diff options
| -rw-r--r-- | zh-cn/r-cn.html.markdown | 691 | 
1 files changed, 691 insertions, 0 deletions
| diff --git a/zh-cn/r-cn.html.markdown b/zh-cn/r-cn.html.markdown new file mode 100644 index 00000000..1bd83c60 --- /dev/null +++ b/zh-cn/r-cn.html.markdown @@ -0,0 +1,691 @@ +
 +# Comments start with hashtags.
 +# 评论以 # 开始
 +
 +# You can't make a multi-line comment per se,
 +# but you can stack multiple comments like so.
 +# 你不能在每一个se下执行多个注释,
 +# 但是你可以像这样把命注释内容堆叠起来.
 +# in Windows, hit COMMAND-ENTER to execute a line
 +# 在windows下,点击回车键来执行一条命令
 +
 +
 +###################################################################
 +# Stuff you can do without understanding anything about programming
 +# 素材可以使那些不懂编程的人同样得心用手
 +###################################################################
 +
 +data()	# Browse pre-loaded data sets
 +data()	# 浏览预加载的数据集
 +data(rivers)	# Lengths of Major North American Rivers
 +data(rivers)	# 北美主要河流的长度(数据集)
 +ls()	# Notice that "rivers" appears in the workspace
 +ls()	# 在工作站中查看”河流“文件夹是否出现
 +head(rivers)	# peek at the dataset
 +head(rivers)	# 浏览数据集
 +# 735 320 325 392 524 450
 +length(rivers)	# how many rivers were measured?
 +# 141
 +length(rivers)	# 测量了多少条河流
 +summary(rivers)
 +#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 +#  135.0   310.0   425.0   591.2   680.0  3710.0 
 +#查看”河流“数据集的特征
 +#  最小值. 1st Qu.  中位数    平均值     最大值 
 +#  135.0   310.0   425.0   591.2   680.0  3710.0 
 +stem(rivers)	#stem-and-leaf plot (like a histogram)
 +stem(rivers)	#茎叶图(一种类似于直方图的展现形式)
 +
 +
 +
 +
 +#  The decimal point is 2 digit(s) to the right of the |
 +#  小数点向|右边保留两位数字 
 +#
 +#   0 | 4
 +#   2 | 011223334555566667778888899900001111223333344455555666688888999
 +#   4 | 111222333445566779001233344567
 +#   6 | 000112233578012234468
 +#   8 | 045790018
 +#  10 | 04507
 +#  12 | 1471
 +#  14 | 56
 +#  16 | 7
 +#  18 | 9
 +#  20 | 
 +#  22 | 25
 +#  24 | 3
 +#  26 | 
 +#  28 | 
 +#  30 | 
 +#  32 | 
 +#  34 | 
 +#  36 | 1
 +
 +stem(log(rivers))	#Notice that the data are neither normal nor log-normal! Take that, Bell Curve fundamentalists.
 +stem(log(rivers))	#查看数据集的方式既不是标准形式,也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集
 +
 +#  The decimal point is 1 digit(s) to the left of the |
 +#  小数点向|左边保留一位数字 
 +#
 +#  48 | 1
 +#  50 | 
 +#  52 | 15578
 +#  54 | 44571222466689
 +#  56 | 023334677000124455789
 +#  58 | 00122366666999933445777
 +#  60 | 122445567800133459
 +#  62 | 112666799035
 +#  64 | 00011334581257889
 +#  66 | 003683579
 +#  68 | 0019156
 +#  70 | 079357
 +#  72 | 89
 +#  74 | 84
 +#  76 | 56
 +#  78 | 4
 +#  80 | 
 +#  82 | 2
 +
 +
 +hist(rivers, col="#333333", border="white", breaks=25)	#play around with these parameters
 +hist(rivers, col="#333333", border="white", breaks=25)	#给river做统计频数直方图,包含了这些参数(名称,颜色,边界,空白)
 +hist(log(rivers), col="#333333", border="white", breaks=25)	#you'll do more plotting later
 +hist(log(rivers), col="#333333", border="white", breaks=25)	#稍后你还可以做更多的绘图,统计频数直方图,包含了这些参数(river数据集的log值,颜色,边界,空白)
 +hist(rivers, col="#333333", border="white", breaks=25)	#play around with these parameters
 +hist(rivers, col="#333333", border="white", breaks=25)	#运行同济频数直方图的这些参数
 +
 +#Here's another neat data set that comes pre-loaded. R has tons of these. data()
 +#这里还有其他一些简洁的数据集可以被提前加载。R语言包括大量这种类型的数据集
 +data(discoveries)
 +#数据集(发现)
 +plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")
 +#绘图(发现,颜色负值,宽度负值,X轴名称,主题:Number of important discoveries per year)
 +
 +
 +
 +#rather than leaving the default ordering (by year) we could also sort to see what's typical
 +#宁可舍弃也不执行排序(按照年份完成)我们可以分类来查看这是那些类型
 +sort(discoveries)  #给(发现)分类
 +#  [1]  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2
 +# [26]  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  3  3
 +# [51]  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  4
 +# [76]  4  4  4  4  5  5  5  5  5  5  5  6  6  6  6  6  6  7  7  7  7  8  9 10 12
 +
 +stem(discoveries, scale=2)
 +#茎叶图(发现,在原来的基础上降尺度扩大两倍)
 +# 
 +#  The decimal point is at the |
 +#  小数点在|
 +#
 +#   0 | 000000000
 +#   1 | 000000000000
 +#   2 | 00000000000000000000000000
 +#   3 | 00000000000000000000
 +#   4 | 000000000000
 +#   5 | 0000000
 +#   6 | 000000
 +#   7 | 0000
 +#   8 | 0
 +#   9 | 0
 +#  10 | 0
 +#  11 | 
 +#  12 | 0
 +
 +max(discoveries)
 +#最大值(发现)
 +# 12
 +
 +summary(discoveries)
 +#数据集特征(发现)
 +#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 +#    0.0     2.0     3.0     3.1     4.0    12.0 
 +
 +
 +
 +
 +#Basic statistical operations don't require any programming knowledge either
 +#基本的统计学操作也不需要任何编程知识
 +
 +#roll a die a few times
 +#随机输出数据
 +round(runif(7, min=.5, max=6.5))
 +#round(产生均匀分布的随机数,进行四舍五入(7个, 最小值为0.5, max=6.5))
 +# 1 4 6 1 4 6 4
 +
 +#your numbers will differ from mine unless we set the same random.seed(31337)
 +#你输出的结果将会与我们给出的不同,除非我们设置了同样的随机种子 random.seed(31337)
 +
 +
 +#draw from a standard Gaussian 9 times
 +#从标准高斯函数中随机的提取9次结果
 +rnorm(9)
 +# [1]  0.07528471  1.03499859  1.34809556 -0.82356087  0.61638975 -1.88757271
 +# [7] -0.59975593  0.57629164  1.08455362
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +#########################
 +# Basic programming stuff
 +# 基本的编程素材
 +#########################
 +
 +# NUMBERS
 +
 +# "numeric" means double-precision floating-point numbers
 +#“数值”指的是双精度的浮点数
 +5	# 5
 +class(5)	# "numeric"
 +#定义(5)为数值型变量	# "numeric"
 +5e4	# 50000				#handy when dealing with large,small,or variable orders of magnitude
 +#5×104次方    可以手写输入改变数量级的大小将变量扩大
 +6.02e23	# Avogadro's number
 +#阿伏伽德罗常数
 +1.6e-35	# Planck length
 +#布朗克长度
 +
 +# long-storage integers are written with L
 +#长存储整数并用L书写
 +5L	# 5  
 +#输出5L
 +class(5L)	# "integer"
 +#(5L)的类型, 整数型
 +
 +# Try ?class for more information on the class() function
 +#可以自己试一试?用class()功能函数定义更多的信息
 +# In fact, you can look up the documentation on `xyz` with ?xyz
 +#事实上,你可以找一些文件查阅“xyz”以及xyz的差别
 +# or see the source for `xyz` by evaluating xyz
 +#或者通过评估xyz来查看“xyz”的来源
 +
 +# Arithmetic
 +#算法
 +10 + 66	# 76
 +53.2 - 4	# 49.2
 +2 * 2.0	# 4
 +3L / 4	# 0.75
 +3 %% 2	# 1
 +
 +# Weird number types
 +#超自然数的类型
 +class(NaN)	# "numeric"
 +class(Inf)	# "numeric"
 +class(-Inf)	# "numeric"		#used in for example integrate( dnorm(x), 3, Inf ) -- which obviates Z-score tables
 +#定义以上括号内的数均为数值型变量,利用实例中的整数(正态分布函数(X),3,Inf )消除Z轴列表
 +
 +# but beware, NaN isn't the only weird type...
 +# 但要注意,NaN并不是仅有的超自然类型。。。
 +class(NA)	# see below
 +#定义(NA)下面的部分会理解
 +class(NULL)	# NULL
 +#定义(NULL)无效的
 +
 +
 +# SIMPLE LISTS
 +#简单的数据集 
 +c(6, 8, 7, 5, 3, 0, 9)	# 6 8 7 5 3 0 9
 +#输出数值型向量(6 8 7 5 3 0 9)
 +c('alef', 'bet', 'gimmel', 'dalet', 'he')	
 +#输出字符型变量# "alef"   "bet"    "gimmel" "dalet"  "he"
 +c('Z', 'o', 'r', 'o') == "Zoro"	# FALSE FALSE FALSE FALSE
 +#输出逻辑型变量FALSE FALSE FALSE FALSE
 +
 +#some more nice built-ins
 +#一些优雅的内置功能
 +5:15	# 5  6  7  8  9 10 11 12 13 14 15
 +#从5-15输出,以进度为1递增
 +
 +seq(from=0, to=31337, by=1337)
 +#输出序列(从0到31337,以1337递增)
 +#  [1]     0  1337  2674  4011  5348  6685  8022  9359 10696 12033 13370 14707
 +# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
 +
 +letters
 +#字符型变量,26个
 +#  [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
 +# [20] "t" "u" "v" "w" "x" "y" "z"
 +
 +month.abb	# "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
 +#表示月份的变量
 +
 +
 +# Access the n'th element of a list with list.name[n] or sometimes list.name[[n]]
 +#访问数据集名字为[n]的第n个元素
 +
 +letters[18]	# "r"
 +#访问其中的第18个变量
 +LETTERS[13]	# "M"
 +#用大写访问其中的第13个变量
 +month.name[9]	# "September"
 +#访问名字文件中第9个变量
 +c(6, 8, 7, 5, 3, 0, 9)[3]	# 7 
 +#访问向量中的第三个变量
 +
 +
 +
 +# CHARACTERS
 +#特性
 +# There's no difference between strings and characters in R
 +# 字符串和字符在R语言中没有区别
 +"Horatio"	# "Horatio"
 +#字符输出"Horatio"
 +class("Horatio") # "character"
 +#字符串输出("Horatio") # "character"
 +substr("Fortuna multis dat nimis, nulli satis.", 9, 15)	# "multis "
 +#提取字符串("Fortuna multis dat nimis, nulli satis.", 第9个到15个之前并输出)	
 +gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.")	# "Fortøna møltis dat nimis, nølli satis."
 +#替换字符春,用ø替换u
 +
 +
 +
 +# LOGICALS
 +#逻辑值
 +
 +# booleans
 +#布尔运算
 +class(TRUE)	# "logical"
 +#定义为真,逻辑型
 +class(FALSE)	# "logical"
 +#定义为假,逻辑型
 +# Behavior is normal
 +#表现的标准形式
 +TRUE == TRUE	# TRUE
 +TRUE == FALSE	# FALSE
 +FALSE != FALSE	# FALSE
 +FALSE != TRUE	# TRUE
 +# Missing data (NA) is logical, too
 +#缺失数据也是逻辑型的
 +class(NA)	# "logical"
 +#定义NA为逻辑型
 +
 +
 +
 +# FACTORS
 +#因子
 +# The factor class is for categorical data
 +#因子是分类数据的定义函数
 +# which can be ordered (like childrens' grade levels)
 +#可以使有序的(就像儿童的等级水平)
 +# or unordered (like gender)
 +#也可以是无序的(就像性别)
 +levels(factor(c("female", "male", "male", "female", "NA", "female")))	# "female" "male"   "NA" 
 +#c("female", "male", "male", "female", "NA", "female")向量,变量是字符型,levels factor()因子的等级水平
 +
 +factor(c("female", "female", "male", "NA", "female"))    
 +#  female female male   NA     female
 +# Levels: female male NA
 +
 +data(infert)	#Infertility after Spontaneous and Induced Abortion
 +#数据集(感染) 自然以及引产导致的不育症
 +levels(infert$education)	# "0-5yrs"  "6-11yrs" "12+ yrs"
 +#等级(感染与教育程度) 输出
 +
 +
 +
 +# VARIABLES
 +#变量
 +
 +# Lots of way to assign stuff
 +#许多种方式用来分配素材
 +x = 5 # this is possible
 +#x = 5可能的
 +y <- "1" # this is preferred
 +#y <- "1" 优先级的
 +TRUE -> z # this works but is weird
 +#输出真实的,存在一个超自然数满足条件
 +
 +# We can use coerce variables to different classes
 +#我们还可以使用枪支变量去进行不同的定义
 +as.numeric(y)	# 1
 +#定义数值型
 +as.character(x)	# "5"
 +#字符型
 +
 +
 +# LOOPS
 +#循环
 +
 +# We've got for loops
 +#循环语句
 +for (i in 1:4) {
 +  print(i)
 +}
 +#定义一个i,从1-4输出
 +
 +# We've got while loops
 +#我们可以获取循环结构
 +a <- 10
 +while (a > 4) {
 +	cat(a, "...", sep = "")
 +	a <- a - 1
 +}
 +#把10负值为a,a<4,输出文件(a,"...",sep="" ),跳出继续下一个循环取a=a-1,如此循环,直到a=10终止
 +# Keep in mind that for and while loops run slowly in R
 +#在R语言中牢记 for和它的循环结构
 +# Operations on entire vectors (i.e. a whole row, a whole column)
 +#牢记矢量中附带的操作(例如,整行和整列)
 +# or apply()-type functions (we'll discuss later) are preferred
 +#或者优先使用()-函数,稍后会进行讨论
 +
 +# IF/ELSE
 +#判断分支
 +
 +# Again, pretty standard
 +#再一次,看这些优雅的标准
 +if (4 > 3) {
 +	print("Huzzah! It worked!")
 +} else {
 +	print("Noooo! This is blatantly illogical!")
 +}
 +
 +# =>
 +# [1] "Huzzah! It worked!"
 +
 +# FUNCTIONS
 +#功能函数
 +
 +# Defined like so:
 +#定义如下
 +jiggle <- function(x) {
 +	x+ rnorm(x, sd=.1)	#add in a bit of (controlled) noise
 +	return(x)
 +}
 +#把功能函数x负值给jiggle,
 +
 +# Called like any other R function:
 +jiggle(5)	# 5±ε. After set.seed(2716057), jiggle(5)==5.005043
 +
 +#########################
 +# Fun with data: vectors, matrices, data frames, and arrays
 +# 数据参数:向量,矩阵,数据框,数组,
 +#########################
 +
 +# ONE-DIMENSIONAL
 +#单维度
 +# You can vectorize anything, so long as all components have the same type
 +#你可以将任何东西矢量化,因此所有的组分都有相同的类型
 +vec <- c(8, 9, 10, 11) 
 +vec	#  8  9 10 11
 +# The class of a vector is the class of its components
 +#矢量class表示这一组分的类型
 +class(vec)	# "numeric"
 +# If you vectorize items of different classes, weird coercions happen
 +#如果你强制的将不同类型的classes矢量化,会发生超自然形式的函数,例如都转变成数值型、字符型
 +c(TRUE, 4)	# 1 4
 +c("dog", TRUE, 4)	# "dog"  "TRUE" "4"
 +
 +# We ask for specific components like so (R starts counting from 1)
 +#我们可以找寻特定的组分,例如这个例子(R从1算起)
 +vec[1]	# 8
 +# We can also search for the indices of specific components,
 +#我们也可以从这些特定组分中找寻这些指标
 +which(vec %% 2 == 0)	# 1 3
 +# or grab just the first or last entry in the vector
 +#抓取矢量中第1个和最后一个字符
 +head(vec, 1)	# 8
 +tail(vec, 1)	# 11
 +#如果指数结束或不存在即"goes over" 可以获得NA
 +# If an index "goes over" you'll get NA:
 +vec[6]	# NA
 +# You can find the length of your vector with length()
 +#你也可以找到矢量的长度
 +length(vec)	# 4
 +
 +# You can perform operations on entire vectors or subsets of vectors
 +#你可以将整个矢量或者子矢量集进行展示
 +vec * 4	# 16 20 24 28
 +#
 +vec[2:3] * 5	# 25 30
 +# and there are many built-in functions to summarize vectors
 +#这里有许多内置的功能函数,并且可对矢量特征进行总结
 +mean(vec)	# 9.5
 +var(vec)	# 1.666667
 +sd(vec)	# 1.290994
 +max(vec)	# 11
 +min(vec)	# 8
 +sum(vec)	# 38
 +
 +# TWO-DIMENSIONAL (ALL ONE CLASS)
 +#二维函数
 +
 +# You can make a matrix out of entries all of the same type like so:
 +#你可以建立矩阵,保证所有的变量形式相同
 +mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6))
 +#建立mat矩阵,3行2列,从1到6排列,默认按列排布
 +mat
 +# =>
 +#      [,1] [,2]
 +# [1,]    1    4
 +# [2,]    2    5
 +# [3,]    3    6
 +# Unlike a vector, the class of a matrix is "matrix", no matter what's in it
 +class(mat) # => "matrix"
 +# Ask for the first row
 +#访问第一行的字符
 +mat[1,]	# 1 4
 +# Perform operation on the first column
 +#优先输入第一列,分别×3输出
 +3 * mat[,1]	# 3 6 9
 +# Ask for a specific cell
 +#访问特殊的单元,第3行第二列
 +mat[3,2]	# 6
 +# Transpose the whole matrix
 +#转置整个矩阵,变成2行3列
 +t(mat)
 +# =>
 +#      [,1] [,2] [,3]
 +# [1,]    1    2    3
 +# [2,]    4    5    6
 +
 +# cbind() sticks vectors together column-wise to make a matrix
 +把两个矩阵按列合并,形成新的矩阵
 +mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog"))
 +mat2
 +# =>
 +#      [,1] [,2]   
 +# [1,] "1"  "dog"  
 +# [2,] "2"  "cat"  
 +# [3,] "3"  "bird" 
 +# [4,] "4"  "dog"
 +class(mat2)	# matrix
 +#定义mat2矩阵
 +# Again, note what happened!
 +#同样的注释
 +# Because matrices must contain entries all of the same class,
 +#矩阵必须包含同样的形式
 +# everything got converted to the character class
 +#每一个变量都可以转化成字符串形式
 +c(class(mat2[,1]), class(mat2[,2]))
 +
 +# rbind() sticks vectors together row-wise to make a matrix
 +#按行合并两个向量,建立新的矩阵
 +mat3 <- rbind(c(1,2,4,5), c(6,7,0,4))
 +mat3
 +# =>
 +#      [,1] [,2] [,3] [,4]
 +# [1,]    1    2    4    5
 +# [2,]    6    7    0    4
 +# Aah, everything of the same class. No coercions. Much better.
 +
 +# TWO-DIMENSIONAL (DIFFERENT CLASSES)
 +##二维函数(不同的变量类型)
 +
 +# For columns of different classes, use the data frame 
 +利用数组可以将不同类型放在一起
 +dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
 +#dat<-数据集(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
 +names(dat) <- c("number", "species") # name the columns
 +#给每一个向量命名
 +class(dat)	# "data.frame"
 +#建立数据集dat
 +dat
 +# =>
 +#   number species
 +# 1      5     dog
 +# 2      2     cat
 +# 3      1    bird
 +# 4      4     dog
 +class(dat$number)	# "numeric"
 +class(dat[,2])	# "factor"
 +# The data.frame() function converts character vectors to factor vectors
 +#数据集,将字符特征转化为因子矢量
 +
 +# There are many twisty ways to subset data frames, all subtly unalike
 +#这里有许多种生成数据集的方法,所有的都很巧妙但又不相似
 +dat$number	# 5 2 1 4
 +dat[,1]	# 5 2 1 4
 +dat[,"number"]	# 5 2 1 4
 +
 +# MULTI-DIMENSIONAL (ALL OF ONE CLASS)
 +#多维函数
 +# Arrays creates n-dimensional tables
 +#利用数组创造一个n维的表格
 +# You can make a two-dimensional table (sort of like a matrix)
 +#你可以建立一个2维表格(类型和矩阵相似)
 +array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4))
 +#数组(c(c(1,2,4,5),c(8,9,3,6)),有前两个向量组成,2行4列 
 +# =>
 +#      [,1] [,2] [,3] [,4]
 +# [1,]    1    4    8    3
 +# [2,]    2    5    9    6
 +# You can use array to make three-dimensional matrices too
 +#你也可以利用数组建立一个三维的矩阵
 +array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
 +# =>
 +# , , 1
 +#
 +#      [,1] [,2]
 +# [1,]    2    8
 +# [2,]  300    9
 +# [3,]    4    0
 +#
 +# , , 2
 +#
 +#      [,1] [,2]
 +# [1,]    5   66
 +# [2,]   60    7
 +# [3,]    0  847
 +
 +# LISTS (MULTI-DIMENSIONAL, POSSIBLY RAGGED, OF DIFFERENT TYPES)
 +#列表(多维的,不同类型的)
 +
 +# Finally, R has lists (of vectors)
 +#R语言有列表的形式
 +list1 <- list(time = 1:40)
 +list1$price = c(rnorm(40,.5*list1$time,4)) # random
 +list1
 +
 +# You can get items in the list like so
 +#你可以获得像上面列表的形式
 +list1$time
 +# You can subset list items like vectors
 +#你也可以获取他们的子集,一种类似于矢量的形式
 +list1$price[4]
 +
 +#########################
 +# The apply() family of functions
 +#apply()函数家族的应用
 +#########################
 +
 +# Remember mat?
 +#输出mat矩阵
 +mat
 +# =>
 +#      [,1] [,2]
 +# [1,]    1    4
 +# [2,]    2    5
 +# [3,]    3    6
 +# Use apply(X, MARGIN, FUN) to apply function FUN to a matrix X
 +#使用(X, MARGIN, FUN)将一个function功能函数根据其特征应用到矩阵x中
 +# over rows (MAR = 1) or columns (MAR = 2)
 +#规定行列,其边界分别为1,2
 +# That is, R does FUN to each row (or column) of X, much faster than a 
 +#即就是,R定义一个function使每一行/列的x快于一个for或者while循环
 +# for or while loop would do
 +apply(mat, MAR = 2, myFunc)
 +# =>
 +#      [,1] [,2]
 +# [1,]    3   15
 +# [2,]    7   19
 +# [3,]   11   23
 +# Other functions: ?lapply, ?sapply
 +其他的功能函数,
 +
 +# Don't feel too intimidated; everyone agrees they are rather confusing
 +#不要被这些吓到,许多人在此都会容易混淆
 +# The plyr package aims to replace (and improve upon!) the *apply() family.
 +#plyr程序包的作用是用来改进family函数家族
 +
 +install.packages("plyr")
 +require(plyr)
 +?plyr
 +
 +#########################
 +# Loading data
 +#########################
 +
 +# "pets.csv" is a file on the internet
 +#"pets.csv" 是网上的一个文本
 +pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv")
 +#首先读取这个文本
 +pets
 +head(pets, 2) # first two rows
 +#显示前两行
 +tail(pets, 1) # last row
 +#显示最后一行
 +
 +# To save a data frame or matrix as a .csv file
 +#以.csv格式来保存数据集或者矩阵
 +write.csv(pets, "pets2.csv") # to make a new .csv file
 +#输出新的文本pets2.csv
 +# set working directory with setwd(), look it up with getwd()
 +#改变工作路径setwd(),查找工作路径getwd()
 +
 +# Try ?read.csv and ?write.csv for more information
 +#试着做一做以上学到的,或者运行更多的信息
 +
 +#########################
 +# Plots
 +#画图
 +#########################
 +
 +# Scatterplots!
 +#散点图
 +plot(list1$time, list1$price, main = "fake data")
 +#作图,横轴list1$time,纵轴list1$price,主题fake data
 +# Regressions!
 +#退回
 +linearModel <- lm(price  ~ time, data = list1)
 +# 线性模型,数据集为list1,以价格对时间做相关分析模型
 +linearModel # outputs result of regression
 +#输出拟合结果,并退出
 +# Plot regression line on existing plot
 +#将拟合结果展示在图上,颜色设为红色
 +abline(linearModel, col = "red")
 +# Get a variety of nice diagnostics
 +#也可以获取各种各样漂亮的分析图
 +plot(linearModel)
 +
 +# Histograms!
 +#直方图
 +hist(rpois(n = 10000, lambda = 5), col = "thistle")
 +#统计频数直方图()
 +
 +# Barplots!
 +#柱状图
 +barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow"))
 +#作图,柱的高度负值c(1,4,5,1,2),各个柱子的名称"red","blue","purple","green","yellow"
 +
 +# Try the ggplot2 package for more and better graphics
 +#可以尝试着使用ggplot2程序包来美化图片
 +install.packages("ggplot2")
 +require(ggplot2)
 +?ggplot2
 +
 +
 | 
