summaryrefslogtreecommitdiffhomepage
path: root/standard-ml.html.markdown
diff options
context:
space:
mode:
authorZachary Ferguson <zfergus2@users.noreply.github.com>2015-10-07 23:53:53 -0400
committerZachary Ferguson <zfergus2@users.noreply.github.com>2015-10-07 23:53:53 -0400
commit342488f6a8de5ab91f555a6463f5d9dc85a3079a (patch)
tree1afa96957269a218ef2a84d9c9a2d4ab462e8fef /standard-ml.html.markdown
parent4e4072f2528bdbc69cbcee72951e4c3c7644a745 (diff)
parentabd7444f9e5343f597b561a69297122142881fc8 (diff)
Merge remote-tracking branch 'adambard/master' into adambard/master-cn
Diffstat (limited to 'standard-ml.html.markdown')
-rw-r--r--standard-ml.html.markdown446
1 files changed, 446 insertions, 0 deletions
diff --git a/standard-ml.html.markdown b/standard-ml.html.markdown
new file mode 100644
index 00000000..143980e7
--- /dev/null
+++ b/standard-ml.html.markdown
@@ -0,0 +1,446 @@
+---
+language: "Standard ML"
+contributors:
+ - ["Simon Shine", "http://shine.eu.org/"]
+ - ["David Pedersen", "http://lonelyproton.com/"]
+ - ["James Baker", "http://www.jbaker.io/"]
+ - ["Leo Zovic", "http://langnostic.inaimathi.ca/"]
+---
+
+Standard ML is a functional programming language with type inference and some
+side-effects. Some of the hard parts of learning Standard ML are: Recursion,
+pattern matching, type inference (guessing the right types but never allowing
+implicit type conversion). Standard ML is distinguished from Haskell by including
+references, allowing variables to be updated.
+
+```ocaml
+(* Comments in Standard ML begin with (* and end with *). Comments can be
+ nested which means that all (* tags must end with a *) tag. This comment,
+ for example, contains two nested comments. *)
+
+(* A Standard ML program consists of declarations, e.g. value declarations: *)
+val rent = 1200
+val phone_no = 5551337
+val pi = 3.14159
+val negative_number = ~15 (* Yeah, unary minus uses the 'tilde' symbol *)
+
+(* And just as importantly, functions: *)
+fun is_large(x : int) = if x > 37 then true else false
+
+(* Floating-point numbers are called "reals". *)
+val tau = 2.0 * pi (* You can multiply two reals *)
+val twice_rent = 2 * rent (* You can multiply two ints *)
+(* val meh = 1.25 * 10 *) (* But you can't multiply an int and a real *)
+
+(* +, - and * are overloaded so they work for both int and real. *)
+(* The same cannot be said for division which has separate operators: *)
+val real_division = 14.0 / 4.0 (* gives 3.5 *)
+val int_division = 14 div 4 (* gives 3, rounding down *)
+val int_remainder = 14 mod 4 (* gives 2, since 3*4 = 12 *)
+
+(* ~ is actually sometimes a function (e.g. when put in front of variables) *)
+val negative_rent = ~(rent) (* Would also have worked if rent were a "real" *)
+
+(* There are also booleans and boolean operators *)
+val got_milk = true
+val got_bread = false
+val has_breakfast = got_milk andalso got_bread (* 'andalso' is the operator *)
+val has_something = got_milk orelse got_bread (* 'orelse' is the operator *)
+val is_sad = not(has_something) (* not is a function *)
+
+(* Many values can be compared using equality operators: = and <> *)
+val pays_same_rent = (rent = 1300) (* false *)
+val is_wrong_phone_no = (phone_no <> 5551337) (* false *)
+
+(* The operator <> is what most other languages call !=. *)
+(* 'andalso' and 'orelse' are called && and || in many other languages. *)
+
+(* Actually, most of the parentheses above are unnecessary. Here are some
+ different ways to say some of the things mentioned above: *)
+fun is_large x = x > 37 (* The parens above were necessary because of ': int' *)
+val is_sad = not has_something
+val pays_same_rent = rent = 1300 (* Looks confusing, but works *)
+val is_wrong_phone_no = phone_no <> 5551337
+val negative_rent = ~rent (* ~ rent (notice the space) would also work *)
+
+(* Parentheses are mostly necessary when grouping things: *)
+val some_answer = is_large (5 + 5) (* Without parens, this would break! *)
+(* val some_answer = is_large 5 + 5 *) (* Read as: (is_large 5) + 5. Bad! *)
+
+
+(* Besides booleans, ints and reals, Standard ML also has chars and strings: *)
+val foo = "Hello, World!\n" (* The \n is the escape sequence for linebreaks *)
+val one_letter = #"a" (* That funky syntax is just one character, a *)
+
+val combined = "Hello " ^ "there, " ^ "fellow!\n" (* Concatenate strings *)
+
+val _ = print foo (* You can print things. We are not interested in the *)
+val _ = print combined (* result of this computation, so we throw it away. *)
+(* val _ = print one_letter *) (* Only strings can be printed this way *)
+
+
+val bar = [ #"H", #"e", #"l", #"l", #"o" ] (* SML also has lists! *)
+(* val _ = print bar *) (* Lists are unfortunately not the same as strings *)
+
+(* Fortunately they can be converted. String is a library and implode and size
+ are functions available in that library that take strings as argument. *)
+val bob = String.implode bar (* gives "Hello" *)
+val bob_char_count = String.size bob (* gives 5 *)
+val _ = print (bob ^ "\n") (* For good measure, add a linebreak *)
+
+(* You can have lists of any kind *)
+val numbers = [1, 3, 3, 7, 229, 230, 248] (* : int list *)
+val names = [ "Fred", "Jane", "Alice" ] (* : string list *)
+
+(* Even lists of lists of things *)
+val groups = [ [ "Alice", "Bob" ],
+ [ "Huey", "Dewey", "Louie" ],
+ [ "Bonnie", "Clyde" ] ] (* : string list list *)
+
+val number_count = List.length numbers (* gives 7 *)
+
+(* You can put single values in front of lists of the same kind using
+ the :: operator, called "the cons operator" (known from Lisp). *)
+val more_numbers = 13 :: numbers (* gives [13, 1, 3, 3, 7, ...] *)
+val more_groups = ["Batman","Superman"] :: groups
+
+(* Lists of the same kind can be appended using the @ ("append") operator *)
+val guest_list = [ "Mom", "Dad" ] @ [ "Aunt", "Uncle" ]
+
+(* This could have been done with the "cons" operator. It is tricky because the
+ left-hand-side must be an element whereas the right-hand-side must be a list
+ of those elements. *)
+val guest_list = "Mom" :: "Dad" :: [ "Aunt", "Uncle" ]
+val guest_list = "Mom" :: ("Dad" :: ("Aunt" :: ("Uncle" :: [])))
+
+(* If you have many lists of the same kind, you can concatenate them all *)
+val everyone = List.concat groups (* [ "Alice", "Bob", "Huey", ... ] *)
+
+(* A list can contain any (finite) number of values *)
+val lots = [ 5, 5, 5, 6, 4, 5, 6, 5, 4, 5, 7, 3 ] (* still just an int list *)
+
+(* Lists can only contain one kind of thing... *)
+(* val bad_list = [ 1, "Hello", 3.14159 ] : ??? list *)
+
+
+(* Tuples, on the other hand, can contain a fixed number of different things *)
+val person1 = ("Simon", 28, 3.14159) (* : string * int * real *)
+
+(* You can even have tuples inside lists and lists inside tuples *)
+val likes = [ ("Alice", "ice cream"),
+ ("Bob", "hot dogs"),
+ ("Bob", "Alice") ] (* : (string * string) list *)
+
+val mixup = [ ("Alice", 39),
+ ("Bob", 37),
+ ("Eve", 41) ] (* : (string * int) list *)
+
+val good_bad_stuff =
+ (["ice cream", "hot dogs", "chocolate"],
+ ["liver", "paying the rent" ]) (* : string list * string list *)
+
+
+(* Records are tuples with named slots *)
+
+val rgb = { r=0.23, g=0.56, b=0.91 } (* : {b:real, g:real, r:real} *)
+
+(* You don't need to declare their slots ahead of time. Records with
+ different slot names are considered different types, even if their
+ slot value types match up. For instance... *)
+
+val Hsl = { H=310.3, s=0.51, l=0.23 } (* : {H:real, l:real, s:real} *)
+val Hsv = { H=310.3, s=0.51, v=0.23 } (* : {H:real, s:real, v:real} *)
+
+(* ...trying to evaluate `Hsv = Hsl` or `rgb = Hsl` would give a type
+ error. While they're all three-slot records composed only of `real`s,
+ they each have different names for at least some slots. *)
+
+(* You can use hash notation to get values out of tuples. *)
+
+val H = #H Hsv (* : real *)
+val s = #s Hsl (* : real *)
+
+(* Functions! *)
+fun add_them (a, b) = a + b (* A simple function that adds two numbers *)
+val test_it = add_them (3, 4) (* gives 7 *)
+
+(* Larger functions are usually broken into several lines for readability *)
+fun thermometer temp =
+ if temp < 37
+ then "Cold"
+ else if temp > 37
+ then "Warm"
+ else "Normal"
+
+val test_thermo = thermometer 40 (* gives "Warm" *)
+
+(* if-sentences are actually expressions and not statements/declarations.
+ A function body can only contain one expression. There are some tricks
+ for making a function do more than just one thing, though. *)
+
+(* A function can call itself as part of its result (recursion!) *)
+fun fibonacci n =
+ if n = 0 then 0 else (* Base case *)
+ if n = 1 then 1 else (* Base case *)
+ fibonacci (n - 1) + fibonacci (n - 2) (* Recursive case *)
+
+(* Sometimes recursion is best understood by evaluating a function by hand:
+
+ fibonacci 4
+ ~> fibonacci (4 - 1) + fibonacci (4 - 2)
+ ~> fibonacci 3 + fibonacci 2
+ ~> (fibonacci (3 - 1) + fibonacci (3 - 2)) + fibonacci 2
+ ~> (fibonacci 2 + fibonacci 1) + fibonacci 2
+ ~> ((fibonacci (2 - 1) + fibonacci (2 - 2)) + fibonacci 1) + fibonacci 2
+ ~> ((fibonacci 1 + fibonacci 0) + fibonacci 1) + fibonacci 2
+ ~> ((1 + fibonacci 0) + fibonacci 1) + fibonacci 2
+ ~> ((1 + 0) + fibonacci 1) + fibonacci 2
+ ~> (1 + fibonacci 1) + fibonacci 2
+ ~> (1 + 1) + fibonacci 2
+ ~> 2 + fibonacci 2
+ ~> 2 + (fibonacci (2 - 1) + fibonacci (2 - 2))
+ ~> 2 + (fibonacci (2 - 1) + fibonacci (2 - 2))
+ ~> 2 + (fibonacci 1 + fibonacci 0)
+ ~> 2 + (1 + fibonacci 0)
+ ~> 2 + (1 + 0)
+ ~> 2 + 1
+ ~> 3 which is the 4th Fibonacci number, according to this definition
+
+ *)
+
+(* A function cannot change the variables it can refer to. It can only
+ temporarily shadow them with new variables that have the same names. In this
+ sense, variables are really constants and only behave like variables when
+ dealing with recursion. For this reason, variables are also called value
+ bindings. An example of this: *)
+
+val x = 42
+fun answer(question) =
+ if question = "What is the meaning of life, the universe and everything?"
+ then x
+ else raise Fail "I'm an exception. Also, I don't know what the answer is."
+val x = 43
+val hmm = answer "What is the meaning of life, the universe and everything?"
+(* Now, hmm has the value 42. This is because the function answer refers to
+ the copy of x that was visible before its own function definition. *)
+
+
+(* Functions can take several arguments by taking one tuples as argument: *)
+fun solve2 (a : real, b : real, c : real) =
+ ( (~b + Math.sqrt(b * b - 4.0*a*c)) / (2.0 * a),
+ (~b - Math.sqrt(b * b - 4.0*a*c)) / (2.0 * a) )
+
+(* Sometimes, the same computation is carried out several times. It makes sense
+ to save and re-use the result the first time. We can use "let-bindings": *)
+fun solve2 (a : real, b : real, c : real) =
+ let val discr = b * b - 4.0*a*c
+ val sqr = Math.sqrt discr
+ val denom = 2.0 * a
+ in ((~b + sqr) / denom,
+ (~b - sqr) / denom) end
+
+
+(* Pattern matching is a funky part of functional programming. It is an
+ alternative to if-sentences. The fibonacci function can be rewritten: *)
+fun fibonacci 0 = 0 (* Base case *)
+ | fibonacci 1 = 1 (* Base case *)
+ | fibonacci n = fibonacci (n - 1) + fibonacci (n - 2) (* Recursive case *)
+
+(* Pattern matching is also possible on composite types like tuples, lists and
+ records. Writing "fun solve2 (a, b, c) = ..." is in fact a pattern match on
+ the one three-tuple solve2 takes as argument. Similarly, but less intuitively,
+ you can match on a list consisting of elements in it (from the beginning of
+ the list only). *)
+fun first_elem (x::xs) = x
+fun second_elem (x::y::xs) = y
+fun evenly_positioned_elems (odd::even::xs) = even::evenly_positioned_elems xs
+ | evenly_positioned_elems [odd] = [] (* Base case: throw away *)
+ | evenly_positioned_elems [] = [] (* Base case *)
+
+(* When matching on records, you must use their slot names, and you must bind
+ every slot in a record. The order of the slots doesn't matter though. *)
+
+fun rgbToTup {r, g, b} = (r, g, b) (* fn : {b:'a, g:'b, r:'c} -> 'c * 'b * 'a *)
+fun mixRgbToTup {g, b, r} = (r, g, b) (* fn : {b:'a, g:'b, r:'c} -> 'c * 'b * 'a *)
+
+(* If called with {r=0.1, g=0.2, b=0.3}, either of the above functions
+ would return (0.1, 0.2, 0.3). But it would be a type error to call them
+ with {r=0.1, g=0.2, b=0.3, a=0.4} *)
+
+(* Higher order functions: Functions can take other functions as arguments.
+ Functions are just other kinds of values, and functions don't need names
+ to exist. Functions without names are called "anonymous functions" or
+ lambda expressions or closures (since they also have a lexical scope). *)
+val is_large = (fn x => x > 37)
+val add_them = fn (a,b) => a + b
+val thermometer =
+ fn temp => if temp < 37
+ then "Cold"
+ else if temp > 37
+ then "Warm"
+ else "Normal"
+
+(* The following uses an anonymous function directly and gives "ColdWarm" *)
+val some_result = (fn x => thermometer (x - 5) ^ thermometer (x + 5)) 37
+
+(* Here is a higher-order function that works on lists (a list combinator) *)
+val readings = [ 34, 39, 37, 38, 35, 36, 37, 37, 37 ] (* first an int list *)
+val opinions = List.map thermometer readings (* gives [ "Cold", "Warm", ... ] *)
+
+(* And here is another one for filtering lists *)
+val warm_readings = List.filter is_large readings (* gives [39, 38] *)
+
+(* You can create your own higher-order functions, too. Functions can also take
+ several arguments by "currying" them. Syntax-wise this means adding spaces
+ between function arguments instead of commas and surrounding parentheses. *)
+fun map f [] = []
+ | map f (x::xs) = f(x) :: map f xs
+
+(* map has type ('a -> 'b) -> 'a list -> 'b list and is called polymorphic. *)
+(* 'a is called a type variable. *)
+
+
+(* We can declare functions as infix *)
+val plus = add_them (* plus is now equal to the same function as add_them *)
+infix plus (* plus is now an infix operator *)
+val seven = 2 plus 5 (* seven is now bound to 7 *)
+
+(* Functions can also be made infix before they are declared *)
+infix minus
+fun x minus y = x - y (* It becomes a little hard to see what's the argument *)
+val four = 8 minus 4 (* four is now bound to 4 *)
+
+(* An infix function/operator can be made prefix with 'op' *)
+val n = op + (5, 5) (* n is now 10 *)
+
+(* 'op' is useful when combined with high order functions because they expect
+ functions and not operators as arguments. Most operators are really just
+ infix functions. *)
+val sum_of_numbers = foldl op+ 0 [1,2,3,4,5]
+
+
+(* Datatypes are useful for creating both simple and complex structures *)
+datatype color = Red | Green | Blue
+
+(* Here is a function that takes one of these as argument *)
+fun say(col) =
+ if col = Red then "You are red!" else
+ if col = Green then "You are green!" else
+ if col = Blue then "You are blue!" else
+ raise Fail "Unknown color"
+
+val _ = print (say(Red) ^ "\n")
+
+(* Datatypes are very often used in combination with pattern matching *)
+fun say Red = "You are red!"
+ | say Green = "You are green!"
+ | say Blue = "You are blue!"
+ | say _ = raise Fail "Unknown color"
+
+
+(* Here is a binary tree datatype *)
+datatype 'a btree = Leaf of 'a
+ | Node of 'a btree * 'a * 'a btree (* three-arg constructor *)
+
+(* Here is a binary tree *)
+val myTree = Node (Leaf 9, 8, Node (Leaf 3, 5, Leaf 7))
+
+(* Drawing it, it might look something like...
+
+ 8
+ / \
+ leaf -> 9 5
+ / \
+ leaf -> 3 7 <- leaf
+ *)
+
+(* This function counts the sum of all the elements in a tree *)
+fun count (Leaf n) = n
+ | count (Node (leftTree, n, rightTree)) = count leftTree + n + count rightTree
+
+val myTreeCount = count myTree (* myTreeCount is now bound to 32 *)
+
+
+(* Exceptions! *)
+(* Exceptions can be raised/thrown using the reserved word 'raise' *)
+fun calculate_interest(n) = if n < 0.0
+ then raise Domain
+ else n * 1.04
+
+(* Exceptions can be caught using "handle" *)
+val balance = calculate_interest ~180.0
+ handle Domain => ~180.0 (* x now has the value ~180.0 *)
+
+(* Some exceptions carry extra information with them *)
+(* Here are some examples of built-in exceptions *)
+fun failing_function [] = raise Empty (* used for empty lists *)
+ | failing_function [x] = raise Fail "This list is too short!"
+ | failing_function [x,y] = raise Overflow (* used for arithmetic *)
+ | failing_function xs = raise Fail "This list is too long!"
+
+(* We can pattern match in 'handle' to make sure
+ a specfic exception was raised, or grab the message *)
+val err_msg = failing_function [1,2] handle Fail _ => "Fail was raised"
+ | Domain => "Domain was raised"
+ | Empty => "Empty was raised"
+ | _ => "Unknown exception"
+
+(* err_msg now has the value "Unknown exception" because Overflow isn't
+ listed as one of the patterns -- thus, the catch-all pattern _ is used. *)
+
+(* We can define our own exceptions like this *)
+exception MyException
+exception MyExceptionWithMessage of string
+exception SyntaxError of string * (int * int)
+
+(* File I/O! *)
+(* Write a nice poem to a file *)
+fun writePoem(filename) =
+ let val file = TextIO.openOut(filename)
+ val _ = TextIO.output(file, "Roses are red,\nViolets are blue.\n")
+ val _ = TextIO.output(file, "I have a gun.\nGet in the van.\n")
+ in TextIO.closeOut(file) end
+
+(* Read a nice poem from a file into a list of strings *)
+fun readPoem(filename) =
+ let val file = TextIO.openIn filename
+ val poem = TextIO.inputAll file
+ val _ = TextIO.closeIn file
+ in String.tokens (fn c => c = #"\n") poem
+ end
+
+val _ = writePoem "roses.txt"
+val test_poem = readPoem "roses.txt" (* gives [ "Roses are red,",
+ "Violets are blue.",
+ "I have a gun.",
+ "Get in the van." ] *)
+
+(* We can create references to data which can be updated *)
+val counter = ref 0 (* Produce a reference with the ref function *)
+
+(* Assign to a reference with the assignment operator *)
+fun set_five reference = reference := 5
+
+(* Read a reference with the dereference operator *)
+fun equals_five reference = !reference = 5
+
+(* We can use while loops for when recursion is messy *)
+fun decrement_to_zero r = if !r < 0
+ then r := 0
+ else while !r >= 0 do r := !r - 1
+
+(* This returns the unit value (in practical terms, nothing, a 0-tuple) *)
+
+(* To allow returning a value, we can use the semicolon to sequence evaluations *)
+fun decrement_ret x y = (x := !x - 1; y)
+```
+
+## Further learning
+
+* Install an interactive compiler (REPL), for example
+ [Poly/ML](http://www.polyml.org/),
+ [Moscow ML](http://mosml.org),
+ [SML/NJ](http://smlnj.org/).
+* Follow the Coursera course [Programming Languages](https://www.coursera.org/course/proglang).
+* Get the book *ML for the Working Programmer* by Larry C. Paulson.
+* Use [StackOverflow's sml tag](http://stackoverflow.com/questions/tagged/sml).