diff options
author | Divay Prakash <divayprakash@users.noreply.github.com> | 2018-09-11 23:22:06 +0530 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-09-11 23:22:06 +0530 |
commit | 957d3ebf898163238201721f5b3e2e39d8f9e1dc (patch) | |
tree | a6f72dcb83ea9013b66e2413416ca956af9632cc /zh-cn | |
parent | a15ad34efcbe937038165184d879cc2626e91a80 (diff) | |
parent | 7b773b916488bddccc884da5138a31e6f029e2af (diff) |
Merge pull request #3202 from inkydragon/Julia-zh-cn
[Julia/zh-cn] Update from english version & update for Julia 1.0
Diffstat (limited to 'zh-cn')
-rw-r--r-- | zh-cn/julia-cn.html.markdown | 917 |
1 files changed, 526 insertions, 391 deletions
diff --git a/zh-cn/julia-cn.html.markdown b/zh-cn/julia-cn.html.markdown index 1f91d52c..b350b6dc 100644 --- a/zh-cn/julia-cn.html.markdown +++ b/zh-cn/julia-cn.html.markdown @@ -2,16 +2,24 @@ language: Julia filename: learn-julia-zh.jl contributors: - - ["Jichao Ouyang", "http://oyanglul.us"] + - ["Leah Hanson", "http://leahhanson.us"] + - ["Pranit Bauva", "https://github.com/pranitbauva1997"] + - ["Daniel YC Lin", "https://github.com/dlintw"] translators: - ["Jichao Ouyang", "http://oyanglul.us"] + - ["woclass", "https://github.com/inkydragon"] lang: zh-cn --- -```ruby -# 单行注释只需要一个井号 +Julia 是一种新的同像函数式编程语言(homoiconic functional language),它专注于科学计算领域。 +虽然拥有同像宏(homoiconic macros)、一级函数(first-class functions)和底层控制等全部功能,但 Julia 依旧和 Python 一样易于学习和使用。 + +示例代码基于 Julia 1.0.0 + +```julia +# 单行注释只需要一个井号「#」 #= 多行注释 - 只需要以 '#=' 开始 '=#' 结束 + 只需要以「#=」开始「=#」结束 还可以嵌套. =# @@ -19,41 +27,41 @@ lang: zh-cn ## 1. 原始类型与操作符 #################################################### -# Julia 中一切皆是表达式。 - -# 这是一些基本数字类型. -3 # => 3 (Int64) -3.2 # => 3.2 (Float64) -2 + 1im # => 2 + 1im (Complex{Int64}) -2//3 # => 2//3 (Rational{Int64}) - -# 支持所有的普通中缀操作符。 -1 + 1 # => 2 -8 - 1 # => 7 -10 * 2 # => 20 -35 / 5 # => 7.0 -5 / 2 # => 2.5 # 用 Int 除 Int 永远返回 Float -div(5, 2) # => 2 # 使用 div 截断小数点 -5 \ 35 # => 7.0 -2 ^ 2 # => 4 # 次方, 不是二进制 xor -12 % 10 # => 2 +# Julia 中一切皆为表达式 + +# 这是一些基本数字类型 +typeof(3) # => Int64 +typeof(3.2) # => Float64 +typeof(2 + 1im) # => Complex{Int64} +typeof(2 // 3) # => Rational{Int64} + +# 支持所有的普通中缀操作符 +1 + 1 # => 2 +8 - 1 # => 7 +10 * 2 # => 20 +35 / 5 # => 7.0 +10 / 2 # => 5.0 # 整数除法总是返回浮点数 +div(5, 2) # => 2 # 使用 div 可以获得整除的结果 +5 \ 35 # => 7.0 +2^2 # => 4 # 幂运算,不是异或 (xor) +12 % 10 # => 2 # 用括号提高优先级 (1 + 3) * 2 # => 8 -# 二进制操作符 -~2 # => -3 # 非 -3 & 5 # => 1 # 与 -2 | 4 # => 6 # 或 -2 $ 4 # => 6 # 异或 -2 >>> 1 # => 1 # 逻辑右移 -2 >> 1 # => 1 # 算术右移 -2 << 1 # => 4 # 逻辑/算术 右移 - -# 可以用函数 bits 查看二进制数。 -bits(12345) +# 位操作符 +~2 # => -3 # 按位非 (not) +3 & 5 # => 1 # 按位与 (and) +2 | 4 # => 6 # 按位或 (or) +xor(2, 4) # => 6 # 按位异或 (xor) +2 >>> 1 # => 1 # 逻辑右移 +2 >> 1 # => 1 # 算术右移 +2 << 1 # => 4 # 逻辑/算术左移 + +# 可以用函数 bitstring 查看二进制数。 +bitstring(12345) # => "0000000000000000000000000000000000000000000000000011000000111001" -bits(12345.0) +bitstring(12345.0) # => "0100000011001000000111001000000000000000000000000000000000000000" # 布尔值是原始类型 @@ -61,40 +69,50 @@ true false # 布尔操作符 -!true # => false -!false # => true -1 == 1 # => true -2 == 1 # => false -1 != 1 # => false -2 != 1 # => true -1 < 10 # => true -1 > 10 # => false -2 <= 2 # => true -2 >= 2 # => true -# 比较可以串联 +!true # => false +!false # => true +1 == 1 # => true +2 == 1 # => false +1 != 1 # => false +2 != 1 # => true +1 < 10 # => true +1 > 10 # => false +2 <= 2 # => true +2 >= 2 # => true + +# 链式比较 1 < 2 < 3 # => true 2 < 3 < 2 # => false -# 字符串可以由 " 创建 +# 字符串可以由「"」创建 "This is a string." -# 字符字面量可用 ' 创建 +# 字符字面量可用「'」创建 'a' +# 字符串使用 UTF-8 编码 # 可以像取数组取值一样用 index 取出对应字符 -"This is a string"[1] # => 'T' # Julia 的 index 从 1 开始 :( -# 但是对 UTF-8 无效, -# 因此建议使用遍历器 (map, for loops, 等). +ascii("This is a string")[1] +# => 'T': ASCII/Unicode U+0054 (category Lu: Letter, uppercase) +# Julia 的 index 从 1 开始 :( +# 但只有在字符串仅由 ASCII 字符构成时,字符串才能够被安全的引索 +# 因此建议使用遍历器 (map, for loops, 等) # $ 可用于字符插值: "2 + 2 = $(2 + 2)" # => "2 + 2 = 4" # 可以将任何 Julia 表达式放入括号。 -# 另一种格式化字符串的方式是 printf 宏. -@printf "%d is less than %f" 4.5 5.3 # 5 is less than 5.300000 +# 另一种输出格式化字符串的方法是使用标准库 Printf 中的 Printf 宏 +using Printf +@printf "%d is less than %f\n" 4.5 5.3 # => 5 is less than 5.300000 # 打印字符串很容易 -println("I'm Julia. Nice to meet you!") +println("I'm Julia. Nice to meet you!") # => I'm Julia. Nice to meet you! + +# 字符串可以按字典序进行比较 +"good" > "bye" # => true +"good" == "good" # => true +"1 + 2 = 3" == "1 + 2 = $(1 + 2)" # => true #################################################### ## 2. 变量与集合 @@ -106,12 +124,12 @@ some_var # => 5 # 访问未声明变量会抛出异常 try - some_other_var # => ERROR: some_other_var not defined + some_other_var # => ERROR: UndefVarError: some_other_var not defined catch e println(e) end -# 变量名需要以字母开头. +# 变量名必须以下划线或字母开头 # 之后任何字母,数字,下划线,叹号都是合法的。 SomeOtherVar123! = 6 # => 6 @@ -122,66 +140,93 @@ SomeOtherVar123! = 6 # => 6 # 注意 Julia 的命名规约: # -# * 变量名为小写,单词之间以下划线连接('\_')。 +# * 名称可以用下划线「_」分割。 +# 不过一般不推荐使用下划线,除非不用变量名就会变得难于理解 # -# * 类型名以大写字母开头,单词以 CamelCase 方式连接。 +# * 类型名以大写字母开头,单词以 CamelCase 方式连接,无下划线。 # # * 函数与宏的名字小写,无下划线。 # -# * 会改变输入的函数名末位为 !。 +# * 会改变输入的函数名末位为「!」。 # 这类函数有时被称为 mutating functions 或 in-place functions. -# 数组存储一列值,index 从 1 开始。 -a = Int64[] # => 0-element Int64 Array +# 数组存储一列值,index 从 1 开始 +a = Int64[] # => 0-element Array{Int64,1} + +# 一维数组可以以逗号分隔值的方式声明 +b = [4, 5, 6] # => 3-element Array{Int64,1}: [4, 5, 6] +b = [4; 5; 6] # => 3-element Array{Int64,1}: [4, 5, 6] +b[1] # => 4 +b[end] # => 6 -# 一维数组可以以逗号分隔值的方式声明。 -b = [4, 5, 6] # => 包含 3 个 Int64 类型元素的数组: [4, 5, 6] -b[1] # => 4 -b[end] # => 6 +# 二维数组以分号分隔维度 +matrix = [1 2; 3 4] # => 2×2 Array{Int64,2}: [1 2; 3 4] -# 二维数组以分号分隔维度。 -matrix = [1 2; 3 4] # => 2x2 Int64 数组: [1 2; 3 4] +# 指定数组的类型 +b = Int8[4, 5, 6] # => 3-element Array{Int8,1}: [4, 5, 6] # 使用 push! 和 append! 往数组末尾添加元素 -push!(a,1) # => [1] -push!(a,2) # => [1,2] -push!(a,4) # => [1,2,4] -push!(a,3) # => [1,2,4,3] -append!(a,b) # => [1,2,4,3,4,5,6] +push!(a, 1) # => [1] +push!(a, 2) # => [1,2] +push!(a, 4) # => [1,2,4] +push!(a, 3) # => [1,2,4,3] +append!(a, b) # => [1,2,4,3,4,5,6] -# 用 pop 弹出末尾元素 -pop!(b) # => 6 and b is now [4,5] +# 用 pop 弹出尾部的元素 +pop!(b) # => 6 +b # => [4,5] -# 可以再放回去 -push!(b,6) # b 又变成了 [4,5,6]. +# 再放回去 +push!(b, 6) # => [4,5,6] +b # => [4,5,6] -a[1] # => 1 # 永远记住 Julia 的 index 从 1 开始! +a[1] # => 1 # 永远记住 Julia 的引索从 1 开始!而不是 0! -# 用 end 可以直接取到最后索引. 可用作任何索引表达式 +# 用 end 可以直接取到最后索引。它可以用在任何索引表达式中 a[end] # => 6 -# 还支持 shift 和 unshift -shift!(a) # => 返回 1,而 a 现在时 [2,4,3,4,5,6] -unshift!(a,7) # => [7,2,4,3,4,5,6] +# 数组还支持 popfirst! 和 pushfirst! +popfirst!(a) # => 1 +a # => [2,4,3,4,5,6] +pushfirst!(a, 7) # => [7,2,4,3,4,5,6] +a # => [7,2,4,3,4,5,6] # 以叹号结尾的函数名表示它会改变参数的值 -arr = [5,4,6] # => 包含三个 Int64 元素的数组: [5,4,6] -sort(arr) # => [4,5,6]; arr 还是 [5,4,6] -sort!(arr) # => [4,5,6]; arr 现在是 [4,5,6] +arr = [5,4,6] # => 3-element Array{Int64,1}: [5,4,6] +sort(arr) # => [4,5,6] +arr # => [5,4,6] +sort!(arr) # => [4,5,6] +arr # => [4,5,6] -# 越界会抛出 BoundsError 异常 +# 数组越界会抛出 BoundsError try - a[0] # => ERROR: BoundsError() in getindex at array.jl:270 - a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270 + a[0] + # => ERROR: BoundsError: attempt to access 7-element Array{Int64,1} at + # index [0] + # => Stacktrace: + # => [1] getindex(::Array{Int64,1}, ::Int64) at .\array.jl:731 + # => [2] top-level scope at none:0 + # => [3] ... + # => in expression starting at ...\LearnJulia.jl:203 + a[end + 1] + # => ERROR: BoundsError: attempt to access 7-element Array{Int64,1} at + # index [8] + # => Stacktrace: + # => [1] getindex(::Array{Int64,1}, ::Int64) at .\array.jl:731 + # => [2] top-level scope at none:0 + # => [3] ... + # => in expression starting at ...\LearnJulia.jl:211 catch e println(e) end -# 错误会指出发生的行号,包括标准库 -# 如果你有 Julia 源代码,你可以找到这些地方 +# 报错时错误会指出出错的文件位置以及行号,标准库也一样 +# 你可以在 Julia 安装目录下的 share/julia 文件夹里找到这些标准库 # 可以用 range 初始化数组 -a = [1:5] # => 5-element Int64 Array: [1,2,3,4,5] +a = [1:5;] # => 5-element Array{Int64,1}: [1,2,3,4,5] +# 注意!分号不可省略 +a2 = [1:5] # => 1-element Array{UnitRange{Int64},1}: [1:5] # 可以切割数组 a[1:3] # => [1, 2, 3] @@ -189,11 +234,13 @@ a[2:end] # => [2, 3, 4, 5] # 用 splice! 切割原数组 arr = [3,4,5] -splice!(arr,2) # => 4 ; arr 变成了 [3,5] +splice!(arr, 2) # => 4 +arr # => [3,5] # 用 append! 连接数组 b = [1,2,3] -append!(a,b) # a 变成了 [1, 2, 3, 4, 5, 1, 2, 3] +append!(a, b) # => [1, 2, 3, 4, 5, 1, 2, 3] +a # => [1, 2, 3, 4, 5, 1, 2, 3] # 检查元素是否在数组中 in(1, a) # => true @@ -201,240 +248,258 @@ in(1, a) # => true # 用 length 获得数组长度 length(a) # => 8 -# Tuples 是 immutable 的 -tup = (1, 2, 3) # => (1,2,3) # an (Int64,Int64,Int64) tuple. +# 元组(Tuples)是不可变的 +tup = (1, 2, 3) # => (1,2,3) +typeof(tup) # => Tuple{Int64,Int64,Int64} tup[1] # => 1 -try: - tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64) +try + tup[1] = 3 + # => ERROR: MethodError: no method matching + # setindex!(::Tuple{Int64,Int64,Int64}, ::Int64, ::Int64) catch e println(e) end -# 大多数组的函数同样支持 tuples +# 大多数组的函数同样支持元组 length(tup) # => 3 -tup[1:2] # => (1,2) -in(2, tup) # => true +tup[1:2] # => (1,2) +in(2, tup) # => true -# 可以将 tuples 元素分别赋给变量 -a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3 +# 可以将元组的元素解包赋给变量 +a, b, c = (1, 2, 3) # => (1,2,3) +a # => 1 +b # => 2 +c # => 3 # 不用括号也可以 -d, e, f = 4, 5, 6 # => (4,5,6) +d, e, f = 4, 5, 6 # => (4,5,6) +d # => 4 +e # => 5 +f # => 6 # 单元素 tuple 不等于其元素值 (1,) == 1 # => false -(1) == 1 # => true +(1) == 1 # => true # 交换值 -e, d = d, e # => (5,4) # d is now 5 and e is now 4 +e, d = d, e # => (5,4) +d # => 5 +e # => 4 -# 字典Dictionaries store mappings -empty_dict = Dict() # => Dict{Any,Any}() +# 字典用于储存映射(mappings)(键值对) +empty_dict = Dict() # => Dict{Any,Any} with 0 entries # 也可以用字面量创建字典 -filled_dict = ["one"=> 1, "two"=> 2, "three"=> 3] -# => Dict{ASCIIString,Int64} +filled_dict = Dict("one" => 1, "two" => 2, "three" => 3) +# => Dict{String,Int64} with 3 entries: +# => "two" => 2, "one" => 1, "three" => 3 # 用 [] 获得键值 filled_dict["one"] # => 1 # 获得所有键 keys(filled_dict) -# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2]) +# => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys: +# => "two", "one", "three" # 注意,键的顺序不是插入时的顺序 # 获得所有值 values(filled_dict) -# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2]) +# => Base.ValueIterator for a Dict{String,Int64} with 3 entries. Values: +# => 2, 1, 3 # 注意,值的顺序也一样 # 用 in 检查键值是否已存在,用 haskey 检查键是否存在 -in(("one", 1), filled_dict) # => true -in(("two", 3), filled_dict) # => false -haskey(filled_dict, "one") # => true -haskey(filled_dict, 1) # => false +in(("one" => 1), filled_dict) # => true +in(("two" => 3), filled_dict) # => false +haskey(filled_dict, "one") # => true +haskey(filled_dict, 1) # => false # 获取不存在的键的值会抛出异常 try - filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489 + filled_dict["four"] # => ERROR: KeyError: key "four" not found catch e println(e) end # 使用 get 可以提供默认值来避免异常 # get(dictionary,key,default_value) -get(filled_dict,"one",4) # => 1 -get(filled_dict,"four",4) # => 4 +get(filled_dict, "one", 4) # => 1 +get(filled_dict, "four", 4) # => 4 -# 用 Sets 表示无序不可重复的值的集合 -empty_set = Set() # => Set{Any}() -# 初始化一个 Set 并定义其值 -filled_set = Set(1,2,2,3,4) # => Set{Int64}(1,2,3,4) +# Set 表示无序不可重复的值的集合 +empty_set = Set() # => Set(Any[]) +# 初始化一个带初值的 Set +filled_set = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1]) -# 添加值 -push!(filled_set,5) # => Set{Int64}(5,4,2,3,1) +# 新增值 +push!(filled_set, 5) # => Set([4, 2, 3, 5, 1]) -# 检查是否存在某值 -in(2, filled_set) # => true -in(10, filled_set) # => false +# 检查 Set 中是否存在某值 +in(2, filled_set) # => true +in(10, filled_set) # => false # 交集,并集,差集 -other_set = Set(3, 4, 5, 6) # => Set{Int64}(6,4,5,3) -intersect(filled_set, other_set) # => Set{Int64}(3,4,5) -union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6) -setdiff(Set(1,2,3,4),Set(2,3,5)) # => Set{Int64}(1,4) - +other_set = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6]) +intersect(filled_set, other_set) # => Set([4, 3, 5]) +union(filled_set, other_set) # => Set([4, 2, 3, 5, 6, 1]) +setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1]) #################################################### -## 3. 控制流 +## 3. 控制语句 #################################################### # 声明一个变量 some_var = 5 -# 这是一个 if 语句,缩进不是必要的 +# 这是一个 if 语句块,其中的缩进不是必须的 if some_var > 10 println("some_var is totally bigger than 10.") -elseif some_var < 10 # elseif 是可选的. +elseif some_var < 10 # elseif 是可选的 println("some_var is smaller than 10.") -else # else 也是可选的. +else # else 也是可选的 println("some_var is indeed 10.") end -# => prints "some var is smaller than 10" +# => some_var is smaller than 10. # For 循环遍历 -# Iterable 类型包括 Range, Array, Set, Dict, 以及 String. -for animal=["dog", "cat", "mouse"] +# 可迭代的类型包括:Range, Array, Set, Dict 和 AbstractString +for animal = ["dog", "cat", "mouse"] println("$animal is a mammal") - # 可用 $ 将 variables 或 expression 转换为字符串into strings + # 你可以用 $ 将变量或表达式插入字符串中 end -# prints: -# dog is a mammal -# cat is a mammal -# mouse is a mammal +# => dog is a mammal +# => cat is a mammal +# => mouse is a mammal -# You can use 'in' instead of '='. +# 你也可以不用「=」而使用「in」 for animal in ["dog", "cat", "mouse"] println("$animal is a mammal") end -# prints: -# dog is a mammal -# cat is a mammal -# mouse is a mammal +# => dog is a mammal +# => cat is a mammal +# => mouse is a mammal -for a in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"] - println("$(a[1]) is a $(a[2])") +for pair in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal") + from, to = pair + println("$from is a $to") end -# prints: -# dog is a mammal -# cat is a mammal -# mouse is a mammal +# => mouse is a mammal +# => cat is a mammal +# => dog is a mammal +# 注意!这里的输出顺序和上面的不同 -for (k,v) in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"] +for (k, v) in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal") println("$k is a $v") end -# prints: -# dog is a mammal -# cat is a mammal -# mouse is a mammal +# => mouse is a mammal +# => cat is a mammal +# => dog is a mammal # While 循环 -x = 0 -while x < 4 - println(x) - x += 1 # x = x + 1 +let x = 0 + while x < 4 + println(x) + x += 1 # x = x + 1 的缩写 + end end -# prints: -# 0 -# 1 -# 2 -# 3 +# => 0 +# => 1 +# => 2 +# => 3 # 用 try/catch 处理异常 try - error("help") + error("help") catch e - println("caught it $e") + println("caught it $e") end # => caught it ErrorException("help") - #################################################### ## 4. 函数 #################################################### -# 用关键字 'function' 可创建一个新函数 -#function name(arglist) -# body... -#end +# 关键字 function 用于定义函数 +# function name(arglist) +# body... +# end function add(x, y) println("x is $x and y is $y") - # 最后一行语句的值为返回 + # 函数会返回最后一行的值 x + y end -add(5, 6) # => 在 "x is 5 and y is 6" 后会打印 11 +add(5, 6) +# => x is 5 and y is 6 +# => 11 + +# 更紧凑的定义函数 +f_add(x, y) = x + y # => f_add (generic function with 1 method) +f_add(3, 4) # => 7 + +# 函数可以将多个值作为元组返回 +fn(x, y) = x + y, x - y # => fn (generic function with 1 method) +fn(3, 4) # => (7, -1) # 还可以定义接收可变长参数的函数 function varargs(args...) return args - # 关键字 return 可在函数内部任何地方返回 + # 使用 return 可以在函数内的任何地方返回 end # => varargs (generic function with 1 method) varargs(1,2,3) # => (1,2,3) -# 省略号 ... 被称为 splat. +# 省略号「...」称为 splat # 刚刚用在了函数定义中 -# 还可以用在函数的调用 -# Array 或者 Tuple 的内容会变成参数列表 -Set([1,2,3]) # => Set{Array{Int64,1}}([1,2,3]) # 获得一个 Array 的 Set -Set([1,2,3]...) # => Set{Int64}(1,2,3) # 相当于 Set(1,2,3) +# 在调用函数时也可以使用它,此时它会把数组或元组解包为参数列表 +add([5,6]...) # 等价于 add(5,6) -x = (1,2,3) # => (1,2,3) -Set(x) # => Set{(Int64,Int64,Int64)}((1,2,3)) # 一个 Tuple 的 Set -Set(x...) # => Set{Int64}(2,3,1) +x = (5, 6) # => (5,6) +add(x...) # 等价于 add(5,6) - -# 可定义可选参数的函数 -function defaults(a,b,x=5,y=6) +# 可定义带可选参数的函数 +function defaults(a, b, x=5, y=6) return "$a $b and $x $y" end +# => defaults (generic function with 3 methods) -defaults('h','g') # => "h g and 5 6" -defaults('h','g','j') # => "h g and j 6" -defaults('h','g','j','k') # => "h g and j k" +defaults('h', 'g') # => "h g and 5 6" +defaults('h', 'g', 'j') # => "h g and j 6" +defaults('h', 'g', 'j', 'k') # => "h g and j k" try - defaults('h') # => ERROR: no method defaults(Char,) - defaults() # => ERROR: no methods defaults() + defaults('h') # => ERROR: MethodError: no method matching defaults(::Char) + defaults() # => ERROR: MethodError: no method matching defaults() catch e println(e) end -# 还可以定义键值对的参数 -function keyword_args(;k1=4,name2="hello") # note the ; - return ["k1"=>k1,"name2"=>name2] +# 还可以定义带关键字参数的函数 +function keyword_args(;k1=4, name2="hello") # 注意分号 ';' + return Dict("k1" => k1, "name2" => name2) end +# => keyword_args (generic function with 1 method) -keyword_args(name2="ness") # => ["name2"=>"ness","k1"=>4] -keyword_args(k1="mine") # => ["k1"=>"mine","name2"=>"hello"] -keyword_args() # => ["name2"=>"hello","k1"=>4] +keyword_args(name2="ness") # => ["name2"=>"ness", "k1"=>4] +keyword_args(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"] +keyword_args() # => ["name2"=>"hello", "k1"=>4] -# 可以组合各种类型的参数在同一个函数的参数列表中 +# 可以在一个函数中组合各种类型的参数 function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo") println("normal arg: $normal_arg") println("optional arg: $optional_positional_arg") println("keyword arg: $keyword_arg") end +# => all_the_args (generic function with 2 methods) all_the_args(1, 3, keyword_arg=4) -# prints: -# normal arg: 1 -# optional arg: 3 -# keyword arg: 4 +# => normal arg: 1 +# => optional arg: 3 +# => keyword arg: 4 # Julia 有一等函数 function create_adder(x) @@ -443,14 +508,16 @@ function create_adder(x) end return adder end +# => create_adder (generic function with 1 method) # 这是用 "stabby lambda syntax" 创建的匿名函数 (x -> x > 2)(3) # => true -# 这个函数和上面的 create_adder 一模一样 +# 这个函数和上面的 create_adder 是等价的 function create_adder(x) y -> x + y end +# => create_adder (generic function with 1 method) # 你也可以给内部函数起个名字 function create_adder(x) @@ -459,18 +526,19 @@ function create_adder(x) end adder end +# => create_adder (generic function with 1 method) -add_10 = create_adder(10) -add_10(3) # => 13 - +add_10 = create_adder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64}) + # (generic function with 1 method) +add_10(3) # => 13 # 内置的高阶函数有 -map(add_10, [1,2,3]) # => [11, 12, 13] -filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7] +map(add_10, [1,2,3]) # => [11, 12, 13] +filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7] -# 还可以使用 list comprehensions 替代 map -[add_10(i) for i=[1, 2, 3]] # => [11, 12, 13] -[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13] +# 还可以使用 list comprehensions 让 map 更美观 +[add_10(i) for i = [1, 2, 3]] # => [11, 12, 13] +[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13] #################################################### ## 5. 类型 @@ -482,248 +550,315 @@ filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7] typeof(5) # => Int64 # 类型是一等值 -typeof(Int64) # => DataType -typeof(DataType) # => DataType +typeof(Int64) # => DataType +typeof(DataType) # => DataType # DataType 是代表类型的类型,也代表他自己的类型 -# 类型可用作文档化,优化,以及调度 -# 并不是静态检查类型 +# 类型可用于文档化代码、执行优化以及多重派分(dispatch) +# Julia 并不只是静态的检查类型 # 用户还可以自定义类型 -# 跟其他语言的 records 或 structs 一样 -# 用 `type` 关键字定义新的类型 +# 就跟其它语言的 record 或 struct 一样 +# 用 `struct` 关键字定义新的类型 -# type Name +# struct Name # field::OptionalType # ... # end -type Tiger - taillength::Float64 - coatcolor # 不附带类型标注的相当于 `::Any` +struct Tiger + taillength::Float64 + coatcolor # 不带类型标注相当于 `::Any` end -# 构造函数参数是类型的属性 -tigger = Tiger(3.5,"orange") # => Tiger(3.5,"orange") +# 默认构造函数的参数是类型的属性,按类型定义中的顺序排列 +tigger = Tiger(3.5, "orange") # => Tiger(3.5, "orange") # 用新类型作为构造函数还会创建一个类型 -sherekhan = typeof(tigger)(5.6,"fire") # => Tiger(5.6,"fire") +sherekhan = typeof(tigger)(5.6, "fire") # => Tiger(5.6, "fire") -# struct 类似的类型被称为具体类型 -# 他们可被实例化但不能有子类型 +# 类似 struct 的类型被称为具体类型 +# 它们可被实例化,但不能有子类型 # 另一种类型是抽象类型 -# abstract Name -abstract Cat # just a name and point in the type hierarchy +# 抽象类型名 +abstract type Cat end # 仅仅是指向类型结构层次的一个名称 -# 抽象类型不能被实例化,但是可以有子类型 +# 抽象类型不能被实例化,但可以有子类型 # 例如,Number 就是抽象类型 -subtypes(Number) # => 6-element Array{Any,1}: - # Complex{Float16} - # Complex{Float32} - # Complex{Float64} - # Complex{T<:Real} - # ImaginaryUnit - # Real -subtypes(Cat) # => 0-element Array{Any,1} - -# 所有的类型都有父类型; 可以用函数 `super` 得到父类型. +subtypes(Number) # => 2-element Array{Any,1}: + # => Complex + # => Real +subtypes(Cat) # => 0-element Array{Any,1} + +# AbstractString,类如其名,也是一个抽象类型 +subtypes(AbstractString) # => 4-element Array{Any,1}: + # => String + # => SubString + # => SubstitutionString + # => Test.GenericString + +# 所有的类型都有父类型。可以用函数 `supertype` 得到父类型 typeof(5) # => Int64 -super(Int64) # => Signed -super(Signed) # => Real -super(Real) # => Number -super(Number) # => Any -super(super(Signed)) # => Number -super(Any) # => Any -# 所有这些类型,除了 Int64, 都是抽象类型. - -# <: 是类型集成操作符 -type Lion <: Cat # Lion 是 Cat 的子类型 - mane_color - roar::String +supertype(Int64) # => Signed +supertype(Signed) # => Integer +supertype(Integer) # => Real +supertype(Real) # => Number +supertype(Number) # => Any +supertype(supertype(Signed)) # => Real +supertype(Any) # => Any +# 除了 Int64 外,其余的类型都是抽象类型 +typeof("fire") # => String +supertype(String) # => AbstractString +supertype(AbstractString) # => Any +supertype(SubString) # => AbstractString + +# <: 是子类型化操作符 +struct Lion <: Cat # Lion 是 Cat 的子类型 + mane_color + roar::AbstractString end # 可以继续为你的类型定义构造函数 -# 只需要定义一个同名的函数 -# 并调用已有的构造函数设置一个固定参数 -Lion(roar::String) = Lion("green",roar) -# 这是一个外部构造函数,因为他再类型定义之外 - -type Panther <: Cat # Panther 也是 Cat 的子类型 - eye_color - Panther() = new("green") - # Panthers 只有这个构造函数,没有默认构造函数 +# 只需要定义一个与类型同名的函数,并调用已有的构造函数得到正确的类型 +Lion(roar::AbstractString) = Lion("green", roar) # => Lion +# 这是一个外部构造函数,因为它在类型定义之外 + +struct Panther <: Cat # Panther 也是 Cat 的子类型 + eye_color + Panther() = new("green") + # Panthers 只有这个构造函数,没有默认构造函数 end -# 使用内置构造函数,如 Panther,可以让你控制 -# 如何构造类型的值 -# 应该尽可能使用外部构造函数而不是内部构造函数 +# 像 Panther 一样使用内置构造函数,让你可以控制如何构建类型的值 +# 应该尽量使用外部构造函数,而不是内部构造函数 #################################################### ## 6. 多分派 #################################################### -# 在Julia中, 所有的具名函数都是类属函数 -# 这意味着他们都是有很大小方法组成的 -# 每个 Lion 的构造函数都是类属函数 Lion 的方法 +# Julia 中所有的函数都是通用函数,或者叫做泛型函数(generic functions) +# 也就是说这些函数都是由许多小方法组合而成的 +# Lion 的每一种构造函数都是通用函数 Lion 的一个方法 # 我们来看一个非构造函数的例子 +# 首先,让我们定义一个函数 meow -# Lion, Panther, Tiger 的 meow 定义为 +# Lion, Panther, Tiger 的 meow 定义分别为 function meow(animal::Lion) - animal.roar # 使用点符号访问属性 + animal.roar # 使用点记号「.」访问属性 end +# => meow (generic function with 1 method) function meow(animal::Panther) - "grrr" + "grrr" end +# => meow (generic function with 2 methods) function meow(animal::Tiger) - "rawwwr" + "rawwwr" end +# => meow (generic function with 3 methods) # 试试 meow 函数 -meow(tigger) # => "rawwr" -meow(Lion("brown","ROAAR")) # => "ROAAR" +meow(tigger) # => "rawwwr" +meow(Lion("brown", "ROAAR")) # => "ROAAR" meow(Panther()) # => "grrr" -# 再看看层次结构 -issubtype(Tiger,Cat) # => false -issubtype(Lion,Cat) # => true -issubtype(Panther,Cat) # => true +# 回顾类型的层次结构 +Tiger <: Cat # => false +Lion <: Cat # => true +Panther <: Cat # => true -# 定义一个接收 Cats 的函数 +# 定义一个接收 Cat 类型的函数 function pet_cat(cat::Cat) - println("The cat says $(meow(cat))") + println("The cat says $(meow(cat))") end +# => pet_cat (generic function with 1 method) -pet_cat(Lion("42")) # => prints "The cat says 42" +pet_cat(Lion("42")) # => The cat says 42 try - pet_cat(tigger) # => ERROR: no method pet_cat(Tiger,) + pet_cat(tigger) # => ERROR: MethodError: no method matching pet_cat(::Tiger) catch e println(e) end # 在面向对象语言中,通常都是单分派 -# 这意味着分派方法是通过第一个参数的类型决定的 -# 在Julia中, 所有参数类型都会被考虑到 +# 这意味着使用的方法取决于第一个参数的类型 +# 而 Julia 中选择方法时会考虑到所有参数的类型 -# 让我们定义有多个参数的函数,好看看区别 -function fight(t::Tiger,c::Cat) - println("The $(t.coatcolor) tiger wins!") +# 让我们定义一个有更多参数的函数,这样我们就能看出区别 +function fight(t::Tiger, c::Cat) + println("The $(t.coatcolor) tiger wins!") end # => fight (generic function with 1 method) -fight(tigger,Panther()) # => prints The orange tiger wins! -fight(tigger,Lion("ROAR")) # => prints The orange tiger wins! +fight(tigger, Panther()) # => The orange tiger wins! +fight(tigger, Lion("ROAR")) # => fight(tigger, Lion("ROAR")) -# 让我们修改一下传入具体为 Lion 类型时的行为 -fight(t::Tiger,l::Lion) = println("The $(l.mane_color)-maned lion wins!") +# 让我们修改一下传入 Lion 类型时的行为 +fight(t::Tiger, l::Lion) = println("The $(l.mane_color)-maned lion wins!") # => fight (generic function with 2 methods) -fight(tigger,Panther()) # => prints The orange tiger wins! -fight(tigger,Lion("ROAR")) # => prints The green-maned lion wins! +fight(tigger, Panther()) # => The orange tiger wins! +fight(tigger, Lion("ROAR")) # => The green-maned lion wins! -# 把 Tiger 去掉 -fight(l::Lion,c::Cat) = println("The victorious cat says $(meow(c))") +# 我们不需要一只老虎参与战斗 +fight(l::Lion, c::Cat) = println("The victorious cat says $(meow(c))") # => fight (generic function with 3 methods) -fight(Lion("balooga!"),Panther()) # => prints The victorious cat says grrr +fight(Lion("balooga!"), Panther()) # => The victorious cat says grrr try - fight(Panther(),Lion("RAWR")) # => ERROR: no method fight(Panther,Lion) -catch + fight(Panther(), Lion("RAWR")) + # => ERROR: MethodError: no method matching fight(::Panther, ::Lion) + # => Closest candidates are: + # => fight(::Tiger, ::Lion) at ... + # => fight(::Tiger, ::Cat) at ... + # => fight(::Lion, ::Cat) at ... + # => ... +catch e + println(e) end -# 在试试让 Cat 在前面 -fight(c::Cat,l::Lion) = println("The cat beats the Lion") -# => Warning: New definition -# fight(Cat,Lion) at none:1 -# is ambiguous with -# fight(Lion,Cat) at none:2. -# Make sure -# fight(Lion,Lion) -# is defined first. -#fight (generic function with 4 methods) - -# 警告说明了无法判断使用哪个 fight 方法 -fight(Lion("RAR"),Lion("brown","rarrr")) # => prints The victorious cat says rarrr -# 结果在老版本 Julia 中可能会不一样 - -fight(l::Lion,l2::Lion) = println("The lions come to a tie") -fight(Lion("RAR"),Lion("brown","rarrr")) # => prints The lions come to a tie - - -# Under the hood -# 你还可以看看 llvm 以及生成的汇编代码 - -square_area(l) = l * l # square_area (generic function with 1 method) - -square_area(5) #25 - -# 给 square_area 一个整形时发生什么 -code_native(square_area, (Int32,)) - # .section __TEXT,__text,regular,pure_instructions - # Filename: none - # Source line: 1 # Prologue - # push RBP - # mov RBP, RSP - # Source line: 1 - # movsxd RAX, EDI # Fetch l from memory? - # imul RAX, RAX # Square l and store the result in RAX - # pop RBP # Restore old base pointer - # ret # Result will still be in RAX - -code_native(square_area, (Float32,)) - # .section __TEXT,__text,regular,pure_instructions - # Filename: none - # Source line: 1 - # push RBP - # mov RBP, RSP - # Source line: 1 - # vmulss XMM0, XMM0, XMM0 # Scalar single precision multiply (AVX) - # pop RBP - # ret - -code_native(square_area, (Float64,)) - # .section __TEXT,__text,regular,pure_instructions - # Filename: none - # Source line: 1 - # push RBP - # mov RBP, RSP - # Source line: 1 - # vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX) - # pop RBP - # ret - # -# 注意 只要参数中又浮点类型,Julia 就使用浮点指令 +# 试试把 Cat 放在前面 +fight(c::Cat, l::Lion) = println("The cat beats the Lion") +# => fight (generic function with 4 methods) + +# 由于无法判断该使用哪个 fight 方法,而产生了错误 +try + fight(Lion("RAR"), Lion("brown", "rarrr")) + # => ERROR: MethodError: fight(::Lion, ::Lion) is ambiguous. Candidates: + # => fight(c::Cat, l::Lion) in Main at ... + # => fight(l::Lion, c::Cat) in Main at ... + # => Possible fix, define + # => fight(::Lion, ::Lion) + # => ... +catch e + println(e) +end +# 在不同版本的 Julia 中错误信息可能有所不同 + +fight(l::Lion, l2::Lion) = println("The lions come to a tie") +# => fight (generic function with 5 methods) +fight(Lion("RAR"), Lion("brown", "rarrr")) # => The lions come to a tie + + +# 深入编译器之后 +# 你还可以看看 llvm 以及它生成的汇编代码 + +square_area(l) = l * l # => square_area (generic function with 1 method) +square_area(5) # => 25 + +# 当我们喂给 square_area 一个整数时会发生什么? +code_native(square_area, (Int32,), syntax = :intel) + # .text + # ; Function square_area { + # ; Location: REPL[116]:1 # 函数序言 (Prologue) + # push rbp + # mov rbp, rsp + # ; Function *; { + # ; Location: int.jl:54 + # imul ecx, ecx # 求 l 的平方,并把结果放在 ECX 中 + # ;} + # mov eax, ecx + # pop rbp # 还原旧的基址指针(base pointer) + # ret # 返回值放在 EAX 中 + # nop dword ptr [rax + rax] + # ;} +# 使用 syntax 参数指定输出语法。默认为 AT&T 格式,这里指定为 Intel 格式 + +code_native(square_area, (Float32,), syntax = :intel) + # .text + # ; Function square_area { + # ; Location: REPL[116]:1 + # push rbp + # mov rbp, rsp + # ; Function *; { + # ; Location: float.jl:398 + # vmulss xmm0, xmm0, xmm0 # 标量双精度乘法 (AVX) + # ;} + # pop rbp + # ret + # nop word ptr [rax + rax] + # ;} + +code_native(square_area, (Float64,), syntax = :intel) + # .text + # ; Function square_area { + # ; Location: REPL[116]:1 + # push rbp + # mov rbp, rsp + # ; Function *; { + # ; Location: float.jl:399 + # vmulsd xmm0, xmm0, xmm0 # 标量双精度乘法 (AVX) + # ;} + # pop rbp + # ret + # nop word ptr [rax + rax] + # ;} + +# 注意!只要参数中有浮点数,Julia 就会使用浮点指令 # 让我们计算一下圆的面积 -circle_area(r) = pi * r * r # circle_area (generic function with 1 method) -circle_area(5) # 78.53981633974483 - -code_native(circle_area, (Int32,)) - # .section __TEXT,__text,regular,pure_instructions - # Filename: none - # Source line: 1 - # push RBP - # mov RBP, RSP - # Source line: 1 - # vcvtsi2sd XMM0, XMM0, EDI # Load integer (r) from memory - # movabs RAX, 4593140240 # Load pi - # vmulsd XMM1, XMM0, QWORD PTR [RAX] # pi * r - # vmulsd XMM0, XMM0, XMM1 # (pi * r) * r - # pop RBP - # ret - # - -code_native(circle_area, (Float64,)) - # .section __TEXT,__text,regular,pure_instructions - # Filename: none - # Source line: 1 - # push RBP - # mov RBP, RSP - # movabs RAX, 4593140496 - # Source line: 1 - # vmulsd XMM1, XMM0, QWORD PTR [RAX] - # vmulsd XMM0, XMM1, XMM0 - # pop RBP - # ret - # +circle_area(r) = pi * r * r # => circle_area (generic function with 1 method) +circle_area(5) # => 78.53981633974483 + +code_native(circle_area, (Int32,), syntax = :intel) + # .text + # ; Function circle_area { + # ; Location: REPL[121]:1 + # push rbp + # mov rbp, rsp + # ; Function *; { + # ; Location: operators.jl:502 + # ; Function *; { + # ; Location: promotion.jl:314 + # ; Function promote; { + # ; Location: promotion.jl:284 + # ; Function _promote; { + # ; Location: promotion.jl:261 + # ; Function convert; { + # ; Location: number.jl:7 + # ; Function Type; { + # ; Location: float.jl:60 + # vcvtsi2sd xmm0, xmm0, ecx # 从内存中读取整数 r + # movabs rax, 497710928 # 读取 pi + # ;}}}}} + # ; Function *; { + # ; Location: float.jl:399 + # vmulsd xmm1, xmm0, qword ptr [rax] # pi * r + # vmulsd xmm0, xmm1, xmm0 # (pi * r) * r + # ;}} + # pop rbp + # ret + # nop dword ptr [rax] + # ;} + +code_native(circle_area, (Float64,), syntax = :intel) + # .text + # ; Function circle_area { + # ; Location: REPL[121]:1 + # push rbp + # mov rbp, rsp + # movabs rax, 497711048 + # ; Function *; { + # ; Location: operators.jl:502 + # ; Function *; { + # ; Location: promotion.jl:314 + # ; Function *; { + # ; Location: float.jl:399 + # vmulsd xmm1, xmm0, qword ptr [rax] + # ;}}} + # ; Function *; { + # ; Location: float.jl:399 + # vmulsd xmm0, xmm1, xmm0 + # ;} + # pop rbp + # ret + # nop dword ptr [rax + rax] + # ;} ``` + +## 拓展阅读材料 + +你可以在 [Julia 中文文档](http://docs.juliacn.com/latest/) / [Julia 文档(en)](https://docs.julialang.org/) +中获得关于 Julia 的更多细节。 + +如果有任何问题可以去 [Julia 中文社区](http://discourse.juliacn.com/) / [官方社区(en)](https://discourse.julialang.org/) 提问,大家对待新手都非常的友好。 |