion of type A => B, where A is the type of obj, and B has a
+// method called "method", that conversion is applied. So having
+// myImplicitFunction above in scope, we can say:
+"Retriever".breed // => "Golden Retriever"
+"Sheperd".bark // => "Woof, woof!"
+
+// Here the String is first converted to Dog using our function above, and then
+// the appropriate method is called. This is an extremely powerful feature, but
+// again, it is not to be used lightly. In fact, when you defined the implicit
+// function above, your compiler should have given you a warning, that you
+// shouldn't do this unless you really know what you're doing.
/////////////////////////////////////////////////