diff options
| -rw-r--r-- | c.html.markdown | 678 | ||||
| -rw-r--r-- | es-es/c-es.html.markdown | 2 | ||||
| -rw-r--r-- | fr-fr/ruby-fr.html.markdown | 407 | ||||
| -rw-r--r-- | objective-c.html.markdown | 4 | ||||
| -rw-r--r-- | ruby.html.markdown | 6 | ||||
| -rw-r--r-- | zh-cn/go-zh.html.markdown | 279 | 
6 files changed, 1091 insertions, 285 deletions
| diff --git a/c.html.markdown b/c.html.markdown index 2b50efa0..8e16837c 100644 --- a/c.html.markdown +++ b/c.html.markdown @@ -1,23 +1,25 @@  --- -name: c -category: language -language: c -filename: learnc.c -contributors: -    - ["Adam Bard", "http://adambard.com/"] +- name: c +- category: language +- language: c +- filename: learnc.c +- contributors: + - [Adam Bard](http://adambard.com/) + - [Árpád Goretity](http://twitter.com/H2CO3_iOS) +  --- -Ah, C. Still the language of modern high-performance computing. +Ah, C. Still **the** language of modern high-performance computing.  C is the lowest-level language most programmers will ever use, but  it more than makes up for it with raw speed. Just be aware of its manual  memory management and C will take you as far as you need to go.  ```c -// Single-line comments start with // +// Single-line comments start with // - only available in C99 and later.  /* -Multi-line comments look like this. +Multi-line comments look like this. They work in C89 as well.  */  // Import headers with #include @@ -25,6 +27,17 @@ Multi-line comments look like this.  #include <stdio.h>  #include <string.h> +// file names between <angle brackets> are headers from the C standard library. +// They are searched for by the preprocessor in the system include paths +// (usually /usr/lib on Unices, can be controlled with the -I<dir> option if you are using GCC or clang.) +// For your own headers, use double quotes instead of angle brackets: +#include "my_header.h" + +// The C preprocessor introduces an almost fully-featured macro language. It's useful, but +// it can be confusing (and what's even worse, it can be misused). Read the +// Wikipedia article on the C preprocessor for further information: +// http://en.wikipedia.org/wiki/C_preprocessor +  // Declare function signatures in advance in a .h file, or at the top of  // your .c file.  void function_1(); @@ -33,264 +46,347 @@ void function_2();  // Your program's entry point is a function called  // main with an integer return type.  int main() { - -// print output using printf, for "print formatted" -// %d is an integer, \n is a newline -printf("%d\n", 0); // => Prints 0 -// All statements must end with a semicolon - -/////////////////////////////////////// -// Types -/////////////////////////////////////// - -// You have to declare variables before using them. A variable declaration -// requires you to specify its type; a variable's type determines its size -// in bytes. - -// ints are usually 4 bytes  -int x_int = 0; - -// shorts are usually 2 bytes -short x_short = 0; - -// chars are guaranteed to be 1 byte -char x_char = 0; -char y_char = 'y'; // Char literals are quoted with '' - -// longs are often 4 to 8 bytes; long longs are guaranteed to be at least -// 64 bits -long x_long = 0; -long long x_long_long = 0;  - -// floats are usually 32-bit floating point numbers -float x_float = 0.0; - -// doubles are usually 64-bit floating-point numbers -double x_double = 0.0; - -// Integral types may be unsigned. This means they can't be negative, but -// the maximum value of an unsigned variable is greater than the maximum -// signed value of the same size. -unsigned char ux_char; -unsigned short ux_short; -unsigned int ux_int; -unsigned long long ux_long_long; - -// Other than char, which is always 1 byte, these types vary in size depending -// on your machine. sizeof(T) gives you the size of a variable with type T in  -// bytes so you can express the size of these types in a portable way. -// For example, -printf("%lu\n", sizeof(int)); // => 4 (on machines with 4-byte words) - -// Arrays must be initialized with a concrete size. -char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes -int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes -                      // (assuming 4-byte words) - - -// You can initialize an array to 0 thusly: -char my_array[20] = {0}; - -// Indexing an array is like other languages -- or, -// rather, other languages are like C -my_array[0]; // => 0 - -// Arrays are mutable; it's just memory! -my_array[1] = 2; -printf("%d\n", my_array[1]); // => 2 - -// Strings are just arrays of chars terminated by a NUL (0x00) byte, -// represented in strings as the special character '\0'. -// (We don't have to include the NUL byte in string literals; the compiler -//  inserts it at the end of the array for us.) -char a_string[20] = "This is a string"; -printf("%s\n", a_string); // %s formats a string - -/* -You may have noticed that a_string is only 16 chars long. -Char #17 is the NUL byte.  -Chars #18, 19 and 20 have undefined values. -*/ - -printf("%d\n", a_string[16]); // => 0 - -/////////////////////////////////////// -// Operators -/////////////////////////////////////// - -int i1 = 1, i2 = 2; // Shorthand for multiple declaration -float f1 = 1.0, f2 = 2.0; - -// Arithmetic is straightforward -i1 + i2; // => 3 -i2 - i1; // => 1 -i2 * i1; // => 2 -i1 / i2; // => 0 (0.5, but truncated towards 0) - -f1 / f2; // => 0.5, plus or minus epsilon - -// Modulo is there as well -11 % 3; // => 2 - -// Comparison operators are probably familiar, but -// there is no boolean type in c. We use ints instead. -// 0 is false, anything else is true. (The comparison  -// operators always return 0 or 1.) -3 == 2; // => 0 (false) -3 != 2; // => 1 (true) -3 > 2; // => 1 -3 < 2; // => 0 -2 <= 2; // => 1 -2 >= 2; // => 1 - -// Logic works on ints -!3; // => 0 (Logical not) -!0; // => 1 -1 && 1; // => 1 (Logical and) -0 && 1; // => 0 -0 || 1; // => 1 (Logical or) -0 || 0; // => 0 - -// Bitwise operators! -~0x0F; // => 0xF0 (bitwise negation) -0x0F & 0xF0; // => 0x00 (bitwise AND) -0x0F | 0xF0; // => 0xFF (bitwise OR) -0x04 ^ 0x0F; // => 0x0B (bitwise XOR) -0x01 << 1; // => 0x02 (bitwise left shift (by 1)) -0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) - -/////////////////////////////////////// -// Control Structures -/////////////////////////////////////// - -if (0) { -  printf("I am never run\n"); -} else if (0) { -  printf("I am also never run\n"); -} else { -  printf("I print\n"); -} - -// While loops exist -int ii = 0; -while (ii < 10) { -    printf("%d, ", ii++); // ii++ increments ii in-place, after using its value. -} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -printf("\n"); - -int kk = 0; -do { -    printf("%d, ", kk); -} while (++kk < 10); // ++kk increments kk in-place, before using its value -// => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -printf("\n"); - -// For loops too -int jj; -for (jj=0; jj < 10; jj++) { -    printf("%d, ", jj); -} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -printf("\n"); - -/////////////////////////////////////// -// Typecasting -/////////////////////////////////////// - -// Every value in C has a type, but you can cast one value into another type -// if you want. - -int x_hex = 0x01; // You can assign vars with hex literals - -// Casting between types will attempt to preserve their numeric values -printf("%d\n", x_hex); // => Prints 1 -printf("%d\n", (short) x_hex); // => Prints 1 -printf("%d\n", (char) x_hex); // => Prints 1 - -// Types will overflow without warning -printf("%d\n", (char) 257); // => 1 (Max char = 255) - -// Integral types can be cast to floating-point types, and vice-versa. -printf("%f\n", (float)100); // %f formats a float -printf("%lf\n", (double)100); // %lf formats a double -printf("%d\n", (char)100.0); - -/////////////////////////////////////// -// Pointers -/////////////////////////////////////// - -// A pointer is a variable declared to store a memory address. Its declaration will -// also tell you the type of data it points to. You can retrieve the memory address  -// of your variables, then mess with them. - -int x = 0; -printf("%p\n", &x); // Use & to retrieve the address of a variable -// (%p formats a pointer) -// => Prints some address in memory; - - -// Pointers start with * in their declaration -int *px, not_a_pointer; // px is a pointer to an int -px = &x; // Stores the address of x in px -printf("%p\n", px); // => Prints some address in memory -printf("%d, %d\n", (int)sizeof(px), (int)sizeof(not_a_pointer)); -// => Prints "8, 4" on 64-bit system - -// To retreive the value at the address a pointer is pointing to, -// put * in front to de-reference it. -printf("%d\n", *px); // => Prints 0, the value of x, which is what px is pointing to the address of - -// You can also change the value the pointer is pointing to. -// We'll have to wrap the de-reference in parenthesis because -// ++ has a higher precedence than *. -(*px)++; // Increment the value px is pointing to by 1 -printf("%d\n", *px); // => Prints 1 -printf("%d\n", x); // => Prints 1 - -int x_array[20]; // Arrays are a good way to allocate a contiguous block of memory -int xx; -for (xx=0; xx<20; xx++) { -    x_array[xx] = 20 - xx; -} // Initialize x_array to 20, 19, 18,... 2, 1 - -// Declare a pointer of type int and initialize it to point to x_array -int* x_ptr = x_array; -// x_ptr now points to the first element in the array (the integer 20).  -// This works because arrays are actually just pointers to their first element. - -// Arrays are pointers to their first element -printf("%d\n", *(x_ptr)); // => Prints 20 -printf("%d\n", x_array[0]); // => Prints 20 - -// Pointers are incremented and decremented based on their type -printf("%d\n", *(x_ptr + 1)); // => Prints 19 -printf("%d\n", x_array[1]); // => Prints 19 - -// You can also dynamically allocate contiguous blocks of memory with the -// standard library function malloc, which takes one integer argument  -// representing the number of bytes to allocate from the heap. -int* my_ptr = (int*) malloc(sizeof(int) * 20); -for (xx=0; xx<20; xx++) { -    *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx would also work here -} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) - -// Dereferencing memory that you haven't allocated gives -// unpredictable results -printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? - -// When you're done with a malloc'd block of memory, you need to free it,  -// or else no one else can use it until your program terminates -free(my_ptr); - -// Strings can be char arrays, but are usually represented as char -// pointers: -char* my_str = "This is my very own string"; - -printf("%c\n", *my_str); // => 'T' - -function_1(); +    // print output using printf, for "print formatted" +    // %d is an integer, \n is a newline +    printf("%d\n", 0); // => Prints 0 +    // All statements must end with a semicolon +     +    /////////////////////////////////////// +    // Types +    /////////////////////////////////////// +     +    // You have to declare variables before using them. A variable declaration +    // requires you to specify its type; a variable's type determines its size +    // in bytes. +     +    // ints are usually 4 bytes  +    int x_int = 0; +     +    // shorts are usually 2 bytes +    short x_short = 0; +     +    // chars are guaranteed to be 1 byte +    char x_char = 0; +    char y_char = 'y'; // Char literals are quoted with '' +     +    // longs are often 4 to 8 bytes; long longs are guaranteed to be at least +    // 64 bits +    long x_long = 0; +    long long x_long_long = 0;  +     +    // floats are usually 32-bit floating point numbers +    float x_float = 0.0; +     +    // doubles are usually 64-bit floating-point numbers +    double x_double = 0.0; +     +    // Integral types may be unsigned. This means they can't be negative, but +    // the maximum value of an unsigned variable is greater than the maximum +    // signed value of the same size. +    unsigned char ux_char; +    unsigned short ux_short; +    unsigned int ux_int; +    unsigned long long ux_long_long; +     +    // Other than char, which is always 1 byte (but not necessarily 8 bits!), +    // these types vary in size depending on your machine and compiler. +    // sizeof(T) gives you the size of a variable with type T in  +    // bytes so you can express the size of these types in a portable way. +    // sizeof(obj) yields the size of an actual expression (variable, literal, etc.). +    // For example, +    printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words) +     +     +    // It's worth noting that if the argument of the `sizeof` operator is not a type but an expression, +    // then its argument is not evaluated except VLAs (see below). Also, `sizeof()` is an operator, not a function, +    // furthermore, the value it yields is a compile-time constant (except when used on VLAs, again.) +    int a = 1; +    size_t size = sizeof(a++); // a++ is not evaluated +    printf("sizeof(a++) = %zu where a = %d\n", size, a); +    // the above code prints "sizeof(a++) = 4 where a = 1" (on a usual 32-bit architecture) +     +    // Arrays must be initialized with a concrete size. +    char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes +    int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes +                          // (assuming 4-byte words) +     +     +    // You can initialize an array to 0 thusly: +    char my_array[20] = {0}; +     +    // Indexing an array is like other languages -- or, +    // rather, other languages are like C +    my_array[0]; // => 0 +     +    // Arrays are mutable; it's just memory! +    my_array[1] = 2; +    printf("%d\n", my_array[1]); // => 2 +     +    // In C99 (and as an optional feature in C11), variable-length arrays (VLAs) can be declared as well. +    // The size of such an array need not be a compile time constant: +    printf("Enter the array size: "); // ask the user for an array size +    char buf[0x100]; +    fgets(buf, sizeof buf, stdin); +    size_t size = strtoul(buf, NULL, 10); // strtoul parses a string to an unsigned integer +    int var_length_array[size]; // declare the VLA +    printf("sizeof array = %zu\n", sizeof var_length_array); +     +    // A possible outcome of this program may be: +    Enter the array size: 10 +    sizeof array = 40 +     +    // Strings are just arrays of chars terminated by a NUL (0x00) byte, +    // represented in strings as the special character '\0'. +    // (We don't have to include the NUL byte in string literals; the compiler +    //  inserts it at the end of the array for us.) +    char a_string[20] = "This is a string"; +    printf("%s\n", a_string); // %s formats a string +     +    /* +     You may have noticed that a_string is only 16 chars long. +     Char #17 is the NUL byte.  +     Chars #18, 19 and 20 are 0 as well - if an initializer list (in this case, the string literal) +     has less elements than the array it is initializing, then excess array elements are implicitly +     initialized to zero. This is why int ar[10] = { 0 } works as expected intuitively. +    */ +     +    printf("%d\n", a_string[16]); // => 0 +     +    // So string literals are strings enclosed within double quotes, but if we have characters +    // between single quotes, that's a character literal. +    // It's of type `int`, and *not* `char` (for historical reasons). +    int cha = 'a'; // fine +    char chb = 'a'; // fine too (implicit conversion from int to char - truncation) +     +    /////////////////////////////////////// +    // Operators +    /////////////////////////////////////// +     +    int i1 = 1, i2 = 2; // Shorthand for multiple declaration +    float f1 = 1.0, f2 = 2.0; +     +    // Arithmetic is straightforward +    i1 + i2; // => 3 +    i2 - i1; // => 1 +    i2 * i1; // => 2 +    i1 / i2; // => 0 (0.5, but truncated towards 0) +     +    f1 / f2; // => 0.5, plus or minus epsilon - floating-point numbers and calculations are not exact +     +    // Modulo is there as well +    11 % 3; // => 2 +     +    // Comparison operators are probably familiar, but +    // there is no boolean type in c. We use ints instead. +    // (Or _Bool or bool in C99.) +    // 0 is false, anything else is true. (The comparison  +    // operators always yield 0 or 1.) +    3 == 2; // => 0 (false) +    3 != 2; // => 1 (true) +    3 > 2; // => 1 +    3 < 2; // => 0 +    2 <= 2; // => 1 +    2 >= 2; // => 1 +     +    // C is not Python - comparisons don't chain. +    int a = 1; +    // WRONG: +    int between_0_and_2 = 0 < a < 2; +    // Correct: +    int between_0_and_2 = 0 < a && a < 2; +     +    // Logic works on ints +    !3; // => 0 (Logical not) +    !0; // => 1 +    1 && 1; // => 1 (Logical and) +    0 && 1; // => 0 +    0 || 1; // => 1 (Logical or) +    0 || 0; // => 0 +     +    // Bitwise operators! +    ~0x0F; // => 0xF0 (bitwise negation, "1's complement") +    0x0F & 0xF0; // => 0x00 (bitwise AND) +    0x0F | 0xF0; // => 0xFF (bitwise OR) +    0x04 ^ 0x0F; // => 0x0B (bitwise XOR) +    0x01 << 1; // => 0x02 (bitwise left shift (by 1)) +    0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) +     +    // Be careful when shifting signed integers - the following are all undefined behavior: +    // - shifting into the sign bit of a signed integer (int a = 1 << 32) +    // - left-shifting a negative number (int a = -1 << 2) +    // - shifting by an offset which is more than or equal to the width of the type of the LHS: +    //   int a = 1 << 32; // UB if int is 32 bits wide +     +    /////////////////////////////////////// +    // Control Structures +    /////////////////////////////////////// +     +    if (0) { +      printf("I am never run\n"); +    } else if (0) { +      printf("I am also never run\n"); +    } else { +      printf("I print\n"); +    } +     +    // While loops exist +    int ii = 0; +    while (ii < 10) { +        printf("%d, ", ii++); // ii++ increments ii in-place, after yielding its value ("postincrement"). +    } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " +     +    printf("\n"); +     +    int kk = 0; +    do { +        printf("%d, ", kk); +    } while (++kk < 10); // ++kk increments kk in-place, and yields the already incremented value ("preincrement") +    // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " +     +    printf("\n"); +     +    // For loops too +    int jj; +    for (jj=0; jj < 10; jj++) { +        printf("%d, ", jj); +    } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " +     +    printf("\n"); +     +    // branching with multiple choices: switch() +    switch (some_integral_expression) { +    case 0: // labels need to be integral *constant* epxressions +        do_stuff(); +        break; // if you don't break, control flow falls over labels - you usually don't want that. +    case 1: +        do_something_else(); +        break; +    default: +        // if `some_integral_expression` didn't match any of the labels +        fputs("error!\n", stderr); +        exit(-1); +        break; +    } +         +     +    /////////////////////////////////////// +    // Typecasting +    /////////////////////////////////////// +     +    // Every value in C has a type, but you can cast one value into another type +    // if you want (with some constraints). +     +    int x_hex = 0x01; // You can assign vars with hex literals +     +    // Casting between types will attempt to preserve their numeric values +    printf("%d\n", x_hex); // => Prints 1 +    printf("%d\n", (short) x_hex); // => Prints 1 +    printf("%d\n", (char) x_hex); // => Prints 1 +     +    // Types will overflow without warning +    printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long) +    // printf("%d\n", (unsigned char) 257); would be undefined behavior - `char' is usually signed +    // on most modern systems, and signed integer overflow invokes UB. +    // Also, for determining the maximal value of a `char`, a `signed char` and an `unisigned char`, +    // respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h> +     +    // Integral types can be cast to floating-point types, and vice-versa. +    printf("%f\n", (float)100); // %f formats a float +    printf("%lf\n", (double)100); // %lf formats a double +    printf("%d\n", (char)100.0); +     +    /////////////////////////////////////// +    // Pointers +    /////////////////////////////////////// +     +    // A pointer is a variable declared to store a memory address. Its declaration will +    // also tell you the type of data it points to. You can retrieve the memory address  +    // of your variables, then mess with them. +     +    int x = 0; +    printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable +    // (%p formats an object pointer of type void *) +    // => Prints some address in memory; +     +     +    // Pointers start with * in their declaration +    int *px, not_a_pointer; // px is a pointer to an int +    px = &x; // Stores the address of x in px +    printf("%p\n", (void *)px); // => Prints some address in memory +    printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer)); +    // => Prints "8, 4" on a typical 64-bit system +     +    // To retreive the value at the address a pointer is pointing to, +    // put * in front to de-reference it. +    // Note: yes, it may be confusing that '*' is used for _both_ declaring a pointer and dereferencing it. +    printf("%d\n", *px); // => Prints 0, the value of x, which is what px is pointing to the address of +     +    // You can also change the value the pointer is pointing to. +    // We'll have to wrap the de-reference in parenthesis because +    // ++ has a higher precedence than *. +    (*px)++; // Increment the value px is pointing to by 1 +    printf("%d\n", *px); // => Prints 1 +    printf("%d\n", x); // => Prints 1 +     +    int x_array[20]; // Arrays are a good way to allocate a contiguous block of memory +    int xx; +    for (xx = 0; xx < 20; xx++) { +        x_array[xx] = 20 - xx; +    } // Initialize x_array to 20, 19, 18,... 2, 1 +     +    // Declare a pointer of type int and initialize it to point to x_array +    int* x_ptr = x_array; +    // x_ptr now points to the first element in the array (the integer 20).  +    // This works because arrays often decay into pointers to their first element. +    // For example, when an array is passed to a function or is assigned to a pointer, +    // it decays into (implicitly converted to) a pointer. +    // Exceptions: when the array is the argument of the `&` (address-od) operator: +    int arr[10]; +    int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`! It's of type "pointer to array" (of ten `int`s). +    // or when the array is a string literal used for initializing a char array: +    char arr[] = "foobarbazquirk"; +    // or when it's the argument of the `sizeof` or `alignof` operator: +    int arr[10]; +    int *ptr = arr; // equivalent with int *ptr = &arr[0]; +    printf("%zu %zu\n", sizeof arr, sizeof ptr); // probably prints "40, 4" or "40, 8" +     + +    // Pointers are incremented and decremented based on their type +    // (this is called pointer arithmetic) +    printf("%d\n", *(x_ptr + 1)); // => Prints 19 +    printf("%d\n", x_array[1]); // => Prints 19 +     +    // You can also dynamically allocate contiguous blocks of memory with the +    // standard library function malloc, which takes one argument of type size_t +    // representing the number of bytes to allocate (usually from the heap, although this +    // may not be true on e. g. embedded systems - the C standard says nothing about it). +    int *my_ptr = malloc(sizeof(*my_ptr) * 20); +    for (xx = 0; xx < 20; xx++) { +        *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx would also work here, and it's also more readable +    } // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) +     +    // Dereferencing memory that you haven't allocated gives +    // "unpredictable results" - the program is said to invoke "undefined behavior" +    printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash. +     +    // When you're done with a malloc'd block of memory, you need to free it,  +    // or else no one else can use it until your program terminates +    // (this is called a "memory leak"): +    free(my_ptr); +     +    // Strings are arrays of char, but they are usually represented as a +    // pointer-to-char (which is a pointer to the first element of the array). +    // It's good practice to use `const char *' when referring to a string literal, +    // since string literals shall not be modified (i. e. "foo"[0] = 'a' is ILLEGAL.) +    const char *my_str = "This is my very own string literal"; +    printf("%c\n", *my_str); // => 'T' +     +    // This is not the case if the string is an array (potentially initialized with a string literal) +    // that resides in writable memory, as in: +    char foo[] = "foo"; +    foo[0] = 'a'; // this is legal, foo now contains "aoo" +     +    function_1();  } // end main function  /////////////////////////////////////// @@ -300,7 +396,8 @@ function_1();  // Function declaration syntax:  // <return type> <function name>(<args>) -int add_two_ints(int x1, int x2){ +int add_two_ints(int x1, int x2) +{      return x1 + x2; // Use return to return a value  } @@ -312,10 +409,12 @@ Example: in-place string reversal  */  // A void function returns no value -void str_reverse(char* str_in){ +void str_reverse(char *str_in) +{      char tmp; -    int ii=0, len = strlen(str_in); // Strlen is part of the c standard library -    for(ii=0; ii<len/2; ii++){ +    int ii = 0; +    size_t len = strlen(str_in); // `strlen()` is part of the c standard library +    for (ii = 0; ii < len / 2; ii++) {          tmp = str_in[ii];          str_in[ii] = str_in[len - ii - 1]; // ii-th char from end          str_in[len - ii - 1] = tmp; @@ -336,15 +435,20 @@ printf("%s\n", c); // => ".tset a si sihT"  typedef int my_type;  my_type my_type_var = 0; -// Structs are just collections of data +// Structs are just collections of data, the members are allocated sequentially, in the order they are written:  struct rectangle {      int width;      int height;  }; +// it's generally not true that sizeof(struct rectangle) == sizeof(int) + sizeof(int) due to +// potential padding between the structure members (this is for alignment reasons. Probably won't +// happen if all members are of the same type, but watch out! +// See http://stackoverflow.com/questions/119123/why-isnt-sizeof-for-a-struct-equal-to-the-sum-of-sizeof-of-each-member +// for further information. -void function_1(){ - +void function_1() +{      struct rectangle my_rec;      // Access struct members with . @@ -352,22 +456,29 @@ void function_1(){      my_rec.height = 20;      // You can declare pointers to structs -    struct rectangle* my_rec_ptr = &my_rec; +    struct rectangle *my_rec_ptr = &my_rec;      // Use dereferencing to set struct pointer members...      (*my_rec_ptr).width = 30; -    // ... or use the -> shorthand +    // ... or even better: prefer the -> shorthand for the sake of readability      my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10;  }  // You can apply a typedef to a struct for convenience  typedef struct rectangle rect; -int area(rect r){ +int area(rect r) +{      return r.width * r.height;  } +// if you have large structs, you can pass them "by pointer" to avoid copying the whole struct: +int area(const rect *r) +{ +    return r->width * r->height; +} +  ///////////////////////////////////////  // Function pointers   /////////////////////////////////////// @@ -379,10 +490,11 @@ However, definition syntax may be initially confusing.  Example: use str_reverse from a pointer  */ -void str_reverse_through_pointer(char * str_in) { +void str_reverse_through_pointer(char *str_in) {      // Define a function pointer variable, named f.       void (*f)(char *); // Signature should exactly match the target function.      f = &str_reverse; // Assign the address for the actual function (determined at runtime) +    // f = str_reverse; would work as well - functions decay into pointers, similar to arrays      (*f)(str_in); // Just calling the function through the pointer      // f(str_in); // That's an alternative but equally valid syntax for calling it.  } @@ -403,7 +515,15 @@ typedef void (*my_fnp_type)(char *);  ## Further Reading  Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language) +It is *the* book about C, written by the creators of C. Be careful, though - it's ancient and it contains some +inaccuracies (well, ideas that are not considered good anymore) or now-changed practices. + +Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/). + +If you have a question, read the [compl.lang.c Frequently Asked Questions](http://c-faq.com). -Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/) +It's very important to use proper spacing, indentation and to be consistent with your coding style in general. +Readable code is better than clever code and fast code. For a good, sane coding style to adopt, see the +[Linux kernel coding stlye](https://www.kernel.org/doc/Documentation/CodingStyle).  Other than that, Google is your friend. diff --git a/es-es/c-es.html.markdown b/es-es/c-es.html.markdown index b109f761..5d3aae0c 100644 --- a/es-es/c-es.html.markdown +++ b/es-es/c-es.html.markdown @@ -284,7 +284,7 @@ for (xx=0; xx<20; xx++) {  // impredecibles  printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? -// Cuando hallas acabado con el bloque de memoría malloc, necesitas  +// Cuando hayas acabado con el bloque de memoría malloc, necesitas   // liberarlo o sino nadie más podrá usarlo hasta que tu programa se cierre  free(my_ptr); diff --git a/fr-fr/ruby-fr.html.markdown b/fr-fr/ruby-fr.html.markdown new file mode 100644 index 00000000..5efb2f3c --- /dev/null +++ b/fr-fr/ruby-fr.html.markdown @@ -0,0 +1,407 @@ +--- +language: ruby +filename: learnruby-fr.rb +contributors: +  - ["David Underwood", "http://theflyingdeveloper.com"] +  - ["Joel Walden", "http://joelwalden.net"] +  - ["Luke Holder", "http://twitter.com/lukeholder"] +  - ["Tristan Hume", "http://thume.ca/"] +  - ["Nick LaMuro", "https://github.com/NickLaMuro"] +translators: +  - ["Geoffrey Roguelon", "https://github.com/GRoguelon"] +  - ["Nami-Doc", "https://github.com/Nami-Doc"] +lang: fr-fr +--- + +```ruby +# Ceci est un commentaire + +=begin +Ceci est un commentaire multiligne +Personne ne les utilise +Vous devriez en faire de même +=end + +# Tout d'abord : Tout est un objet. + +# Les nombres sont des objets + +3.class #=> Fixnum + +3.to_s #=> "3" + +# Les opérateurs de base +1 + 1 #=> 2 +8 - 1 #=> 7 +10 * 2 #=> 20 +35 / 5 #=> 7 + +# Les opérateurs sont juste des raccourcis +# pour appeler une méthode sur un objet +1.+(3) #=> 4 +10.* 5 #=> 50 + +# Les valeurs spéciales sont des objets +nil # Nul +true # Vrai +false # Faux + +nil.class #=> NilClass +true.class #=> TrueClass +false.class #=> FalseClass + +# Égalité +1 == 1 #=> true +2 == 1 #=> false + +# Inégalité +1 != 1 #=> false +2 != 1 #=> true +!true  #=> false +!false #=> true + +# à part false lui-même, nil est la seule autre valeur 'false' + +!nil   #=> true +!false #=> true +!0     #=> false + +# Plus de comparaisons +1 < 10 #=> true +1 > 10 #=> false +2 <= 2 #=> true +2 >= 2 #=> true + +# Les chaînes de caractères sont des objets + +'Je suis une chaîne de caractères'.class #=> String +"Je suis également une chaîne de caractères".class #=> String + +placeholder = "utiliser l'interpolation de chaîne de caractères" +"Je peux #{placeholder} quand j'utilise les guillemets" +#=> "Je peux utiliser l'interpolation de chaîne de caractères quand j'utilise les guillemets" + +# Affichez un message +puts "J'affiche à l'écran!" + +# Variables +x = 25 #=> 25 +x #=> 25 + +# Notez que l'affectation retourne la valeur affectée. +# Cela signifie que vous pouvez affecter plusieurs fois de suite : + +x = y = 10 #=> 10 +x #=> 10 +y #=> 10 + +# Par convention, utilisez la notation underscore +# pour nommer les variables +snake_case = true + +# Utilisez des noms de variable explicites +path_to_project_root = '/nom/correct/' +path = '/mauvais/nom/' + +# Symboles (aussi des objets) +# Les symboles sont immuables, constants, +# réutilisables et représentés en interne +# par une valeur entière. Ils sont souvent +# utilisés à la place des chaînes de caractères +# pour transmettre efficacement des valeurs +# spécifiques ou significatives + +:pending.class #=> Symbol + +status = :pending + +status == :pending #=> true + +status == 'pending' #=> false + +status == :approved #=> false + +# Tableaux + +# Ceci est un tableau +array = [1, 2, 3, 4, 5] #=> [1, 2, 3, 4, 5] + +# Les tableaux contiennent différents types d'élément. + +[1, "hello", false] #=> [1, "hello", false] + +# Les tableaux peuvent être indexés +# Du début +array[0] #=> 1 +array[12] #=> nil + +# Comme les opérateurs, la syntaxe [var] est juste un raccourci +# pour appeler la méthode [] d'un objet +array.[] 0 #=> 1 +array.[] 12 #=> nil + +# Depuis la fin +array[-1] #=> 5 + +# Avec un index de début et de fin +array[2, 4] #=> [3, 4, 5] + +# Ou avec un intervalle +array[1..3] #=> [2, 3, 4] + +# Ajoutez un élément au tableau comme ceci +array << 6 #=> [1, 2, 3, 4, 5, 6] + +# Les Hash sont des dictionnaires Ruby contenant des paires de clé/valeur. +# Les Hash sont délimitées par des accolades : +hash = {'color' => 'green', 'number' => 5} + +hash.keys #=> ['color', 'number'] + +# Les Hash retournent la valeur +# en utilisant la clé associée à la valeur : +hash['color'] #=> 'green' +hash['number'] #=> 5 + +# Recherchez une clé inexistante dans une Hash retourne nil : +hash['nothing here'] #=> nil + +# Depuis Ruby 1.9, Une syntaxe spécifique est apparue en utilisant les symboles comme clés : + +new_hash = { defcon: 3, action: true} + +new_hash.keys #=> [:defcon, :action] + +# Astuce : Les tableaux et les Hash sont dénombrables +# Ils partagent un certain nombre de méthodes pratiques +# telle que each, map, count, etc... + +# Structures de contrôle + +if true +  "si instruction" +elsif false +  "autrement si, facultatif" +else +  "autrement, également facultatif" +end + +for compteur in 1..5 +  puts "itération #{compteur}" +end +#=> itération 1 +#=> itération 2 +#=> itération 3 +#=> itération 4 +#=> itération 5 + +# CEPENDANT, l'usage de la boucle for est très rare. +# À la place, utilisez la méthode "each" +# et passez lui un bloc de code. +# Un bloc de code est un ensemble d'instructions que vous pouvez passer à une methode comme "each". +# Les blocs sont similaires aux lambdas, les fonctions anonymes ou les closures dans d'autres langages. +# +# La méthode "each" exécute le bloc de code pour chaque élément de l'intervalle d'éléments. +# Le bloc de code passe un paramètre compteur. +# Appelez la méthode "each" avec un bloc de code comme ceci : + +(1..5).each do |compteur| +  puts "itération #{compteur}" +end +#=> itération 1 +#=> itération 2 +#=> itération 3 +#=> itération 4 +#=> itération 5 + +# Vous pouvez également mettre un bloc de code entre accolades : +(1..5).each {|compteur| puts "itération #{compteur}"} + +# Le contenu des structures de données peut être parcouru +# en utilisant la méthode each. +array.each do |element| +  puts "#{element} est une partie du tableau" +end +hash.each do |cle, valeur| +  puts "#{cle} est #{valeur}" +end + +compteur = 1 +while compteur <= 5 do +  puts "itération #{compteur}" +  compteur += 1 +end +#=> itération 1 +#=> itération 2 +#=> itération 3 +#=> itération 4 +#=> itération 5 + +grade = 'B' + +case grade +when 'A' +  puts "Excellent" +when 'B' +  puts "Plus de chance la prochaine fois" +when 'C' +  puts "Vous pouvez faire mieux" +when 'D' +  puts "C'est pas terrible" +when 'F' +  puts "Vous avez échoué!" +else +  puts "Sytème de notation alternatif" +end + +# Fonctions + +def double(x) +  x * 2 +end + +# Les fonctions (et tous les blocs de code) retournent +# implicitement la valeur de la dernière instruction évaluée +double(2) #=> 4 + +# Les paranthèses sont facultative +# lorsqu'il n'y a pas d'ambiguïté sur le résultat +double 3 #=> 6 + +double double 3 #=> 12 + +def sum(x,y) +  x + y +end + +# Les paramètres de méthode sont séparés par des virgules +sum 3, 4 #=> 7 + +sum sum(3,4), 5 #=> 12 + +# yield +# Toutes les méthodes ont un argument facultatif et implicite +# de type bloc de code +# il peut être appelé avec le mot clé 'yield' + +def surround +  puts "{" +  yield +  puts "}" +end + +surround { puts 'Bonjour tout le monde' } + +# { +# Bonjour tout le monde +# } + + +# Définissez une classe avec le mot clé 'class' +class Humain + +  # Une variable de classe +  # est partagée par toutes les instances de cette classe. +  @@espece = "H. sapiens" + +  # Constructeur de classe +  def initialize(nom, age = 0) +    # Affectez l'argument à la variable d'instance 'nom' +    # pour la durée de vie de l'instance de cette classe +    @nom = nom +    # Si le paramètre 'age' est absent, +    # la valeur par défaut définie dans la liste des arguments sera utilisée. +    @age = age +  end + +  # Une simple méthode setter +  def nom=(nom) +    @nom = nom +  end + +  # Une simple méthode getter +  def nom +    @nom +  end + +  # Une méthode de classe utilise le mot clé 'self' +  # pour se distinguer de la méthode d'instance. +  # La méthode sera alors accessible à partir de la classe +  # et non pas de l'instance. +  def self.say(msg) +    puts "#{msg}" +  end + +  def species +    @@species +  end + +end + + +# Instanciez une classe +jim = Humain.new("Jim Halpert") + +dwight = Humain.new("Dwight K. Schrute") + +# Appelez quelques méthodes +jim.espece #=> "H. sapiens" +jim.nom #=> "Jim Halpert" +jim.nom = "Jim Halpert II" #=> "Jim Halpert II" +jim.nom #=> "Jim Halpert II" +dwight.espece #=> "H. sapiens" +dwight.nom #=> "Dwight K. Schrute" + +# Appelez la méthode de classe +Humain.say("Hi") #=> "Hi" + +# Les classes sont également des objets en Ruby. +# Par conséquent, les classes peuvent avoir des variables d'instance. +# Les variables de classe sont partagées parmi +# la classe et ses descendants. + +# Classe parente +class Humain +  @@foo = 0 + +  def self.foo +    @@foo +  end + +  def self.foo=(valeur) +    @@foo = valeur +  end +end + +# Classe fille +class Travailleur < Humain +end + +Humain.foo # 0 +Travailleur.foo # 0 + +Humain.foo = 2 # 2 +Travailleur.foo # 2 + +# Les variables d'instance de classe ne sont pas partagées +# avec les classes héritées. + +class Humain +  @bar = 0 + +  def self.bar +    @bar +  end + +  def self.bar=(valeur) +    @bar = valeur +  end +end + +class Docteur < Humain +end + +Humain.bar # 0 +Docteur.bar # nil + +``` diff --git a/objective-c.html.markdown b/objective-c.html.markdown index 2b1b3c67..b92e3218 100644 --- a/objective-c.html.markdown +++ b/objective-c.html.markdown @@ -160,7 +160,7 @@ int main (int argc, const char * argv[])      int jj;      for (jj=0; jj < 4; jj++)      { -        NSLog(@"%d,", ii++); +        NSLog(@"%d,", jj++);      } // => prints "0,"         //           "1,"        //           "2," @@ -256,7 +256,7 @@ int main (int argc, const char * argv[])  }  // Constructors are a way of creating classes -// This is a default constructor which is call when the object is creating +// This is a default constructor which is called when the object is creating  - (id)init  {      if ((self = [super init])) diff --git a/ruby.html.markdown b/ruby.html.markdown index 19f2ec86..3a233d98 100644 --- a/ruby.html.markdown +++ b/ruby.html.markdown @@ -36,7 +36,7 @@ You shouldn't either  # Arithmetic is just syntactic sugar  # for calling a method on an object  1.+(3) #=> 4 -10.* 5 #=> 50  +10.* 5 #=> 50  # Special values are objects  nil # Nothing to see here @@ -242,7 +242,7 @@ when 'D'    puts "Scraping through"  when 'F'    puts "You failed!" -else  +else    puts "Alternative grading system, eh?"  end @@ -252,7 +252,7 @@ def double(x)    x * 2  end -# Functions (and all blocks) implcitly return the value of the last statement +# Functions (and all blocks) implicitly return the value of the last statement  double(2) #=> 4  # Parentheses are optional where the result is unambiguous diff --git a/zh-cn/go-zh.html.markdown b/zh-cn/go-zh.html.markdown new file mode 100644 index 00000000..25fd1f03 --- /dev/null +++ b/zh-cn/go-zh.html.markdown @@ -0,0 +1,279 @@ +--- +名字:Go +分类:编程语言 +文件名:learngo.go +贡献者: +    - ["Sonia Keys", "https://github.com/soniakeys"] +    - ["pantaovay", "https://github.com/pantaovay"] +--- + +发明Go语言是出于更好地完成工作的需要。Go不是计算机科学的最新发展潮流,但它却提供了解决现实问题的最新最快的方法。 + +Go拥有命令式语言的静态类型,编译很快,执行也很快,同时加入了对于目前多核CPU的并发计算支持,也有相应的特性来实现大规模编程。 + +Go语言有非常棒的标准库,还有一个充满热情的社区。 + +```Go +// 单行注释 +/* 多行 +    注释 */ + +// 导入包的子句在每个源文件的开头。 +// Main比较特殊,它用来声明可执行文件,而不是一个库。 +package main + +// Import语句声明了当前文件引用的包。 +import ( +    "fmt"       // Go语言标准库中的包 +    "net/http"  // 一个web服务器包 +    "strconv"   // 字符串转换 +) + +//函数声明:Main是程序执行的入口。不管你喜欢还是不喜欢,反正G就用了花括号来包住函数体。 +func main() { +    // 往标准输出打印一行。 +    // 用包名fmt限制打印函数。 +    fmt.Println("Hello world!") + +    // 调用当前包的另一个函数。 +    beyondHello() +} + +// 函数可以在括号里加参数。 +// 如果没有参数的话,也需要一个空括号。 +func beyondHello() { +    var x int   // 变量声明,变量必须在使用之前声明。 +    x = 3       // 变量赋值。 +    // 可以用:=来偷懒,它自动把变量类型、声明和赋值都搞定了。 +    y := 4 +    sum, prod := learnMultiple(x, y)        // 多个返回变量的函数 +    fmt.Println("sum:", sum, "prod:", prod) // 简单输出 +    learnTypes()                            // 少于y分钟,学的更多! +} + +// 多变量和多返回值的函数 +func learnMultiple(x, y int) (sum, prod int) { +    return x + y, x * y // 返回两个值 +} + +// 内置变量类型和关键词 +func learnTypes() { +    // 短声明给你所想。 +    s := "Learn Go!" // String类型 + +    s2 := `A "raw" string literal +can include line breaks.` // 同样是String类型 +     +    // 非ascii字符。Go使用UTF-8编码。 +	g := 'Σ' // rune类型,uint32的别名,使用UTF-8编码 + +	f := 3.14195 // float64类型,IEEE-754 64位浮点数 +	c := 3 + 4i  // complex128类型,内部使用两个float64表示 + +    // Var变量可以直接初始化。 +    var u uint = 7  // unsigned 无符号变量,但是实现依赖int型变量的长度 +    var pi float32 = 22. / 7 + +    // 字符转换 +    n := byte('\n') // byte是uint8的别名 + +    // 数组类型编译的时候大小固定。 +    var a4 [4] int              // 有4个int变量的数组,初始为0 +    a3 := [...]int{3, 1, 5}     // 有3个int变量的数组,同时进行了初始化 + +    // Slice 有动态大小。Array和Slice各有千秋,但是使用slice的地方更多些。 +    s3 := []int{4, 5, 9}        // 和a3相比,这里没有省略号 +    s4 := make([]int, 4)        // 分配一个有4个int型变量的slice,全部被初始化为0 + +    var d2 [][]float64          // 声明而已,什么都没有分配 +    bs := []byte("a slice")     // 类型转换的语法 + +    p, q := learnMemory()       // 声明p,q为int型变量的指针 +    fmt.Println(*p, *q)         // * 取值 + +    // Map是动态可增长关联数组,和其他语言中的hash或者字典相似。 +    m := map[string]int{"three": 3, "four": 4} +    m["one"] = 1 + +    // 在Go语言中未使用的变量在编译的时候会报错,而不是warning。 +    // 下划线 _ 可以使你“使用”一个变量,但是丢弃它的值。 +    _,_,_,_,_,_,_,_,_ = s2, g, f, u, pi, n, a3, s4, bs +    // 输出变量 +	fmt.Println(s, c, a4, s3, d2, m) + +	learnFlowControl() // 回到流程控制  +} + +// Go全面支持垃圾回收。Go有指针,但是不支持指针运算。 +// 你会因为空指针而犯错,但是不会因为增加指针而犯错。 +func learnMemory() (p, q *int) { +    // 返回int型变量指针p和q +    p = new(int)    // 内置函数new分配内存 +    // 自动将分配的int赋值0,p不再是空的了。 +    s := make([]int, 20)    // 给20个int变量分配一块内存 +    s[3] = 7                // 赋值 +    r := -2                 // 声明另一个局部变量 +    return &s[3], &r        // & 取址 +} + +func expensiveComputation() int { +	return 1e6 +} + +func learnFlowControl() { +    // If需要花括号,括号就免了 +	if true { +		fmt.Println("told ya") +	} +    // 用go fmt 命令可以帮你格式化代码,所以不用怕被人吐槽代码风格了,也不用容忍被人的代码风格。 +	if false { +		// pout +	} else { +		// gloat +	} +    // 如果太多嵌套的if语句,推荐使用switch +	x := 1 +	switch x { +	case 0: +	case 1: +        // 隐式调用break语句,匹配上一个即停止 +	case 2: +        // 不会运行 +	} +    // 和if一样,for也不用括号 +	for x := 0; x < 3; x++ { // ++ 自增 +		fmt.Println("iteration", x) +	} +    // x在这里还是1。为什么? + +    // for 是go里唯一的循环关键字,不过它有很多变种 +	for { // 无限循环 +		break    // 骗你的  +		continue // 不会运行的 +	} +    // 和for一样,if中的:=先给y赋值,然后再和x作比较。 +	if y := expensiveComputation(); y > x { +		x = y +	} +    // 闭包函数 +	xBig := func() bool { +		return x > 100 // x是上面声明的变量引用 +	} +	fmt.Println("xBig:", xBig()) // true (上面把y赋给x了)  +	x /= 1e5                     // x变成10 +	fmt.Println("xBig:", xBig()) // 现在是false + +    // 当你需要goto的时候,你会爱死它的! +	goto love +love: + +	learnInterfaces() // 好东西来了! +} + +// 定义Stringer为一个接口类型,有一个方法String +type Stringer interface { +	String() string +} + +// 定义pair为一个结构体,有x和y两个int型变量。 +type pair struct { +	x, y int +} + +// 定义pair类型的方法,实现Stringer接口。 +func (p pair) String() string { // p被叫做“接收器” +    // Sprintf是fmt包中的另一个公有函数。 +    // 用 . 调用p中的元素。 +	return fmt.Sprintf("(%d, %d)", p.x, p.y) +} + +func learnInterfaces() { +    // 花括号用来定义结构体变量,:=在这里将一个结构体变量赋值给p。 +	p := pair{3, 4} +	fmt.Println(p.String()) // 调用pair类型p的String方法  +	var i Stringer          // 声明i为Stringer接口类型  +	i = p                   // 有效!因为p实现了Stringer接口(类似java中的塑型)  +    // 调用i的String方法,输出和上面一样 +	fmt.Println(i.String()) + +    // fmt包中的Println函数向对象要它们的string输出,实现了String方法就可以这样使用了。(类似java中的序列化) +	fmt.Println(p) // 输出和上面一样,自动调用String函数。 +	fmt.Println(i) // 输出和上面一样。 + +	learnErrorHandling() +} + +func learnErrorHandling() { +	// ", ok"用来判断有没有正常工作  +	m := map[int]string{3: "three", 4: "four"} +	if x, ok := m[1]; !ok { // ok 为false,因为m中没有1 +		fmt.Println("no one there") +	} else { +		fmt.Print(x) // 如果x在map中的话,x就是那个值喽。 +	} +    // 错误可不只是ok,它还可以给出关于问题的更多细节。 +	if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value +		// 输出"strconv.ParseInt: parsing "non-int": invalid syntax" +		fmt.Println(err) +	} +    // 待会再说接口吧。同时, +	learnConcurrency() +} + +// c是channel类型,一个并发安全的通信对象。 +func inc(i int, c chan int) { +	c <- i + 1 // <-把右边的发送到左边的channel。 +} + +// 我们将用inc函数来并发地增加一些数字。 +func learnConcurrency() { +    // 用make来声明一个slice,make会分配和初始化slice,map和channel。 +	c := make(chan int) +    // 用go关键字开始三个并发的goroutine,如果机器支持的话,还可能是并行执行。三个都被发送到同一个channel。 +	go inc(0, c) // go is a statement that starts a new goroutine. +	go inc(10, c) +	go inc(-805, c) +    // 从channel中独处结果并打印。 +    // 打印出什么东西是不可预知的。 +	fmt.Println(<-c, <-c, <-c) // channel在右边的时候,<-是接收操作。 + +	cs := make(chan string)       // 操作string的channel +	cc := make(chan chan string)  // 操作channel的channel +	go func() { c <- 84 }()       // 开始一个goroutine来发送一个新的数字  +	go func() { cs <- "wordy" }() // 发送给cs +    // Select类似于switch,但是每个case包括一个channel操作。它随机选择一个准备好通讯的case。 +	select { +	case i := <-c: // 从channel接收的值可以赋给其他变量 +		fmt.Println("it's a", i) +	case <-cs: // 或者直接丢弃 +		fmt.Println("it's a string") +	case <-cc: // 空的,还没作好通讯的准备  +		fmt.Println("didn't happen.") +	} +    // 上面c或者cs的值被取到,其中一个goroutine结束,另外一个保持阻塞。 + +	learnWebProgramming() // Go很适合web编程,我知道你也想学! +} + +// http包中的一个简单的函数就可以开启web服务器。 +func learnWebProgramming() { +    // ListenAndServe第一个参数指定了监听端口,第二个参数是一个接口,特定是http.Handler。 +	err := http.ListenAndServe(":8080", pair{}) +	fmt.Println(err) // 不要无视错误。 +} + +// 使pair实现http.Handler接口的ServeHTTP方法。 +func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) { +    // 使用http.ResponseWriter返回数据 +	w.Write([]byte("You learned Go in Y minutes!")) +} +``` + +## 更进一步 + +Go的根源在[Go官方网站](http://golang.org/)。 +在那里你可以学习入门教程,通过浏览器交互式地学习,而且可以读到很多东西。 + +强烈推荐阅读语言定义部分,很简单而且很简洁!(as language definitions go these days.) + +学习Go还要阅读Go标准库的源代码,全部文档化了,可读性非常好,可以学到go,go style和go idioms。在文档中点击函数名,源代码就出来了! | 
