diff options
author | Levi Bostian <levi.bostian@banno.com> | 2013-11-25 09:42:37 -0600 |
---|---|---|
committer | Levi Bostian <levi.bostian@banno.com> | 2013-11-25 09:42:37 -0600 |
commit | af6701904b459b16cf65709cd8c70fd2f5519457 (patch) | |
tree | 68cb4bf9ead32686f492e68528e9f0761e41c500 /zh-cn | |
parent | df3cc00f5233dac96c0e063d87d3552f493e25f6 (diff) | |
parent | d24c824d388669181eed99c3e94bb25c2914304a (diff) |
Fix conflict bash.
Diffstat (limited to 'zh-cn')
-rw-r--r-- | zh-cn/bash-cn.html.markdown | 148 | ||||
-rw-r--r-- | zh-cn/brainfuck-cn.html.markdown | 70 | ||||
-rw-r--r-- | zh-cn/go-zh.html.markdown | 10 | ||||
-rw-r--r-- | zh-cn/perl-cn.html.markdown | 152 | ||||
-rw-r--r-- | zh-cn/r-cn.html.markdown | 541 |
5 files changed, 916 insertions, 5 deletions
diff --git a/zh-cn/bash-cn.html.markdown b/zh-cn/bash-cn.html.markdown new file mode 100644 index 00000000..e3eed3a6 --- /dev/null +++ b/zh-cn/bash-cn.html.markdown @@ -0,0 +1,148 @@ +--- +category: tool +tool: bash +contributors: + - ["Max Yankov", "https://github.com/golergka"] + - ["Darren Lin", "https://github.com/CogBear"] + - ["Alexandre Medeiros", "http://alemedeiros.sdf.org"] +translators: + - ["Chunyang Xu", "https://github.com/XuChunyang"] +filename: LearnBash-cn.sh +lang: zh-cn +--- + +Bash 是一个为 GNU 计划编写的 Unix shell,是 Linux 和 Mac OS X 下的默认 shell。 +以下大多数例子可以作为脚本的一部分运行也可直接在 shell 下交互执行。 + +[更多信息](http://www.gnu.org/software/bash/manual/bashref.html) + +```bash +#!/bin/sh +# 脚本的第一行叫 shebang,用来告知系统如何执行该脚本: +# 参见: http://en.wikipedia.org/wiki/Shebang_(Unix) +# 如你所见,注释以 # 开头,shebang 也是注释。 + +# 显示 “Hello world!” +echo Hello, world! + +# 每一句指令以换行或分号隔开: +echo 'This is the first line'; echo 'This is the second line' + +# 声明一个变量: +VARIABLE="Some string" + +# 下面是错误的做法: +VARIABLE = "Some string" +# Bash 会把 VARIABLE 当做一个指令,由于找不到该指令,因此这里会报错。 + + +# 使用变量: +echo $VARIABLE +echo "$VARIABLE" +echo '$VARIABLE' +# 当你分配 (assign) 、导出 (export),或者以其他方式使用变量时,变量名前不加 $。 +# 如果要使用变量的值, 则要加 $。 +# 注意: ' (单引号) 不会展开变量(即会屏蔽掉变量)。 + + +# 在变量内部进行字符串代换 +echo ${VARIABLE/Some/A} +# 会把 VARIABLE 中首次出现的 "some" 替换成 “A”。 + +# 内置变量: +# 下面的内置变量很有用 +echo "Last program return value: $?" +echo "Script's PID: $$" +echo "Number of arguments: $#" +echo "Scripts arguments: $@" +echo "Scripts arguments separeted in different variables: $1 $2..." + +# 读取输入: +echo "What's your name?" +read NAME # 这里不需要声明新变量 +echo Hello, $NAME! + +# 通常的 if 结构看起来像这样: +# 'man test' 可查看更多的信息 +if [ $NAME -ne $USER ] +then + echo "Your name is you username" +else + echo "Your name isn't you username" +fi + +# 根据上一个指令执行结果决定是否执行下一个指令 +echo "Always executed" || echo "Only executed if first command fail" +echo "Always executed" && echo "Only executed if first command does NOT fail" + +# 表达式的格式如下: +echo $(( 10 + 5 )) + +# 与其他编程语言不同的是,bash 运行时依赖上下文。比如,使用 ls 时,列出当前目录。 +ls + +# 指令可以带有选项: +ls -l # 列出文件和目录的详细信息 + +# 前一个指令的输出可以当作后一个指令的输入。grep 用来匹配字符串。 +# 用下面的指令列出当前目录下所有的 txt 文件: +ls -l | grep "\.txt" + +# 重定向可以到输出,输入和错误输出。 +python2 hello.py < "input.in" +python2 hello.py > "output.out" +python2 hello.py 2> "error.err" +# > 会覆盖已存在的文件, >> 会以累加的方式输出文件中。 + +# 一个指令可用 $( ) 嵌套在另一个指令内部: +# 以下的指令会打印当前目录下的目录和文件总数 +echo "There are $(ls | wc -l) items here." + +# Bash 的 case 语句与 Java 和 C++ 中的 switch 语句类似: +case "$VARIABLE" in + # 列出需要匹配的字符串 + 0) echo "There is a zero.";; + 1) echo "There is a one.";; + *) echo "It is not null.";; +esac + +# 循环遍历给定的参数序列: +# 变量$VARIABLE 的值会被打印 3 次。 +# 注意 ` ` 和 $( ) 等价。seq 返回长度为 3 的数组。 +for VARIABLE in `seq 3` +do + echo "$VARIABLE" +done + +# 你也可以使用函数 +# 定义函数: +function foo () +{ + echo "Arguments work just like script arguments: $@" + echo "And: $1 $2..." + echo "This is a function" + return 0 +} + +# 更简单的方法 +bar () +{ + echo "Another way to declare functions!" + return 0 +} + +# 调用函数 +foo "My name is" $NAME + +# 有很多有用的指令需要学习: +tail -n 10 file.txt +# 打印 file.txt 的最后 10 行 +head -n 10 file.txt +# 打印 file.txt 的前 10 行 +sort file.txt +# 将 file.txt 按行排序 +uniq -d file.txt +# 报告或忽略重复的行,用选项 -d 打印重复的行 +cut -d ',' -f 1 file.txt +# 打印每行中 ',' 之前内容 +``` diff --git a/zh-cn/brainfuck-cn.html.markdown b/zh-cn/brainfuck-cn.html.markdown new file mode 100644 index 00000000..a6f3fa09 --- /dev/null +++ b/zh-cn/brainfuck-cn.html.markdown @@ -0,0 +1,70 @@ +--- +language: brainfuck +lang: zh-cn +contributors: + - ["Prajit Ramachandran", "http://prajitr.github.io/"] + - ["Mathias Bynens", "http://mathiasbynens.be/"] +translators: + - ["lyuehh", "https://github.com/lyuehh"] +--- + +Brainfuck 是一个极小的只有8个指令的图灵完全的编程语言。 + +``` +除"><+-.,[]"之外的的任何字符都会被忽略 (不包含双引号)。 + +Brainfuck 包含一个有30,000个单元为0的数组,和 +一个数据指针指向当前的单元。 + +8个指令如下: ++ : 指针指向的单元的值加1 +- : 指针指向的单元的值减1 +> : 将指针移动到下一个单元(右边的元素) +< : 将指针移动到上一个单元(左边的元素) +. : 打印当前单元的内容的ASCII值 (比如 65 = 'A'). +, : 读取一个字符到当前的单元 +[ : 如果当前单元的值是0,则向后调转到对应的]处 +] : 如果当前单元的值不是0,则向前跳转到对应的[处 + +[ 和 ] 组成了一个while循环。很明显,它们必须配对。 + +让我们看一些基本的brainfuck 程序。 + +++++++ [ > ++++++++++ < - ] > +++++ . + +这个程序打印字母'A'。首先,它把 #1 增加到6,使用它来作为循环条件, +然后,进入循环,将指针移动到 #2 ,将 #2 的值增加到10,然后 +移动回 #1,将单元 #1 的值减1,然后继续。循环共进行了6次。 + +这时,我们在 #1,它的值为0,#2 的值为60,我们移动到 +#2,将 #2 的内容加上5,然后将 #2 的内容打印出来,65在 +ASCII中表示'A', 所以'A'就会被打印出来。 + + +, [ > + < - ] > . + +这个程序从用户的输入中读取一个字符,然后把它复制到 #1。 +然后我们开始一个循环,移动到 #2,将 #2 的值加1,再移动回 #1,将 #1 +的值减1,直到 #1的值为0,这样 #2 里就保存了 #1 的旧值,循环结束时我们 +在 #1,这时我们移动到 #2,然后把字符以ASCII打印出来。 + +而且要记住的一点就是,空格在这里只是为了可读性,你可以将他们写成这样: + +,[>+<-]>. + +试着思考一下这段程序是干什么的: + +,>,< [ > [ >+ >+ << -] >> [- << + >>] <<< -] >> + +这段程序从输入接收2个参数,然后将他们相乘。 + +先读取2个输入,然后开始外层循环,以 #1 作为终止条件,然后将指针移动到 +#2,然后开始 #2 的内层循环,将 #3 加1。但是这里有一个小问题,在内层 +循环结束的时候,#2 的值是0了,那么下次执行外层循环的时候,就有问题了。 +为了解决这个问题,我们可以增加 #4 的值,然后把 #4 的值复制到 #2, +最后结果就保存在 #3 中了。 +``` +好了这就是brainfuck了。也没那么难,是吧?为了好玩,你可以写你自己的 +brainfuck程序,或者用其他语言写一个brainfuck的解释器,解释器非常容易 +实现,但是如果你是一个自虐狂的话,你可以尝试用brainfuck写一个brainfuk的 +解释器。 diff --git a/zh-cn/go-zh.html.markdown b/zh-cn/go-zh.html.markdown index 8f7cb2af..7cc9c171 100644 --- a/zh-cn/go-zh.html.markdown +++ b/zh-cn/go-zh.html.markdown @@ -1,8 +1,8 @@ --- -名字:Go -分类:编程语言 -文件名:learngo.go -贡献者: +language: Go +lang: zh-cn +filename: learngo-cn.go +contributors: - ["Sonia Keys", "https://github.com/soniakeys"] - ["pantaovay", "https://github.com/pantaovay"] --- @@ -13,7 +13,7 @@ Go拥有命令式语言的静态类型,编译很快,执行也很快,同时 Go语言有非常棒的标准库,还有一个充满热情的社区。 -```Go +```go // 单行注释 /* 多行 注释 */ diff --git a/zh-cn/perl-cn.html.markdown b/zh-cn/perl-cn.html.markdown new file mode 100644 index 00000000..5b0d6179 --- /dev/null +++ b/zh-cn/perl-cn.html.markdown @@ -0,0 +1,152 @@ +--- +name: perl +category: language +language: perl +filename: learnperl-cn.pl +contributors: + - ["Korjavin Ivan", "http://github.com/korjavin"] +translators: + - ["Yadong Wen", "https://github.com/yadongwen"] +lang: zh-cn +--- + +Perl 5是一个功能强大、特性齐全的编程语言,有25年的历史。 + +Perl 5可以在包括便携式设备和大型机的超过100个平台上运行,既适用于快速原型构建,也适用于大型项目开发。 + +```perl +# 单行注释以#号开头 + + +#### Perl的变量类型 + +# 变量以$号开头。 +# 合法变量名以英文字母或者下划线起始, +# 后接任意数目的字母、数字或下划线。 + +### Perl有三种主要的变量类型:标量、数组和哈希。 + +## 标量 +# 标量类型代表单个值: +my $animal = "camel"; +my $answer = 42; + +# 标量类型值可以是字符串、整型或浮点类型,Perl会根据需要自动进行类型转换。 + +## 数组 +# 数组类型代表一列值: +my @animals = ("camel", "llama", "owl"); +my @numbers = (23, 42, 69); +my @mixed = ("camel", 42, 1.23); + + + +## 哈希 +# 哈希类型代表一个键/值对的集合: + +my %fruit_color = ("apple", "red", "banana", "yellow"); + +# 可以使用空格和“=>”操作符更清晰的定义哈希: + +my %fruit_color = ( + apple => "red", + banana => "yellow", + ); +# perldata中有标量、数组和哈希更详细的介绍。 (perldoc perldata). + +# 可以用引用构建更复杂的数据类型,比如嵌套的列表和哈希。 + +#### 逻辑和循环结构 + +# Perl有大多数常见的逻辑和循环控制结构 + +if ( $var ) { + ... +} elsif ( $var eq 'bar' ) { + ... +} else { + ... +} + +unless ( condition ) { + ... + } +# 上面这个比"if (!condition)"更可读。 + +# 有Perl特色的后置逻辑结构 +print "Yow!" if $zippy; +print "We have no bananas" unless $bananas; + +# while + while ( condition ) { + ... + } + + +# for和foreach +for ($i = 0; $i <= $max; $i++) { + ... + } + +foreach (@array) { + print "This element is $_\n"; + } + + +#### 正则表达式 + +# Perl对正则表达式有深入广泛的支持,perlrequick和perlretut等文档有详细介绍。简单来说: + +# 简单匹配 +if (/foo/) { ... } # 如果 $_ 包含"foo"逻辑为真 +if ($a =~ /foo/) { ... } # 如果 $a 包含"foo"逻辑为真 + +# 简单替换 + +$a =~ s/foo/bar/; # 将$a中的foo替换为bar +$a =~ s/foo/bar/g; # 将$a中所有的foo替换为bar + + +#### 文件和输入输出 + +# 可以使用“open()”函数打开文件用于输入输出。 + +open(my $in, "<", "input.txt") or die "Can't open input.txt: $!"; +open(my $out, ">", "output.txt") or die "Can't open output.txt: $!"; +open(my $log, ">>", "my.log") or die "Can't open my.log: $!"; + +# 可以用"<>"操作符读取一个打开的文件句柄。 在标量语境下会读取一行, +# 在列表环境下会将整个文件读入并将每一行赋给列表的一个元素: + +my $line = <$in>; +my @lines = <$in>; + +#### 子程序 + +# 写子程序很简单: + +sub logger { + my $logmessage = shift; + open my $logfile, ">>", "my.log" or die "Could not open my.log: $!"; + print $logfile $logmessage; +} + +# 现在可以像内置函数一样调用子程序: + +logger("We have a logger subroutine!"); + + +``` + +#### 使用Perl模块 + +Perl模块提供一系列特性来帮助你避免重新发明轮子,CPAN是下载模块的好地方( http://www.cpan.org/ )。Perl发行版本身也包含很多流行的模块。 + +perlfaq有很多常见问题和相应回答,也经常有对优秀CPAN模块的推荐介绍。 + +#### 深入阅读 + + - [perl-tutorial](http://perl-tutorial.org/) + - [www.perl.com的learn站点](http://www.perl.org/learn.html) + - [perldoc](http://perldoc.perl.org/) + - 以及 perl 内置的: `perldoc perlintro` diff --git a/zh-cn/r-cn.html.markdown b/zh-cn/r-cn.html.markdown new file mode 100644 index 00000000..ed8c43b6 --- /dev/null +++ b/zh-cn/r-cn.html.markdown @@ -0,0 +1,541 @@ +--- +language: R +contributors: + - ["e99n09", "http://github.com/e99n09"] + - ["isomorphismes", "http://twitter.com/isomorphisms"] +translators: + - ["小柒", "http://weibo.com/u/2328126220"] + - ["alswl", "https://github.com/alswl"] +filename: learnr.r +lang: zh-cn +--- + +R 是一门统计语言。它有很多数据分析和挖掘程序包。可以用来统计、分析和制图。 +你也可以在 LaTeX 文档中运行 `R` 命令。 + +```python +# 评论以 # 开始 + +# R 语言原生不支持 多行注释 +# 但是你可以像这样来多行注释 + +# 在窗口里按回车键可以执行一条命令 + + +################################################################### +# 不用懂编程就可以开始动手了 +################################################################### + +data() # 浏览内建的数据集 +data(rivers) # 北美主要河流的长度(数据集) +ls() # 在工作空间中查看「河流」是否出现 +head(rivers) # 撇一眼数据集 +# 735 320 325 392 524 450 +length(rivers) # 我们测量了多少条河流? +# 141 +summary(rivers) +# Min. 1st Qu. Median Mean 3rd Qu. Max. +# 135.0 310.0 425.0 591.2 680.0 3710.0 +stem(rivers) # 茎叶图(一种类似于直方图的展现形式) +# +# The decimal point is 2 digit(s) to the right of the | +# +# 0 | 4 +# 2 | 011223334555566667778888899900001111223333344455555666688888999 +# 4 | 111222333445566779001233344567 +# 6 | 000112233578012234468 +# 8 | 045790018 +# 10 | 04507 +# 12 | 1471 +# 14 | 56 +# 16 | 7 +# 18 | 9 +# 20 | +# 22 | 25 +# 24 | 3 +# 26 | +# 28 | +# 30 | +# 32 | +# 34 | +# 36 | 1 + + +stem(log(rivers)) # 查看数据集的方式既不是标准形式,也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集 + +# The decimal point is 1 digit(s) to the left of the | +# +# 48 | 1 +# 50 | +# 52 | 15578 +# 54 | 44571222466689 +# 56 | 023334677000124455789 +# 58 | 00122366666999933445777 +# 60 | 122445567800133459 +# 62 | 112666799035 +# 64 | 00011334581257889 +# 66 | 003683579 +# 68 | 0019156 +# 70 | 079357 +# 72 | 89 +# 74 | 84 +# 76 | 56 +# 78 | 4 +# 80 | +# 82 | 2 + + +hist(rivers, col="#333333", border="white", breaks=25) # 试试用这些参数画画 (译者注:给 river 做统计频数直方图,包含了这些参数:数据源,颜色,边框,空格) +hist(log(rivers), col="#333333", border="white", breaks=25) #你还可以做更多式样的绘图 + +# 还有其他一些简单的数据集可以被用来加载。R 语言包括了大量这种 data() +data(discoveries) +plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year") +# 译者注:参数为(数据源,颜色,线条宽度,X 轴名称,标题) +plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year", main="Number of important discoveries per year") + + +# 除了按照默认的年份排序,我们还可以排序来发现特征 +sort(discoveries) +# [1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 +# [26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 +# [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 +# [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12 + +stem(discoveries, scale=2) # 译者注:茎叶图(数据,放大系数) +# +# The decimal point is at the | +# +# 0 | 000000000 +# 1 | 000000000000 +# 2 | 00000000000000000000000000 +# 3 | 00000000000000000000 +# 4 | 000000000000 +# 5 | 0000000 +# 6 | 000000 +# 7 | 0000 +# 8 | 0 +# 9 | 0 +# 10 | 0 +# 11 | +# 12 | 0 + +max(discoveries) +# 12 + +summary(discoveries) +# Min. 1st Qu. Median Mean 3rd Qu. Max. +# 0.0 2.0 3.0 3.1 4.0 12.0 + + + + +#基本的统计学操作也不需要任何编程知识 + +#随机生成数据 +round(runif(7, min=.5, max=6.5)) +# 译者注:runif 产生随机数,round 四舍五入 +# 1 4 6 1 4 6 4 + +# 你输出的结果会和我们给出的不同,除非我们设置了相同的随机种子 random.seed(31337) + + +#从标准高斯函数中随机生成 9 次 +rnorm(9) +# [1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271 +# [7] -0.59975593 0.57629164 1.08455362 + + + + + + + + + +######################### +# 基础编程 +######################### + +# 数值 + +#“数值”指的是双精度的浮点数 +5 # 5 +class(5) # "numeric" +5e4 # 50000 # 用科学技术法方便的处理极大值、极小值或者可变的量级 +6.02e23 # 阿伏伽德罗常数# +1.6e-35 # 布朗克长度 + +# 长整数并用 L 结尾 +5L # 5 +#输出5L +class(5L) # "integer" + +# 可以自己试一试?用 class() 函数获取更多信息 +# 事实上,你可以找一些文件查阅 `xyz` 以及xyz的差别 +# `xyz` 用来查看源码实现,?xyz 用来看帮助 + +# 算法 +10 + 66 # 76 +53.2 - 4 # 49.2 +2 * 2.0 # 4 +3L / 4 # 0.75 +3 %% 2 # 1 + +# 特殊数值类型 +class(NaN) # "numeric" +class(Inf) # "numeric" +class(-Inf) # "numeric" # 在以下场景中会用到 integrate( dnorm(x), 3, Inf ) -- 消除 Z 轴数据 + +# 但要注意,NaN 并不是唯一的特殊数值类型…… +class(NA) # 看上面 +class(NULL) # NULL + + +# 简单列表 +c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9 +c('alef', 'bet', 'gimmel', 'dalet', 'he') +c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE + +# 一些优雅的内置功能 +5:15 # 5 6 7 8 9 10 11 12 13 14 15 + +seq(from=0, to=31337, by=1337) +# [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707 +# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751 + +letters +# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" +# [20] "t" "u" "v" "w" "x" "y" "z" + +month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec" + + +# Access the n'th element of a list with list.name[n] or sometimes list.name[[n]] +# 使用 list.name[n] 来访问第 n 个列表元素,有时候需要使用 list.name[[n]] +letters[18] # "r" +LETTERS[13] # "M" +month.name[9] # "September" +c(6, 8, 7, 5, 3, 0, 9)[3] # 7 + + + +# 字符串 + +# 字符串和字符在 R 语言中没有区别 +"Horatio" # "Horatio" +class("Horatio") # "character" +substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis " +gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis." + + + +# 逻辑值 + +# 布尔值 +class(TRUE) # "logical" +class(FALSE) # "logical" +# 和我们预想的一样 +TRUE == TRUE # TRUE +TRUE == FALSE # FALSE +FALSE != FALSE # FALSE +FALSE != TRUE # TRUE +# 缺失数据(NA)也是逻辑值 +class(NA) # "logical" +#定义NA为逻辑型 + + + +# 因子 +# 因子是为数据分类排序设计的(像是排序小朋友们的年级或性别) +levels(factor(c("female", "male", "male", "female", "NA", "female"))) # "female" "male" "NA" + +factor(c("female", "female", "male", "NA", "female")) +# female female male NA female +# Levels: female male NA + +data(infert) # 自然以及引产导致的不育症 +levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs" + + + +# 变量 + +# 有许多种方式用来赋值 +x = 5 # 这样可以 +y <- "1" # 更推荐这样 +TRUE -> z # 这样可行,但是很怪 + +#我们还可以使用强制转型 +as.numeric(y) # 1 +as.character(x) # "5" + +# 循环 + +# for 循环语句 +for (i in 1:4) { + print(i) +} + +# while 循环 +a <- 10 +while (a > 4) { + cat(a, "...", sep = "") + a <- a - 1 +} + +# 记住,在 R 语言中 for / while 循环都很慢 +# 建议使用 apply()(我们一会介绍)来错做一串数据(比如一列或者一行数据) + +# IF/ELSE + +# 再来看这些优雅的标准 +if (4 > 3) { + print("Huzzah! It worked!") +} else { + print("Noooo! This is blatantly illogical!") +} + +# => +# [1] "Huzzah! It worked!" + +# 函数 + +# 定义如下 +jiggle <- function(x) { + x + rnorm(x, sd=.1) #add in a bit of (controlled) noise + return(x) +} + +# 和其他 R 语言函数一样调用 +jiggle(5) # 5±ε. 使用 set.seed(2716057) 后, jiggle(5)==5.005043 + +######################### +# 数据容器:vectors, matrices, data frames, and arrays +######################### + +# 单维度 +# 你可以将目前我们学习到的任何类型矢量化,只要它们拥有相同的类型 +vec <- c(8, 9, 10, 11) +vec # 8 9 10 11 +# 矢量的类型是这一组数据元素的类型 +class(vec) # "numeric" +# If you vectorize items of different classes, weird coercions happen +#如果你强制的将不同类型数值矢量化,会出现特殊值 +c(TRUE, 4) # 1 4 +c("dog", TRUE, 4) # "dog" "TRUE" "4" + +#我们这样来取内部数据,(R 的下标索引顺序 1 开始) +vec[1] # 8 +# 我们可以根据条件查找特定数据 +which(vec %% 2 == 0) # 1 3 +# 抓取矢量中第一个和最后一个字符 +head(vec, 1) # 8 +tail(vec, 1) # 11 +#如果下标溢出或不存会得到 NA +vec[6] # NA +# 你可以使用 length() 获取矢量的长度 +length(vec) # 4 + +# 你可以直接操作矢量或者矢量的子集 +vec * 4 # 16 20 24 28 +vec[2:3] * 5 # 25 30 +# 这里有许多内置的函数,来表现向量 +mean(vec) # 9.5 +var(vec) # 1.666667 +sd(vec) # 1.290994 +max(vec) # 11 +min(vec) # 8 +sum(vec) # 38 + +# 二维(相同元素类型) + +#你可以为同样类型的变量建立矩阵 +mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6)) +mat +# => +# [,1] [,2] +# [1,] 1 4 +# [2,] 2 5 +# [3,] 3 6 +# 和 vector 不一样的是,一个矩阵的类型真的是 「matrix」,而不是内部元素的类型 +class(mat) # => "matrix" +# 访问第一行的字符 +mat[1,] # 1 4 +# 操作第一行数据 +3 * mat[,1] # 3 6 9 +# 访问一个特定数据 +mat[3,2] # 6 +# 转置整个矩阵(译者注:变成 2 行 3 列) +t(mat) +# => +# [,1] [,2] [,3] +# [1,] 1 2 3 +# [2,] 4 5 6 + +# 使用 cbind() 函数把两个矩阵按列合并,形成新的矩阵 +mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog")) +mat2 +# => +# [,1] [,2] +# [1,] "1" "dog" +# [2,] "2" "cat" +# [3,] "3" "bird" +# [4,] "4" "dog" +class(mat2) # matrix +# Again, note what happened! +# 注意 +# 因为矩阵内部元素必须包含同样的类型 +# 所以现在每一个元素都转化成字符串 +c(class(mat2[,1]), class(mat2[,2])) + +# 按行合并两个向量,建立新的矩阵 +mat3 <- rbind(c(1,2,4,5), c(6,7,0,4)) +mat3 +# => +# [,1] [,2] [,3] [,4] +# [1,] 1 2 4 5 +# [2,] 6 7 0 4 +# 哈哈,数据类型都一样的,没有发生强制转换,生活真美好 + +# 二维(不同的元素类型) + +# 利用 data frame 可以将不同类型数据放在一起 +dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog")) +names(dat) <- c("number", "species") # 给数据列命名 +class(dat) # "data.frame" +dat +# => +# number species +# 1 5 dog +# 2 2 cat +# 3 1 bird +# 4 4 dog +class(dat$number) # "numeric" +class(dat[,2]) # "factor" +# data.frame() 会将字符向量转换为 factor 向量 + +# 有很多精妙的方法来获取 data frame 的子数据集 +dat$number # 5 2 1 4 +dat[,1] # 5 2 1 4 +dat[,"number"] # 5 2 1 4 + +# 多维(相同元素类型) + +# 使用 arry 创造一个 n 维的表格 +# You can make a two-dimensional table (sort of like a matrix) +# 你可以建立一个 2 维表格(有点像矩阵) +array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4)) +# => +# [,1] [,2] [,3] [,4] +# [1,] 1 4 8 3 +# [2,] 2 5 9 6 +#你也可以利用数组建立一个三维的矩阵 +array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2)) +# => +# , , 1 +# +# [,1] [,2] +# [1,] 2 8 +# [2,] 300 9 +# [3,] 4 0 +# +# , , 2 +# +# [,1] [,2] +# [1,] 5 66 +# [2,] 60 7 +# [3,] 0 847 + +#列表(多维的,不同类型的) + +# R语言有列表的形式 +list1 <- list(time = 1:40) +list1$price = c(rnorm(40,.5*list1$time,4)) # 随机 +list1 + +# You can get items in the list like so +# 你可以这样获得列表的元素 +list1$time +# You can subset list items like vectors +# 你也可以和矢量一样获取他们的子集 +list1$price[4] + +######################### +# apply()函数家族 +######################### + +# 还记得 mat 么? +mat +# => +# [,1] [,2] +# [1,] 1 4 +# [2,] 2 5 +# [3,] 3 6 +# Use apply(X, MARGIN, FUN) to apply function FUN to a matrix X +# 使用(X, MARGIN, FUN)将函数 FUN 应用到矩阵 X 的行 (MAR = 1) 或者 列 (MAR = 2) +# That is, R does FUN to each row (or column) of X, much faster than a +# R 在 X 的每一行/列使用 FUN,比循环要快很多 +apply(mat, MAR = 2, myFunc) +# => +# [,1] [,2] +# [1,] 3 15 +# [2,] 7 19 +# [3,] 11 23 +# 还有其他家族函数 ?lapply, ?sapply + +# 不要被吓到,虽然许多人在此都被搞混 +# plyr 程序包的作用是用来改进 apply() 函数家族 + +install.packages("plyr") +require(plyr) +?plyr + +######################### +# 载入数据 +######################### + +# "pets.csv" 是网上的一个文本 +pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv") +pets +head(pets, 2) # 前两行 +tail(pets, 1) # 最后一行 + +# 以 .csv 格式来保存数据集或者矩阵 +write.csv(pets, "pets2.csv") # 保存到新的文件 pets2.csv +# set working directory with setwd(), look it up with getwd() +# 使用 setwd() 改变工作目录,使用 getwd() 查看当前工作目录 + +# 尝试使用 ?read.csv 和 ?write.csv 来查看更多信息 + +######################### +# 画图 +######################### + +# 散点图 +plot(list1$time, list1$price, main = "fake data") # 译者注:横轴 list1$time,纵轴 wlist1$price,标题 fake data +# 回归图 +linearModel <- lm(price ~ time, data = list1) # 译者注:线性模型,数据集为list1,以价格对时间做相关分析模型 +linearModel # 拟合结果 +# 将拟合结果展示在图上,颜色设为红色 +abline(linearModel, col = "red") +# 也可以获取各种各样漂亮的分析图 +plot(linearModel) + +# 直方图 +hist(rpois(n = 10000, lambda = 5), col = "thistle") # 译者注:统计频数直方图 + +# 柱状图 +barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow")) + +# 可以尝试着使用 ggplot2 程序包来美化图片 +install.packages("ggplot2") +require(ggplot2) +?ggplot2 + +``` + +## 获得 R + +* 从 [http://www.r-project.org/](http://www.r-project.org/) 获得安装包和图形化界面 +* [RStudio](http://www.rstudio.com/ide/) 是另一个图形化界面 |