summaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--c++.html.markdown82
-rw-r--r--c.html.markdown30
-rw-r--r--cs-cz/python3.html.markdown636
-rw-r--r--css.html.markdown12
-rw-r--r--d.html.markdown247
-rw-r--r--de-de/json-de.html.markdown65
-rw-r--r--de-de/yaml-de.html.markdown5
-rw-r--r--el-gr/racket-gr.html.markdown33
-rw-r--r--es-es/go-es.html.markdown618
-rw-r--r--es-es/javascript-es.html.markdown9
-rw-r--r--es-es/julia-es.html.markdown1268
-rw-r--r--es-es/python-es.html.markdown120
-rw-r--r--fr-fr/livescript-fr.html.markdown360
-rw-r--r--fr-fr/lua-fr.html.markdown8
-rw-r--r--fr-fr/markdown.html.markdown2
-rw-r--r--git.html.markdown2
-rw-r--r--id-id/json-id.html.markdown60
-rw-r--r--id-id/xml-id.html.markdown129
-rw-r--r--it-it/coffeescript-it.html.markdown107
-rw-r--r--it-it/elixir-it.html.markdown418
-rw-r--r--javascript.html.markdown3
-rw-r--r--make.html.markdown243
-rw-r--r--markdown.html.markdown6
-rw-r--r--no-nb/bash-no.html.markdown270
-rw-r--r--objective-c.html.markdown2
-rw-r--r--perl6.html.markdown2
-rw-r--r--php.html.markdown4
-rw-r--r--pl-pl/brainfuck-pl.html.markdown93
-rw-r--r--pt-br/c++-pt.html.markdown2
-rw-r--r--pt-br/perl-pt.html.markdown166
-rw-r--r--pt-br/xml-pt.html.markdown6
-rw-r--r--python.html.markdown8
-rw-r--r--python3.html.markdown7
-rw-r--r--red.html.markdown4
-rw-r--r--ro-ro/clojure-ro.html.markdown386
-rw-r--r--ru-ru/brainfuck-ru.html.markdown2
-rw-r--r--ru-ru/objective-c-ru.html.markdown654
-rw-r--r--ruby-ecosystem.html.markdown2
-rw-r--r--ruby.html.markdown2
-rw-r--r--rust.html.markdown2
-rw-r--r--[-rwxr-xr-x]tcl.html.markdown15
-rw-r--r--tr-tr/swift-tr.html.markdown591
-rw-r--r--xml.html.markdown5
-rw-r--r--zh-cn/bash-cn.html.markdown2
-rw-r--r--zh-cn/go-cn.html.markdown4
-rw-r--r--zh-cn/java-cn.html.markdown2
-rw-r--r--zh-cn/javascript-cn.html.markdown2
-rw-r--r--zh-cn/markdown-cn.html.markdown2
-rw-r--r--zh-cn/ruby-cn.html.markdown9
49 files changed, 5733 insertions, 974 deletions
diff --git a/c++.html.markdown b/c++.html.markdown
index ff2a98fd..8a7f5a59 100644
--- a/c++.html.markdown
+++ b/c++.html.markdown
@@ -4,6 +4,7 @@ filename: learncpp.cpp
contributors:
- ["Steven Basart", "http://github.com/xksteven"]
- ["Matt Kline", "https://github.com/mrkline"]
+ - ["Geoff Liu", "http://geoffliu.me"]
lang: en
---
@@ -158,11 +159,12 @@ void foo()
int main()
{
- // Assume everything is from the namespace "Second"
- // unless otherwise specified.
+ // Includes all symbols from `namesapce Second` into the current scope. Note
+ // that simply `foo()` no longer works, since it is now ambiguous whether
+ // we're calling the `foo` in `namespace Second` or the top level.
using namespace Second;
- foo(); // prints "This is Second::foo"
+ Second::foo(); // prints "This is Second::foo"
First::Nested::foo(); // prints "This is First::Nested::foo"
::foo(); // prints "This is global foo"
}
@@ -248,6 +250,59 @@ const string& barRef = bar; // Create a const reference to bar.
// Like C, const values (and pointers and references) cannot be modified.
barRef += ". Hi!"; // Error, const references cannot be modified.
+// Sidetrack: Before we talk more about references, we must introduce a concept
+// called a temporary object. Suppose we have the following code:
+string tempObjectFun() { ... }
+string retVal = tempObjectFun();
+
+// What happens in the second line is actually:
+// - a string object is returned from `tempObjectFun`
+// - a new string is constructed with the returned object as arugment to the
+// constructor
+// - the returned object is destroyed
+// The returned object is called a temporary object. Temporary objects are
+// created whenever a function returns an object, and they are destroyed at the
+// end of the evaluation of the enclosing expression (Well, this is what the
+// standard says, but compilers are allowed to change this behavior. Look up
+// "return value optimization" if you're into this kind of details). So in this
+// code:
+foo(bar(tempObjectFun()))
+
+// assuming `foo` and `bar` exist, the object returned from `tempObjectFun` is
+// passed to `bar`, and it is destroyed before `foo` is called.
+
+// Now back to references. The exception to the "at the end of the enclosing
+// expression" rule is if a temporary object is bound to a const reference, in
+// which case its life gets extended to the current scope:
+
+void constReferenceTempObjectFun() {
+ // `constRef` gets the temporary object, and it is valid until the end of this
+ // function.
+ const string& constRef = tempObjectFun();
+ ...
+}
+
+// Another kind of reference introduced in C++11 is specifically for temporary
+// objects. You cannot have a variable of its type, but it takes precedence in
+// overload resolution:
+
+void someFun(string& s) { ... } // Regular reference
+void someFun(string&& s) { ... } // Reference to temporary object
+
+string foo;
+someFun(foo); // Calls the version with regular reference
+someFun(tempObjectFun()); // Calls the version with temporary reference
+
+// For example, you will see these two versions of constructors for
+// std::basic_string:
+basic_string(const basic_string& other);
+basic_string(basic_string&& other);
+
+// Idea being if we are constructing a new string from a temporary object (which
+// is going to be destroyed soon anyway), we can have a more efficient
+// constructor that "salvages" parts of that temporary string. You will see this
+// concept referred to as the move semantic.
+
//////////////////////////////////////////
// Classes and object-oriented programming
//////////////////////////////////////////
@@ -680,7 +735,7 @@ class Foo {
virtual void bar();
};
class FooSub : public Foo {
- virtual void bar(); // overrides Foo::bar!
+ virtual void bar(); // Overrides Foo::bar!
};
@@ -699,7 +754,8 @@ pt2 = nullptr; // Sets pt2 to null.
// '=' != '=' != '='!
-// Calls Foo::Foo(const Foo&) or some variant copy constructor.
+// Calls Foo::Foo(const Foo&) or some variant (see move semantics) copy
+// constructor.
Foo f2;
Foo f1 = f2;
@@ -713,6 +769,22 @@ Foo f1 = fooSub;
Foo f1;
f1 = f2;
+
+// How to truly clear a container:
+class Foo { ... };
+vector<Foo> v;
+for (int i = 0; i < 10; ++i)
+ v.push_back(Foo());
+
+// Following line sets size of v to 0, but destructors don't get called,
+// and resources aren't released!
+v.empty();
+v.push_back(Foo()); // New value is copied into the first Foo we inserted in the loop.
+
+// Truly destroys all values in v. See section about temporary object for
+// explanation of why this works.
+v.swap(vector<Foo>());
+
```
Further Reading:
diff --git a/c.html.markdown b/c.html.markdown
index d3f20eda..8e631de4 100644
--- a/c.html.markdown
+++ b/c.html.markdown
@@ -18,9 +18,9 @@ memory management and C will take you as far as you need to go.
```c
// Single-line comments start with // - only available in C99 and later.
- /*
+/*
Multi-line comments look like this. They work in C89 as well.
- */
+*/
/*
Multi-line comments don't nest /* Be careful */ // comment ends on this line...
@@ -55,7 +55,7 @@ int add_two_ints(int x1, int x2); // function prototype
// Your program's entry point is a function called
// main with an integer return type.
-int main() {
+int main(void) {
// print output using printf, for "print formatted"
// %d is an integer, \n is a newline
printf("%d\n", 0); // => Prints 0
@@ -157,12 +157,12 @@ int main() {
int cha = 'a'; // fine
char chb = 'a'; // fine too (implicit conversion from int to char)
- //Multi-dimensional arrays:
+ // Multi-dimensional arrays:
int multi_array[2][5] = {
{1, 2, 3, 4, 5},
{6, 7, 8, 9, 0}
};
- //access elements:
+ // access elements:
int array_int = multi_array[0][2]; // => 3
///////////////////////////////////////
@@ -183,8 +183,8 @@ int main() {
i1 / i2; // => 0 (0.5, but truncated towards 0)
// You need to cast at least one integer to float to get a floating-point result
- (float)i1 / i2 // => 0.5f
- i1 / (double)i2 // => 0.5 // Same with double
+ (float)i1 / i2; // => 0.5f
+ i1 / (double)i2; // => 0.5 // Same with double
f1 / f2; // => 0.5, plus or minus epsilon
// Floating-point numbers and calculations are not exact
@@ -219,13 +219,13 @@ int main() {
0 || 1; // => 1 (Logical or)
0 || 0; // => 0
- //Conditional expression ( ? : )
+ // Conditional expression ( ? : )
int e = 5;
int f = 10;
int z;
z = (e > f) ? e : f; // => 10 "if e > f return e, else return f."
- //Increment and decrement operators:
+ // Increment and decrement operators:
char *s = "iLoveC";
int j = 0;
s[j++]; // => "i". Returns the j-th item of s THEN increments value of j.
@@ -371,7 +371,7 @@ int main() {
x_array[xx] = 20 - xx;
} // Initialize x_array to 20, 19, 18,... 2, 1
- // Declare a pointer of type int and initialize it to point to x_array
+ // Declare a pointer of type int and initialize it to point to x_array
int* x_ptr = x_array;
// x_ptr now points to the first element in the array (the integer 20).
// This works because arrays often decay into pointers to their first element.
@@ -404,8 +404,8 @@ int main() {
*(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx
} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints)
- // Dereferencing memory that you haven't allocated gives
- // "unpredictable results" - the program is said to invoke "undefined behavior"
+ // Dereferencing memory that you haven't allocated gives
+ // "unpredictable results" - the program is said to invoke "undefined behavior"
printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash.
// When you're done with a malloc'd block of memory, you need to free it,
@@ -471,13 +471,13 @@ str_reverse(c);
printf("%s\n", c); // => ".tset a si sihT"
*/
-//if referring to external variables outside function, must use extern keyword.
+// if referring to external variables outside function, must use extern keyword.
int i = 0;
void testFunc() {
extern int i; //i here is now using external variable i
}
-//make external variables private to source file with static:
+// make external variables private to source file with static:
static int j = 0; //other files using testFunc2() cannot access variable j
void testFunc2() {
extern int j;
@@ -634,7 +634,7 @@ Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://
It is *the* book about C, written by Dennis Ritchie, the creator of C, and Brian Kernighan. Be careful, though - it's ancient and it contains some
inaccuracies (well, ideas that are not considered good anymore) or now-changed practices.
-Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/).
+Another good resource is [Learn C The Hard Way](http://c.learncodethehardway.org/book/).
If you have a question, read the [compl.lang.c Frequently Asked Questions](http://c-faq.com).
diff --git a/cs-cz/python3.html.markdown b/cs-cz/python3.html.markdown
new file mode 100644
index 00000000..11c8a654
--- /dev/null
+++ b/cs-cz/python3.html.markdown
@@ -0,0 +1,636 @@
+---
+language: python3
+contributors:
+ - ["Louie Dinh", "http://pythonpracticeprojects.com"]
+ - ["Steven Basart", "http://github.com/xksteven"]
+ - ["Andre Polykanine", "https://github.com/Oire"]
+ - ["Tomáš Bedřich", "http://tbedrich.cz"]
+translators:
+ - ["Tomáš Bedřich", "http://tbedrich.cz"]
+filename: learnpython3.py
+lang: cs-cz
+---
+
+Python byl vytvořen Guidem Van Rossum v raných 90. letech. Nyní je jedním z nejpopulárnějších jazyků.
+Zamiloval jsem si Python pro jeho syntaktickou čistotu - je to vlastně spustitelný pseudokód.
+
+Vaše zpětná vazba je vítána! Můžete mě zastihnout na [@louiedinh](http://twitter.com/louiedinh) nebo louiedinh [at] [email od googlu] anglicky,
+autora českého překladu pak na [@tbedrich](http://twitter.com/tbedrich) nebo ja [at] tbedrich.cz
+
+Poznámka: Tento článek je zaměřen na Python 3. Zde se můžete [naučit starší Python 2.7](http://learnxinyminutes.com/docs/python/).
+
+```python
+
+# Jednořádkový komentář začíná křížkem
+
+""" Víceřádkové komentáře používají tři uvozovky nebo apostrofy
+ a jsou často využívány jako dokumentační komentáře k metodám
+"""
+
+####################################################
+## 1. Primitivní datové typy a operátory
+####################################################
+
+# Čísla
+3 # => 3
+
+# Aritmetické operace se chovají běžným způsobem
+1 + 1 # => 2
+8 - 1 # => 7
+10 * 2 # => 20
+
+# Až na dělení, které vrací desetinné číslo
+35 / 5 # => 7.0
+
+# Při celočíselném dělení je desetinná část oříznuta (pro kladná i záporná čísla)
+5 // 3 # => 1
+5.0 // 3.0 # => 1.0 # celočíselně dělit lze i desetinným číslem
+-5 // 3 # => -2
+-5.0 // 3.0 # => -2.0
+
+# Pokud použiteje desetinné číslo, výsledek je jím také
+3 * 2.0 # => 6.0
+
+# Modulo
+7 % 3 # => 1
+
+# Mocnění (x na y-tou)
+2**4 # => 16
+
+# Pro vynucení priority použijte závorky
+(1 + 3) * 2 # => 8
+
+# Logické hodnoty
+True
+False
+
+# Negace se provádí pomocí not
+not True # => False
+not False # => True
+
+# Logické operátory
+# U operátorů záleží na velikosti písmen
+True and False # => False
+False or True # => True
+
+# Používání logických operátorů s čísly
+0 and 2 # => 0
+-5 or 0 # => -5
+0 == False # => True
+2 == True # => False
+1 == True # => True
+
+# Rovnost je ==
+1 == 1 # => True
+2 == 1 # => False
+
+# Nerovnost je !=
+1 != 1 # => False
+2 != 1 # => True
+
+# Další porovnání
+1 < 10 # => True
+1 > 10 # => False
+2 <= 2 # => True
+2 >= 2 # => True
+
+# Porovnání se dají řetězit!
+1 < 2 < 3 # => True
+2 < 3 < 2 # => False
+
+
+# Řetězce používají " nebo ' a mohou obsahovat UTF8 znaky
+"Toto je řetězec."
+'Toto je také řetězec.'
+
+# Řetězce se také dají sčítat, ale nepoužívejte to
+"Hello " + "world!" # => "Hello world!"
+# Dají se spojovat i bez '+'
+"Hello " "world!" # => "Hello world!"
+
+# Řetězec lze považovat za seznam znaků
+"Toto je řetězec"[0] # => 'T'
+
+# .format lze použít ke skládání řetězců
+"{} mohou být {}".format("řetězce", "skládány")
+
+# Formátovací argumenty můžete opakovat
+"{0} {1} stříkaček stříkalo přes {0} {1} střech".format("tři sta třicet tři", "stříbrných")
+# => "tři sta třicet tři stříbrných stříkaček stříkalo přes tři sta třicet tři stříbrných střech"
+
+# Pokud nechcete počítat, můžete použít pojmenované argumenty
+"{jmeno} si dal {jidlo}".format(jmeno="Franta", jidlo="guláš") # => "Franta si dal guláš"
+
+# Pokud zároveň potřebujete podporovat Python 2.5 a nižší, můžete použít starší způsob formátování
+"%s se dají %s jako v %s" % ("řetězce", "skládat", "jazyce C")
+
+
+# None je objekt (jinde NULL, nil, ...)
+None # => None
+
+# Pokud porovnáváte něco s None, nepoužívejte operátor rovnosti "==",
+# použijte raději operátor "is", který testuje identitu.
+"něco" is None # => False
+None is None # => True
+
+# None, 0, a prázdný řetězec/seznam/slovník se vyhodnotí jako False
+# Vše ostatní se vyhodnotí jako True
+bool(0) # => False
+bool("") # => False
+bool([]) # => False
+bool({}) # => False
+
+
+####################################################
+## 2. Proměnné a kolekce
+####################################################
+
+# Python má funkci print
+print("Jsem 3. Python 3.")
+
+# Proměnné není třeba deklarovat před přiřazením
+# Konvence je používat male_pismo_s_podtrzitky
+nazev_promenne = 5
+nazev_promenne # => 5
+# Názvy proměnných mohou obsahovat i UTF8 znaky
+název_proměnné = 5
+
+# Přístup k předtím nepoužité proměnné vyvolá výjimku
+# Odchytávání vyjímek - viz další kapitola
+neznama_promenna # Vyhodí NameError
+
+# Seznam se používá pro ukládání sekvencí
+sez = []
+# Lze ho rovnou naplnit
+jiny_seznam = [4, 5, 6]
+
+# Na konec seznamu se přidává pomocí append
+sez.append(1) # sez je nyní [1]
+sez.append(2) # sez je nyní [1, 2]
+sez.append(4) # sez je nyní [1, 2, 4]
+sez.append(3) # sez je nyní [1, 2, 4, 3]
+# Z konce se odebírá se pomocí pop
+sez.pop() # => 3 a sez je nyní [1, 2, 4]
+# Vložme trojku zpátky
+sez.append(3) # sez je nyní znovu [1, 2, 4, 3]
+
+# Přístup k prvkům funguje jako v poli
+sez[0] # => 1
+# Mínus počítá odzadu (-1 je poslední prvek)
+sez[-1] # => 3
+
+# Přístup mimo seznam vyhodí IndexError
+sez[4] # Vyhodí IndexError
+
+# Pomocí řezů lze ze seznamu vybírat různé intervaly
+# (pro matematiky: jedná se o uzavřený/otevřený interval)
+sez[1:3] # => [2, 4]
+# Odříznutí začátku
+sez[2:] # => [4, 3]
+# Odříznutí konce
+sez[:3] # => [1, 2, 4]
+# Vybrání každého druhého prvku
+sez[::2] # =>[1, 4]
+# Vrácení seznamu v opačném pořadí
+sez[::-1] # => [3, 4, 2, 1]
+# Lze použít jakoukoliv kombinaci parametrů pro vytvoření složitějšího řezu
+# sez[zacatek:konec:krok]
+
+# Odebírat prvky ze seznamu lze pomocí del
+del sez[2] # sez je nyní [1, 2, 3]
+
+# Seznamy můžete sčítat
+# Hodnoty sez a jiny_seznam přitom nejsou změněny
+sez + jiny_seznam # => [1, 2, 3, 4, 5, 6]
+
+# Spojit seznamy lze pomocí extend
+sez.extend(jiny_seznam) # sez je nyní [1, 2, 3, 4, 5, 6]
+
+# Kontrola, jestli prvek v seznamu existuje, se provádí pomocí in
+1 in sez # => True
+
+# Délku seznamu lze zjistit pomocí len
+len(sez) # => 6
+
+
+# N-tice je jako seznam, ale je neměnná
+ntice = (1, 2, 3)
+ntice[0] # => 1
+ntice[0] = 3 # Vyhodí TypeError
+
+# S n-ticemi lze dělat většinu operací, jako se seznamy
+len(ntice) # => 3
+ntice + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)
+ntice[:2] # => (1, 2)
+2 in ntice # => True
+
+# N-tice (nebo seznamy) lze rozbalit do proměnných jedním přiřazením
+a, b, c = (1, 2, 3) # a je nyní 1, b je nyní 2 a c je nyní 3
+# N-tice jsou vytvářeny automaticky, když vynecháte závorky
+d, e, f = 4, 5, 6
+# Prohození proměnných je tak velmi snadné
+e, d = d, e # d je nyní 5, e je nyní 4
+
+
+# Slovníky ukládají klíče a hodnoty
+prazdny_slovnik = {}
+# Lze je také rovnou naplnit
+slovnik = {"jedna": 1, "dva": 2, "tři": 3}
+
+# Přistupovat k hodnotám lze pomocí []
+slovnik["jedna"] # => 1
+
+# Všechny klíče dostaneme pomocí keys() jako iterovatelný objekt. Nyní ještě
+# potřebujeme obalit volání v list(), abychom dostali seznam. To rozebereme
+# později. Pozor, že jakékoliv pořadí klíčů není garantováno - může být různé.
+list(slovnik.keys()) # => ["dva", "jedna", "tři"]
+
+# Všechny hodnoty opět jako iterovatelný objekt získáme pomocí values(). Opět
+# tedy potřebujeme použít list(), abychom dostali seznam. Stejně jako
+# v předchozím případě, pořadí není garantováno a může být různé
+list(slovnik.values()) # => [3, 2, 1]
+
+# Operátorem in se lze dotázat na přítomnost klíče
+"jedna" in slovnik # => True
+1 in slovnik # => False
+
+# Přístup k neexistujícímu klíči vyhodí KeyError
+slovnik["čtyři"] # Vyhodí KeyError
+
+# Metoda get() funguje podobně jako [], ale vrátí None místo vyhození KeyError
+slovnik.get("jedna") # => 1
+slovnik.get("čtyři") # => None
+# Metodě get() lze předat i výchozí hodnotu místo None
+slovnik.get("jedna", 4) # => 1
+slovnik.get("čtyři", 4) # => 4
+
+# metoda setdefault() vloží prvek do slovníku pouze pokud tam takový klíč není
+slovnik.setdefault("pět", 5) # slovnik["pět"] je nastaven na 5
+slovnik.setdefault("pět", 6) # slovnik["pět"] je pořád 5
+
+# Přidání nové hodnoty do slovníku
+slovnik["čtyři"] = 4
+# Hromadně aktualizovat nebo přidat data lze pomocí update(), parametrem je opět slovník
+slovnik.update({"čtyři": 4}) # slovnik je nyní {"jedna": 1, "dva": 2, "tři": 3, "čtyři": 4, "pět": 5}
+
+# Odebírat ze slovníku dle klíče lze pomocí del
+del slovnik["jedna"] # odebere klíč "jedna" ze slovnik
+
+
+# Množiny ukládají ... překvapivě množiny
+prazdna_mnozina = set()
+# Také je lze rovnou naplnit. A ano, budou se vám plést se slovníky. Bohužel.
+mnozina = {1, 1, 2, 2, 3, 4} # mnozina je nyní {1, 2, 3, 4}
+
+# Přidání položky do množiny
+mnozina.add(5) # mnozina je nyní {1, 2, 3, 4, 5}
+
+# Průnik lze udělat pomocí operátoru &
+jina_mnozina = {3, 4, 5, 6}
+mnozina & jina_mnozina # => {3, 4, 5}
+
+# Sjednocení pomocí operátoru |
+mnozina | jina_mnozina # => {1, 2, 3, 4, 5, 6}
+
+# Rozdíl pomocí operátoru -
+{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}
+
+# Operátorem in se lze dotázat na přítomnost prvku v množině
+2 in mnozina # => True
+9 in mnozina # => False
+
+
+####################################################
+## 3. Řízení toku programu, cykly
+####################################################
+
+# Vytvořme si proměnnou
+promenna = 5
+
+# Takto vypadá podmínka. Na odsazení v Pythonu záleží!
+# Vypíše "proměnná je menší než 10".
+if promenna > 10:
+ print("proměnná je velká jak Rusko")
+elif promenna < 10: # Část elif je nepovinná
+ print("proměnná je menší než 10")
+else: # Část else je také nepovinná
+ print("proměnná je právě 10")
+
+
+"""
+Smyčka for umí iterovat (nejen) přes seznamy
+vypíše:
+ pes je savec
+ kočka je savec
+ myš je savec
+"""
+for zvire in ["pes", "kočka", "myš"]:
+ # Můžete použít formát pro složení řetězce
+ print("{} je savec".format(zvire))
+
+"""
+range(cislo) vrací iterovatelný objekt čísel od 0 do cislo
+vypíše:
+ 0
+ 1
+ 2
+ 3
+"""
+for i in range(4):
+ print(i)
+
+"""
+range(spodni_limit, horni_limit) vrací iterovatelný objekt čísel mezi limity
+vypíše:
+ 4
+ 5
+ 6
+ 7
+"""
+for i in range(4, 8):
+ print(i)
+
+"""
+Smyčka while se opakuje, dokud je podmínka splněna.
+vypíše:
+ 0
+ 1
+ 2
+ 3
+"""
+x = 0
+while x < 4:
+ print(x)
+ x += 1 # Zkrácený zápis x = x + 1. Pozor, žádné x++ neexisuje.
+
+
+# Výjimky lze ošetřit pomocí bloku try/except(/else/finally)
+try:
+ # Pro vyhození výjimky použijte raise
+ raise IndexError("Přistoupil jste k neexistujícímu prvku v seznamu.")
+except IndexError as e:
+ print("Nastala chyba: {}".format(e))
+ # Vypíše: Nastala chyba: Přistoupil jste k neexistujícímu prvku v seznamu.
+except (TypeError, NameError): # Více výjimek lze zachytit najednou
+ pass # Pass znamená nedělej nic - nepříliš vhodný způsob ošetření chyb
+else: # Volitelný blok else musí být až za bloky except
+ print("OK!") # Vypíše OK! v případě, že nenastala žádná výjimka
+finally: # Blok finally se spustí nakonec za všech okolností
+ print("Uvolníme zdroje, uzavřeme soubory...")
+
+# Místo try/finally lze použít with pro automatické uvolnění zdrojů
+with open("soubor.txt") as soubor:
+ for radka in soubor:
+ print(radka)
+
+# Python běžně používá iterovatelné objekty, což je prakticky cokoliv,
+# co lze považovat za sekvenci. Například to, co vrací metoda range(),
+# nebo otevřený soubor, jsou iterovatelné objekty.
+
+slovnik = {"jedna": 1, "dva": 2, "tři": 3}
+iterovatelny_objekt = slovnik.keys()
+print(iterovatelny_objekt) # => dict_keys(["jedna", "dva", "tři"]). Toto je iterovatelný objekt.
+
+# Můžeme použít cyklus for na jeho projití
+for klic in iterovatelny_objekt:
+ print(klic) # vypíše postupně: jedna, dva, tři
+
+# Ale nelze přistupovat k prvkům pod jejich indexem
+iterovatelny_objekt[1] # Vyhodí TypeError
+
+# Všechny položky iterovatelného objektu lze získat jako seznam pomocí list()
+list(slovnik.keys()) # => ["jedna", "dva", "tři"]
+
+# Z iterovatelného objektu lze vytvořit iterátor
+iterator = iter(iterovatelny_objekt)
+
+# Iterátor je objekt, který si pamatuje stav v rámci svého iterovatelného objektu
+# Další hodnotu dostaneme voláním next()
+next(iterator) # => "jedna"
+
+# Iterátor si udržuje svůj stav v mezi jednotlivými voláními next()
+next(iterator) # => "dva"
+next(iterator) # => "tři"
+
+# Jakmile interátor vrátí všechna svá data, vyhodí výjimku StopIteration
+next(iterator) # Vyhodí StopIteration
+
+
+####################################################
+## 4. Funkce
+####################################################
+
+# Pro vytvoření nové funkce použijte def
+def secist(x, y):
+ print("x je {} a y je {}".format(x, y))
+ return x + y # Hodnoty se vrací pomocí return
+
+# Volání funkce s parametry
+secist(5, 6) # => Vypíše "x je 5 a y je 6" a vrátí 11
+
+# Jiný způsob, jak volat funkci, je použít pojmenované argumenty
+secist(y=6, x=5) # Pojmenované argumenty můžete předat v libovolném pořadí
+
+# Lze definovat funkce s proměnným počtem (pozičních) argumentů
+def vrat_argumenty(*argumenty):
+ return argumenty
+
+vrat_argumenty(1, 2, 3) # => (1, 2, 3)
+
+# Lze definovat také funkce s proměnným počtem pojmenovaných argumentů
+def vrat_pojmenovane_argumenty(**pojmenovane_argumenty):
+ return pojmenovane_argumenty
+
+vrat_pojmenovane_argumenty(kdo="se bojí", nesmi="do lesa")
+# => {"kdo": "se bojí", "nesmi": "do lesa"}
+
+
+# Pokud chcete, lze použít obojí najednou
+# Konvence je používat pro tyto účely názvy *args a **kwargs
+def vypis_vse(*args, **kwargs):
+ print(args, kwargs) # print() vypíše všechny své parametry oddělené mezerou
+
+vypis_vse(1, 2, a=3, b=4) # Vypíše: (1, 2) {"a": 3, "b": 4}
+
+# * nebo ** lze použít k rozbalení N-tic nebo slovníků!
+ntice = (1, 2, 3, 4)
+slovnik = {"a": 3, "b": 4}
+vypis_vse(ntice) # Vyhodnotí se jako vypis_vse((1, 2, 3, 4)) – jeden parametr, N-tice
+vypis_vse(*ntice) # Vyhodnotí se jako vypis_vse(1, 2, 3, 4)
+vypis_vse(**slovnik) # Vyhodnotí se jako vypis_vse(a=3, b=4)
+vypis_vse(*ntice, **slovnik) # Vyhodnotí se jako vypis_vse(1, 2, 3, 4, a=3, b=4)
+
+
+# Viditelnost proměnných - vytvořme si globální proměnnou x
+x = 5
+
+def nastavX(cislo):
+ # Lokální proměnná x překryje globální x
+ x = cislo # => 43
+ print(x) # => 43
+
+def nastavGlobalniX(cislo):
+ global x
+ print(x) # => 5
+ x = cislo # Nastaví globální proměnnou x na 6
+ print(x) # => 6
+
+nastavX(43)
+nastavGlobalniX(6)
+
+
+# Funkce jsou first-class objekty
+def vyrobit_scitacku(pricitane_cislo):
+ def scitacka(x):
+ return x + pricitane_cislo
+ return scitacka
+
+pricist_10 = vyrobit_scitacku(10)
+pricist_10(3) # => 13
+
+# Klíčové slovo lambda vytvoří anonymní funkci
+(lambda parametr: parametr > 2)(3) # => True
+
+# Lze použít funkce map() a filter() z funkcionálního programování
+map(pricist_10, [1, 2, 3])
+# => <map object at 0x0123467> - iterovatelný objekt s obsahem: [11, 12, 13]
+filter(lambda x: x > 5, [3, 4, 5, 6, 7])
+# => <filter object at 0x0123467> - iterovatelný objekt s obsahem: [6, 7]
+
+# S generátorovou notací lze dosáhnout podobných výsledků, ale vrací seznam
+[pricist_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
+[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
+# Generátorová notace funguje i pro slovníky
+{x: x**2 for x in range(1, 5)} # => {1: 1, 2: 4, 3: 9, 4: 16}
+# A také pro množiny
+{pismeno for pismeno in "abeceda"} # => {"d", "a", "c", "e", "b"}
+
+
+####################################################
+## 5. Třídy
+####################################################
+
+# Třída Clovek je potomkem (dědí od) třídy object
+class Clovek(object):
+
+ # Atribut třídy - je sdílený všemi instancemi
+ druh = "H. sapiens"
+
+ # Toto je kostruktor. Je volán, když vytváříme instanci třídy. Dvě
+ # podtržítka na začátku a na konci značí, že se jedná o atribut nebo
+ # objekt využívaný Pythonem ke speciálním účelům, ale můžete sami
+ # definovat jeho chování. Metody jako __init__, __str__, __repr__
+ # a další se nazývají "magické metody". Nikdy nepoužívejte toto
+ # speciální pojmenování pro běžné metody.
+ def __init__(self, jmeno):
+ # Přiřazení parametru do atributu instance jmeno
+ self.jmeno = jmeno
+
+ # Metoda instance - všechny metody instance mají "self" jako první parametr
+ def rekni(self, hlaska):
+ return "{jmeno}: {hlaska}".format(jmeno=self.jmeno, hlaska=hlaska)
+
+ # Metoda třídy - sdílená všemi instancemi
+ # Dostává jako první parametr třídu, na které je volána
+ @classmethod
+ def vrat_druh(cls):
+ return cls.druh
+
+ # Statická metoda je volána bez reference na třídu nebo instanci
+ @staticmethod
+ def odkaslej_si():
+ return "*ehm*"
+
+
+# Vytvoření instance
+d = Clovek(jmeno="David")
+a = Clovek("Adéla")
+print(d.rekni("ahoj")) # Vypíše: "David: ahoj"
+print(a.rekni("nazdar")) # Vypíše: "Adéla: nazdar"
+
+# Volání třídní metody
+d.vrat_druh() # => "H. sapiens"
+
+# Změna atributu třídy
+Clovek.druh = "H. neanderthalensis"
+d.vrat_druh() # => "H. neanderthalensis"
+a.vrat_druh() # => "H. neanderthalensis"
+
+# Volání statické metody
+Clovek.odkaslej_si() # => "*ehm*"
+
+
+####################################################
+## 6. Moduly
+####################################################
+
+# Lze importovat moduly
+import math
+print(math.sqrt(16)) # => 4
+
+# Lze také importovat pouze vybrané funkce z modulu
+from math import ceil, floor
+print(ceil(3.7)) # => 4.0
+print(floor(3.7)) # => 3.0
+
+# Můžete také importovat všechny funkce z modulu, ale radši to nedělejte
+from math import *
+
+# Můžete si přejmenovat modul při jeho importu
+import math as m
+math.sqrt(16) == m.sqrt(16) # => True
+
+# Modul v Pythonu není nic jiného, než obyčejný soubor .py
+# Můžete si napsat vlastní a prostě ho importovat podle jména
+from muj_modul import moje_funkce # Nyní vyhodí ImportError - muj_modul neexistuje
+
+# Funkcí dir() lze zjistit, co modul obsahuje
+import math
+dir(math)
+
+
+####################################################
+## 7. Pokročilé
+####################################################
+
+# Generátory jsou funkce, které místo return obsahují yield
+def nasobicka_2(sekvence):
+ for i in sekvence:
+ yield 2 * i
+
+# Generátor generuje hodnoty postupně, jak jsou potřeba. Místo toho, aby vrátil
+# celou sekvenci s prvky vynásobenými dvěma, provádí jeden výpočet v každé iteraci.
+# To znamená, že čísla větší než 15 se v metodě nasobicka_2 vůbec nezpracují.
+
+# Funkce range() je také generátor - vytváření seznamu 900000000 prvků by zabralo
+# hodně času i paměti, proto se místo toho čísla generují postupně.
+
+for i in nasobicka_2(range(900000000)):
+ print(i) # Vypíše čísla 0, 2, 4, 6, 8, ... 30
+ if i >= 30:
+ break
+
+
+# Dekorátory jsou funkce, které se používají pro obalení jiné funkce, čímž mohou
+# přidávat nebo měnit její stávající chování. Funkci dostávají jako parametr
+# a typicky místo ní vrací jinou, která uvnitř volá tu původní.
+
+def nekolikrat(puvodni_funkce):
+ def opakovaci_funkce(*args, **kwargs):
+ for i in range(3):
+ puvodni_funkce(*args, **kwargs)
+
+ return opakovaci_funkce
+
+
+@nekolikrat
+def pozdrav(jmeno):
+ print("Měj se {}!".format(jmeno))
+
+pozdrav("Pepo") # Vypíše 3x: Měj se Pepo!
+```
+
+## Co dál?
+
+Spoustu odkazů na české i anglické materiály najdete na [webu české Python komunity]
+(http://python.cz/). Můžete také přijít na Pyvo, kde to společně probereme.
diff --git a/css.html.markdown b/css.html.markdown
index 9e8664b3..7224d80a 100644
--- a/css.html.markdown
+++ b/css.html.markdown
@@ -7,19 +7,19 @@ contributors:
filename: learncss.css
---
-In early days of web there was no visual elements, just pure text. But with the
-further development of browser fully visual web pages also became common.
+In the early days of the web there were no visual elements, just pure text. But with the
+further development of browsers, fully visual web pages also became common.
CSS is the standard language that exists to keep the separation between
the content (HTML) and the look-and-feel of web pages.
In short, what CSS does is to provide a syntax that enables you to target
different elements on an HTML page and assign different visual properties to them.
-Like any other language, CSS has many versions. Here we focus on CSS2.0
-which is not the most recent but the most widely supported and compatible version.
+Like any other languages, CSS has many versions. Here we focus on CSS2.0,
+which is not the most recent version, but is the most widely supported and compatible version.
-**NOTE:** Because the outcome of CSS is some visual effects, in order to
-learn it, you need try all different things in a
+**NOTE:** Because the outcome of CSS consists of visual effects, in order to
+learn it, you need try everything in a
CSS playground like [dabblet](http://dabblet.com/).
The main focus of this article is on the syntax and some general tips.
diff --git a/d.html.markdown b/d.html.markdown
new file mode 100644
index 00000000..daba8020
--- /dev/null
+++ b/d.html.markdown
@@ -0,0 +1,247 @@
+---
+language: D
+filename: learnd.d
+contributors:
+ - ["Nick Papanastasiou", "www.nickpapanastasiou.github.io"]
+lang: en
+---
+
+```c
+// You know what's coming...
+module hello;
+
+import std.stdio;
+
+// args is optional
+void main(string[] args) {
+ writeln("Hello, World!");
+}
+```
+
+If you're like me and spend way too much time on the internet, odds are you've heard
+about [D](http://dlang.org/). The D programming language is a modern, general-purpose,
+multi-paradigm language with support for everything from low-level features to
+expressive high-level abstractions.
+
+D is actively developed by Walter Bright and Andrei Alexandrescu, two super smart, really cool
+dudes. With all that out of the way, let's look at some examples!
+
+```c
+import std.stdio;
+
+void main() {
+
+ // Conditionals and loops work as expected.
+ for(int i = 0; i < 10000; i++) {
+ writeln(i);
+ }
+
+ auto n = 1; // use auto for type inferred variables
+
+ // Numeric literals can use _ as a digit seperator for clarity
+ while(n < 10_000) {
+ n += n;
+ }
+
+ do {
+ n -= (n / 2);
+ } while(n > 0);
+
+ // For and while are nice, but in D-land we prefer foreach
+ // The .. creates a continuous range, excluding the end
+ foreach(i; 1..1_000_000) {
+ if(n % 2 == 0)
+ writeln(i);
+ }
+
+ foreach_reverse(i; 1..int.max) {
+ if(n % 2 == 1) {
+ writeln(i);
+ } else {
+ writeln("No!");
+ }
+ }
+}
+```
+
+We can define new types with `struct`, `class`, `union`, and `enum`. Structs and unions
+are passed to functions by value (i.e. copied) and classes are passed by reference. Futhermore,
+we can use templates to parameterize all of these on both types and values!
+
+```c
+// Here, T is a type parameter. Think <T> from C++/C#/Java
+struct LinkedList(T) {
+ T data = null;
+ LinkedList!(T)* next; // The ! is used to instaniate a parameterized type. Again, think <T>
+}
+
+class BinTree(T) {
+ T data = null;
+
+ // If there is only one template parameter, we can omit parens
+ BinTree!T left;
+ BinTree!T right;
+}
+
+enum Day {
+ Sunday,
+ Monday,
+ Tuesday,
+ Wednesday,
+ Thursday,
+ Friday,
+ Saturday,
+}
+
+// Use alias to create abbreviations for types
+
+alias IntList = LinkedList!int;
+alias NumTree = BinTree!double;
+
+// We can create function templates as well!
+
+T max(T)(T a, T b) {
+ if(a < b)
+ return b;
+
+ return a;
+}
+
+// Use the ref keyword to ensure pass by referece.
+// That is, even if a and b are value types, they
+// will always be passed by reference to swap
+void swap(T)(ref T a, ref T b) {
+ auto temp = a;
+
+ a = b;
+ b = temp;
+}
+
+// With templates, we can also parameterize on values, not just types
+class Matrix(uint m, uint n, T = int) {
+ T[m] rows;
+ T[n] columns;
+}
+
+auto mat = new Matrix!(3, 3); // We've defaulted type T to int
+
+```
+
+Speaking of classes, let's talk about properties for a second. A property
+is roughly a function that may act like an lvalue, so we can
+have the syntax of POD structures (`structure.x = 7`) with the semantics of
+getter and setter methods (`object.setX(7)`)!
+
+```c
+// Consider a class parameterized on a types T, U
+
+class MyClass(T, U) {
+ T _data;
+ U _other;
+
+}
+
+// And "getter" and "setter" methods like so
+class MyClass(T, U) {
+ T _data;
+ U _other;
+
+ // Constructors are always named `this`
+ this(T t, U u) {
+ data = t;
+ other = u;
+ }
+
+ // getters
+ @property T data() {
+ return _data;
+ }
+
+ @property U other() {
+ return _other;
+ }
+
+ // setters
+ @property void data(T t) {
+ _data = t;
+ }
+
+ @property void other(U u) {
+ _other = u;
+ }
+}
+// And we use them in this manner
+
+void main() {
+ auto mc = MyClass!(int, string);
+
+ mc.data = 7;
+ mc.other = "seven";
+
+ writeln(mc.data);
+ writeln(mc.other);
+}
+```
+
+With properties, we can add any amount of logic to
+our getter and setter methods, and keep the clean syntax of
+accessing members directly!
+
+Other object-oriented goodies at our disposal
+include `interface`s, `abstract class`es,
+and `override`ing methods. D does inheritance just like Java:
+Extend one class, implement as many interfaces as you please.
+
+We've seen D's OOP facilities, but let's switch gears. D offers
+functional programming with first-class functions, `pure`
+functions, and immutable data. In addition, all of your favorite
+functional algorithms (map, filter, reduce and friends) can be
+found in the wonderful `std.algorithm` module!
+
+```c
+import std.algorithm : map, filter, reduce;
+import std.range : iota; // builds an end-exclusive range
+
+void main() {
+ // We want to print the sum of a list of squares of even ints
+ // from 1 to 100. Easy!
+
+ // Just pass lambda expressions as template parameters!
+ // You can pass any old function you like, but lambdas are convenient here.
+ auto num = iota(1, 101).filter!(x => x % 2 == 0)
+ .map!(y => y ^^ 2)
+ .reduce!((a, b) => a + b);
+
+ writeln(num);
+}
+```
+
+Notice how we got to build a nice Haskellian pipeline to compute num?
+That's thanks to a D innovation know as Uniform Function Call Syntax.
+With UFCS, we can choose whether to write a function call as a method
+or free function call! Walter wrote a nice article on this
+[here.](http://www.drdobbs.com/cpp/uniform-function-call-syntax/232700394)
+In short, you can call functions whose first parameter
+is of some type A on any expression of type A as a method.
+
+I like parallelism. Anyone else like parallelism? Sure you do. Let's do some!
+
+```c
+import std.stdio;
+import std.parallelism : parallel;
+import std.math : sqrt;
+
+void main() {
+ // We want take the square root every number in our array,
+ // and take advantage of as many cores as we have available.
+ auto arr = new double[1_000_000];
+
+ // Use an index, and an array element by referece,
+ // and just call parallel on the array!
+ foreach(i, ref elem; parallel(arr)) {
+ ref = sqrt(i + 1.0);
+ }
+}
+
+
+```
diff --git a/de-de/json-de.html.markdown b/de-de/json-de.html.markdown
new file mode 100644
index 00000000..3cf4578c
--- /dev/null
+++ b/de-de/json-de.html.markdown
@@ -0,0 +1,65 @@
+---
+language: json
+filename: learnjson-de.json
+contributors:
+ - ["Anna Harren", "https://github.com/iirelu"]
+ - ["Marco Scannadinari", "https://github.com/marcoms"]
+translators:
+ - ["Timm Albers", "https://github.com/nunull"]
+lang: de-de
+---
+
+Da JSON ein äußerst einfaches Format für den Austausch von Daten ist, wird dieses
+Dokument das vermutlich einfachste "Learn X in Y Minutes" werden.
+
+In seiner grundlegenden Form hat JSON keine eigentlichen Kommentare. Dennoch
+akzeptieren die meisten Parser Kommentare in C-Syntax (`//`, `/* */`). Dennoch
+soll für dieses Dokument nur 100% gültiges JSON verwendet werden, weshalbt keine
+Kommentare verwendet werden. Glücklicherweise ist das nachfolgende Dokument
+selbsterklärend.
+
+```json
+{
+ "schlüssel": "wert",
+
+ "alle schlüssel": "müssen durch doppelte Anführungszeichen begrenzt werden",
+ "zahlen": 0,
+ "zeichenketten": "Alle Unicode-Zeichen (inklusive \"escaping\") sind erlaubt.",
+ "boolesche werte": true,
+ "nullwert": null,
+
+ "große zahlen": 1.2e+100,
+
+ "objekte": {
+ "kommentar": "Die meisten Datenstrukturen in JSON kommen aus Objekten.",
+
+ "array": [0, 1, 2, "Arrays können Werte jeglichen Datentyps aufnehmen.", 4],
+
+ "weiteres objekt": {
+ "kommentar": "Objekte können verschachtelt werden."
+ }
+ },
+
+ "quatsch": [
+ {
+ "quellen von kalium": ["Bananen"]
+ },
+ [
+ [1, 0, 0, 0],
+ [0, 1, 0, 0],
+ [0, 0, 1, "Neo"],
+ [0, 0, 0, 1]
+ ]
+ ],
+
+ "alternative formatierung": {
+ "kommentar": "..."
+ , "die position": "des Kommas ist nicht relevant - so lange es vor dem Wert steht."
+ , "weiterer kommentar": "wie schön"
+ , "übrigens": "Auch die Einrückung ist nicht relevant."
+ , "jede": "beliebige Anzahl von Leerzeichen / Tabs ist erlaubt.", "wirklich?":true
+ },
+
+ "das war kurz": "Und, du bist fertig. Du weißt nun (fast) alles über JSON."
+}
+```
diff --git a/de-de/yaml-de.html.markdown b/de-de/yaml-de.html.markdown
index 88318014..19ea9e87 100644
--- a/de-de/yaml-de.html.markdown
+++ b/de-de/yaml-de.html.markdown
@@ -1,10 +1,11 @@
---
language: yaml
-filename: learnyaml.yaml
contributors:
- ["Adam Brenecki", "https://github.com/adambrenecki"]
translators:
- - ["Ruben M.", https://github.com/switchhax]
+ - ["Ruben M.", "https://github.com/switchhax"]
+filename: learnyaml-de.yaml
+lang: de-de
---
YAML ist eine Sprache zur Datenserialisierung, die sofort von Menschenhand geschrieben und gelesen werden kann.
diff --git a/el-gr/racket-gr.html.markdown b/el-gr/racket-gr.html.markdown
index 4c76b174..4c4576bb 100644
--- a/el-gr/racket-gr.html.markdown
+++ b/el-gr/racket-gr.html.markdown
@@ -74,8 +74,8 @@ H Racket είναι μια γενικού σκοπού, πολυ-υποδειγ
(+ 1+2i 2-3i) ; => 3-1i
;;; Λογικές μεταβλητές
-#t ; για το true
-#f ; για το false
+#t ; για το true (αληθής)
+#f ; για το false (ψευδής)
(not #t) ; => #f
(and 0 #f (error "doesn't get here")) ; => #f
(or #f 0 (error "doesn't get here")) ; => 0
@@ -88,9 +88,9 @@ H Racket είναι μια γενικού σκοπού, πολυ-υποδειγ
;;; Τα αλφαριθμητικά είναι πίνακες χαρακτήρων συγκεκριμένου μήκους
"Hello, world!"
"Benjamin \"Bugsy\" Siegel" ; Το backslash είναι χαρακτήρας διαφυγής
-"Foo\tbar\41\x21\u0021\a\r\n" ; συμπεριλαμβάνονται οι χαρακτήες διαφυγής της C,
- ; σε Unicode
-"λx:(μα.α→α).xx" ; μπορούν να υπάρχουν και Unicode χαρακτήρες
+"Foo\tbar\41\x21\u0021\a\r\n" ; Συμπεριλαμβάνονται οι χαρακτήες διαφυγής της C,
+ ; σε Unicode
+"λx:(μα.α→α).xx" ; Μπορούν να υπάρχουν και Unicode χαρακτήρες
;; Μπορούμε να εννώσουμε αλφαριθμητικά!
(string-append "Hello " "world!") ; => "Hello world!"
@@ -109,14 +109,16 @@ H Racket είναι μια γενικού σκοπού, πολυ-υποδειγ
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 2. Μεταβλητές
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; You can create a variable using define
-;; a variable name can use any character except: ()[]{}",'`;#|\
+;; Μπορούμε να δημιουργήσουμε μεταβλητές
+;; χρησιμοποιώντας το define.
+;; Ένα όνομα μεταβλητής μπορεί να χρησιμοποιεί οποιονδήποτε
+;; χαρακτήρα, εκτός από τους: ()[]{}",'`;#|\
(define some-var 5)
some-var ; => 5
-;; You can also use unicode characters
+;; Μπορούμε επίσης να χρησιμοποιήσουμε unicode χαρακτήρες.
(define ⊆ subset?) ;; Εδώ ουστιαστικά δίνουμε στη ήδη ύπαρχουσα συνάρτηση subset?
- ;; ένα νέο όνομα ⊆ , και παρακάτω την καλούμε με το νέο της όνομα.
+ ;; ένα νέο όνομα ⊆ , και παρακάτω την καλούμε με το νέο της όνομα.
(⊆ (set 3 2) (set 1 2 3)) ; => #t
;; Αν ζητήσουμε μια μεταβλητή που δεν έχει οριστεί πρίν π.χ
@@ -560,7 +562,7 @@ vec ; => #(1 2 3 4)
;; Οι ενότητες μας επιτρέπουν να οργανώνουμε τον κώδικα σε πολλαπλά
;; αρχεία και επαναχρησιμοποιούμενες βιβλιοθήκες
;; Εδώ χρησιμοποιούμε υπο-ενότητες, εμφωλευμένες μέσα σε μια
-;; άλλη ενότητα που δημιουργεί αυτό το κείμενο(ξεκινώντας από
+;; άλλη ενότητα που δημιουργεί αυτό το κείμενο (ξεκινώντας από
;; την γραμμή '#lang' )
(module cake racket/base ; ορίζουμε μια ενότητα 'cake' βασισμένο στο
; racket/base
@@ -614,8 +616,7 @@ vec ; => #(1 2 3 4)
(send charlie get-size) ; => 16
;; Το `fish%' είναι μία τιμή "πρώτης κλάσης"
-;; `fish%' is a plain "first class" value, με το οποίο μπορούμε να
-;; κάνουμε προσμείξεις
+;; με το οποίο μπορούμε να κάνουμε προσμείξεις
(define (add-color c%)
(class c%
(init color)
@@ -663,17 +664,17 @@ vec ; => #(1 2 3 4)
;; (set! tmp other)
;; (set! other tmp_1))
-;; But they are still code transformations, for example:
+;; Αλλά ακόμα υπάρχουν ακόμη μετασχηματισμοί του κώδικα, π.χ:
(define-syntax-rule (bad-while condition body ...)
(when condition
body ...
(bad-while condition body ...)))
-;; αυτή η μακροεντολή είναι χαλασένη: δημιουγεί ατέρμονα βρόχο
-;; και αν προσπαθήσουμε να το χρησιμοποιήσουμε, ο μεταγλωττιστης
+;; αυτή η μακροεντολή είναι χαλασμένη: δημιουγεί ατέρμονα βρόχο
+;; και αν προσπαθήσουμε να το χρησιμοποιήσουμε, ο μεταγλωττιστής
;; θα μπεί στον ατέρμονα βρόχο.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; 10. Συμβόλαια
+;; 10. Συμβόλαια (Contracts)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Τα συμβόλαια βάζουν περιορισμόυς σε τιμές που προέρχονται
diff --git a/es-es/go-es.html.markdown b/es-es/go-es.html.markdown
index 86de33ec..c41d693d 100644
--- a/es-es/go-es.html.markdown
+++ b/es-es/go-es.html.markdown
@@ -1,326 +1,450 @@
---
+name: Go
+category: language
language: Go
lang: es-es
filename: learngo-es.go
contributors:
- ["Sonia Keys", "https://github.com/soniakeys"]
+ - ["Christopher Bess", "https://github.com/cbess"]
+ - ["Jesse Johnson", "https://github.com/holocronweaver"]
+ - ["Quint Guvernator", "https://github.com/qguv"]
+ - ["Jose Donizetti", "https://github.com/josedonizetti"]
+ - ["Alexej Friesen", "https://github.com/heyalexej"]
translators:
- ["Adrian Espinosa", "http://www.adrianespinosa.com"]
- ["Jesse Johnson", "https://github.com/holocronweaver"]
+ - ["Nacho Pacheco -- Feb/2015", "https://github.com/gitnacho"]
---
-Go fue creado por la necesidad de hacer el trabajo rápidamente. No es
-la última tendencia en informática, pero es la forma nueva y más
-rápida de resolver problemas reales.
+Go fue creado por la necesidad de hacer el trabajo rápidamente. No es la
+última tendencia en informática, pero es la forma nueva y más rápida de
+resolver problemas reales.
-Tiene conceptos familiares de lenguajes imperativos con tipado
-estático. Es rápido compilando y rápido al ejecutar, añade una
-concurrencia fácil de entender para las CPUs de varios núcleos de hoy
-en día, y tiene características que ayudan con la programación a gran
-escala.
+Tiene conceptos familiares de lenguajes imperativos con tipado estático.
+Es rápido compilando y rápido al ejecutar, añade una concurrencia fácil de
+entender para las CPUs de varios núcleos de hoy día, y tiene
+características que ayudan con la programación a gran escala.
-Go viene con una librería estándar muy buena y una comunidad entusiasta.
+Go viene con una biblioteca estándar muy buena y una entusiasta comunidad.
```go
// Comentario de una sola línea
-/* Comentario
- multi línea */
+/* Comentario
+ multilínea */
-// La cláusula package aparece al comienzo de cada archivo fuente.
-// Main es un nombre especial que declara un ejecutable en vez de una librería.
+// La cláusula `package` aparece al comienzo de cada fichero fuente.
+// `main` es un nombre especial que declara un ejecutable en vez de una
+// biblioteca.
package main
-// La declaración Import declara los paquetes de librerías
-// referenciados en este archivo.
+// La instrucción `import` declara los paquetes de bibliotecas referidos
+// en este fichero.
import (
- "fmt" // Un paquete en la librería estándar de Go.
- "net/http" // Sí, un servidor web!
- "strconv" // Conversiones de cadenas.
- m "math" // Librería matemáticas con alias local m.
+ "fmt" // Un paquete en la biblioteca estándar de Go.
+ "io/ioutil" // Implementa algunas útiles funciones de E/S.
+ m "math" // Biblioteca de matemáticas con alias local m.
+ "net/http" // Sí, ¡un servidor web!
+ "strconv" // Conversiones de cadenas.
)
-// Definición de una función. Main es especial. Es el punto de
-// entrada para el ejecutable. Te guste o no, Go utiliza llaves.
+// Definición de una función. `main` es especial. Es el punto de entrada
+// para el ejecutable. Te guste o no, Go utiliza llaves.
func main() {
- // Println imprime una línea a stdout.
- // Cualificalo con el nombre del paquete, fmt.
- fmt.Println("Hello world!")
+ // Println imprime una línea a stdout.
+ // Cualificalo con el nombre del paquete, fmt.
+ fmt.Println("¡Hola mundo!")
- // Llama a otra función de este paquete.
- beyondHello()
+ // Llama a otra función de este paquete.
+ másAlláDelHola()
}
// Las funciones llevan parámetros entre paréntesis.
// Si no hay parámetros, los paréntesis siguen siendo obligatorios.
-func beyondHello() {
- var x int // Declaración de una variable.
- // Las variables se deben declarar antes de utilizarlas.
- x = 3 // Asignación de variables.
- // Declaración "corta" con := para inferir el tipo, declarar y asignar.
- y := 4
- sum, prod := learnMultiple(x, y) // Función devuelve dos valores.
- fmt.Println("sum:", sum, "prod:", prod) // Simple salida.
- learnTypes() // < y minutes, learn more!
+func másAlláDelHola() {
+ var x int // Declaración de una variable.
+ // Las variables se deben declarar antes de utilizarlas.
+ x = 3 // Asignación de variable.
+ // Declaración "corta" con := para inferir el tipo, declarar y asignar.
+ y := 4
+ suma, producto := aprendeMúltiple(x, y) // La función devuelve dos
+ // valores.
+ fmt.Println("suma:", suma, "producto:", producto) // Simple salida.
+ aprendeTipos() // < y minutos, ¡aprende más!
}
-// Las funciones pueden tener parámetros y (múltiples!) valores de retorno.
-func learnMultiple(x, y int) (sum, prod int) {
- return x + y, x * y // Devolver dos valores.
+// Las funciones pueden tener parámetros y (¡múltiples!) valores de
+// retorno.
+func aprendeMúltiple(x, y int) (suma, producto int) {
+ return x + y, x * y // Devuelve dos valores.
}
// Algunos tipos incorporados y literales.
-func learnTypes() {
- // La declaración corta suele darte lo que quieres.
- s := "Learn Go!" // tipo cadena
-
- s2 := ` Un tipo cadena "puro" puede incluir
+func aprendeTipos() {
+ // La declaración corta suele darte lo que quieres.
+ s := "¡Aprende Go!" // tipo cadena.
+ s2 := `Un tipo cadena "puro" puede incluir
saltos de línea.` // mismo tipo cadena
- // Literal no ASCII. Los fuentes de Go son UTF-8.
- g := 'Σ' // Tipo rune, un alias de int32, alberga un punto unicode.
- f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
- c := 3 + 4i // complex128, representado internamente por dos float64.
- // Sintaxis Var con inicializadores.
- var u uint = 7 // Sin signo, pero la implementación depende del
- // tamaño como en int.
- var pi float32 = 22. / 7
-
- // Sintáxis de conversión con una declaración corta.
- n := byte('\n') // byte es un alias de uint8.
-
- // Los Arrays tienen un tamaño fijo a la hora de compilar.
- var a4 [4]int // Un array de 4 ints, inicializados a 0.
- a3 := [...]int{3, 1, 5} // Un array de 3 ints, inicializados como se indica.
-
- // Los Slices tienen tamaño dinámico. Los arrays y slices tienen sus ventajas
- // y desventajas pero los casos de uso para los slices son más comunes.
- s3 := []int{4, 5, 9} // Comparar con a3. No hay puntos suspensivos.
- s4 := make([]int, 4) // Asigna slices de 4 ints, inicializados a 0.
- var d2 [][]float64 // Solo declaración, sin asignación.
- bs := []byte("a slice") // Sintaxis de conversión de tipo.
-
- p, q := learnMemory() // Declara p, q para ser un tipo puntero a int.
- fmt.Println(*p, *q) // * sigue un puntero. Esto imprime dos ints.
-
- // Los Maps son arrays asociativos dinámicos, como los hash o
- // diccionarios de otros lenguajes.
- m := map[string]int{"three": 3, "four": 4}
- m["one"] = 1
-
- // Las variables no utilizadas en Go producen error.
- // El guión bajo permite "utilizar" una variable, pero descartar su valor.
- _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
- // Esto cuenta como utilización de variables.
- fmt.Println(s, c, a4, s3, d2, m)
-
- learnFlowControl() // Vuelta al flujo.
+ // Literal no ASCII. Los ficheros fuente de Go son UTF-8.
+ g := 'Σ' // Tipo rune, un alias de int32, alberga un carácter unicode.
+ f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
+ c := 3 + 4i // complex128, representado internamente por dos float64.
+ // Sintaxis Var con iniciadores.
+ var u uint = 7 // Sin signo, pero la implementación depende del tamaño
+ // como en int.
+ var pi float32 = 22. / 7
+
+ // Sintáxis de conversión con una declaración corta.
+ n := byte('\n') // byte es un alias para uint8.
+
+ // Los Arreglos tienen un tamaño fijo a la hora de compilar.
+ var a4 [4]int // Un arreglo de 4 ints, iniciados a 0.
+ a3 := [...]int{3, 1, 5} // Un arreglo iniciado con un tamaño fijo de tres
+ // elementos, con valores 3, 1 y 5.
+ // Los Sectores tienen tamaño dinámico. Los arreglos y sectores tienen
+ // sus ventajas y desventajas pero los casos de uso para los sectores
+ // son más comunes.
+ s3 := []int{4, 5, 9} // Comparar con a3. No hay puntos suspensivos.
+ s4 := make([]int, 4) // Asigna sectores de 4 ints, iniciados a 0.
+ var d2 [][]float64 // Solo declaración, sin asignación.
+ bs := []byte("a sector") // Sintaxis de conversión de tipo.
+ // Debido a que son dinámicos, los sectores pueden crecer bajo demanda.
+ // Para añadir elementos a un sector, se utiliza la función incorporada
+ // append().
+ // El primer argumento es el sector al que se está anexando. Comúnmente,
+ // la variable del arreglo se actualiza en su lugar, como en el
+ // siguiente ejemplo.
+ sec := []int{1, 2 , 3} // El resultado es un sector de longitud 3.
+ sec = append(sec, 4, 5, 6) // Añade 3 elementos. El sector ahora tiene una
+ // longitud de 6.
+ fmt.Println(sec) // El sector actualizado ahora es [1 2 3 4 5 6]
+ // Para anexar otro sector, en lugar de la lista de elementos atómicos
+ // podemos pasar una referencia a un sector o un sector literal como
+ // este, con elipsis al final, lo que significa tomar un sector y
+ // desempacar sus elementos, añadiéndolos al sector sec.
+ sec = append(sec, []int{7, 8, 9} ...) // El segundo argumento es un
+ // sector literal.
+ fmt.Println(sec) // El sector actualizado ahora es [1 2 3 4 5 6 7 8 9]
+ p, q := aprendeMemoria() // Declara p, q para ser un tipo puntero a
+ // int.
+ fmt.Println(*p, *q) // * sigue un puntero. Esto imprime dos ints.
+
+ // Los Mapas son arreglos asociativos dinámicos, como los hash o
+ // diccionarios de otros lenguajes.
+ m := map[string]int{"tres": 3, "cuatro": 4}
+ m["uno"] = 1
+
+ // Las variables no utilizadas en Go producen error.
+ // El guión bajo permite "utilizar" una variable, pero descartar su
+ // valor.
+ _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
+ // Esto cuenta como utilización de variables.
+ fmt.Println(s, c, a4, s3, d2, m)
+
+ aprendeControlDeFlujo() // Vuelta al flujo.
+}
+
+// Es posible, a diferencia de muchos otros lenguajes tener valores de
+// retorno con nombre en las funciones.
+// Asignar un nombre al tipo que se devuelve en la línea de declaración de
+// la función nos permite volver fácilmente desde múltiples puntos en una
+// función, así como sólo utilizar la palabra clave `return`, sin nada
+// más.
+func aprendeRetornosNombrados(x, y int) (z int) {
+ z = x * y
+ return // aquí z es implícito, porque lo nombramos antes.
}
-// Go posee recolector de basura. Tiene puntero pero no aritmética de
-// punteros. Puedes cometer un errores con un puntero nil, pero no
+// Go posee recolector de basura. Tiene punteros pero no aritmética de
+// punteros. Puedes cometer errores con un puntero nil, pero no
// incrementando un puntero.
-func learnMemory() (p, q *int) {
- // q y p tienen un tipo puntero a int.
- p = new(int) // Función incorporada que asigna memoria.
- // La asignación de int se inicializa a 0, p ya no es nil.
- s := make([]int, 20) // Asigna 20 ints a un solo bloque de memoria.
- s[3] = 7 // Asignar uno de ellos.
- r := -2 // Declarar otra variable local.
- return &s[3], &r // & toma la dirección de un objeto.
+func aprendeMemoria() (p, q *int) {
+ // Los valores de retorno nombrados q y p tienen un tipo puntero
+ // a int.
+ p = new(int) // Función incorporada que reserva memoria.
+ // La asignación de int se inicia a 0, p ya no es nil.
+ s := make([]int, 20) // Reserva 20 ints en un solo bloque de memoria.
+ s[3] = 7 // Asigna uno de ellos.
+ r := -2 // Declara otra variable local.
+ return &s[3], &r // & toma la dirección de un objeto.
}
-func expensiveComputation() float64 {
- return m.Exp(10)
+func cálculoCaro() float64 {
+ return m.Exp(10)
}
-func learnFlowControl() {
- // La declaración If requiere llaves, pero no paréntesis.
- if true {
- fmt.Println("told ya")
- }
- // El formato está estandarizado por el comando "go fmt."
- if false {
- // Pout.
- } else {
- // Gloat.
- }
- // Utiliza switch preferiblemente para if encadenados.
- x := 42.0
- switch x {
- case 0:
- case 1:
- case 42:
- // Los cases no se mezclan, no requieren de "break".
- case 43:
- // No llega.
+func aprendeControlDeFlujo() {
+ // La declaración If requiere llaves, pero no paréntesis.
+ if true {
+ fmt.Println("ya relatado")
+ }
+ // El formato está estandarizado por la orden "go fmt."
+ if false {
+ // Abadejo.
+ } else {
+ // Relamido.
+ }
+ // Utiliza switch preferentemente para if encadenados.
+ x := 42.0
+ switch x {
+ case 0:
+ case 1:
+ case 42:
+ // Los cases no se mezclan, no requieren de "break".
+ case 43:
+ // No llega.
+ }
+ // Como if, for no utiliza paréntesis tampoco.
+ // Variables declaradas en for e if son locales a su ámbito.
+ for x := 0; x < 3; x++ { // ++ es una instrucción.
+ fmt.Println("iteración", x)
+ }
+ // aquí x == 42.
+
+ // For es la única instrucción de bucle en Go, pero tiene formas
+ // alternativas.
+ for { // Bucle infinito.
+ break // ¡Solo bromeaba!
+ continue // No llega.
+ }
+
+ // Puedes usar `range` para iterar en un arreglo, un sector, una
+ // cadena, un mapa o un canal.
+ // `range` devuelve o bien, un canal o de uno a dos valores (arreglo,
+ // sector, cadena y mapa).
+ for clave, valor := range map[string]int{"uno": 1, "dos": 2, "tres": 3} {
+ // por cada par en el mapa, imprime la clave y el valor
+ fmt.Printf("clave=%s, valor=%d\n", clave, valor)
+ }
+
+ // Como en for, := en una instrucción if significa declarar y asignar
+ // primero, luego comprobar y > x.
+ if y := cálculoCaro(); y > x {
+ x = y
}
- // Como if, for no utiliza paréntesis tampoco.
- // Variables declaradas en for y if son locales de su ámbito local.
- for x := 0; x < 3; x++ { // ++ es una sentencia.
- fmt.Println("iteration", x)
- }
- // x == 42 aqui.
+ // Las funciones literales son "cierres".
+ granX := func() bool {
+ return x > 100 // Referencia a x declarada encima de la instrucción
+ // switch.
+ }
+ fmt.Println("granX:", granX()) // cierto (la última vez asignamos
+ // 1e6 a x).
+ x /= 1.3e3 // Esto hace a x == 1300
+ fmt.Println("granX:", granX()) // Ahora es falso.
+
+ // Es más las funciones literales se pueden definir y llamar en línea,
+ // actuando como un argumento para la función, siempre y cuando:
+ // a) la función literal sea llamada inmediatamente (),
+ // b) el tipo del resultado sea del tipo esperado del argumento
+ fmt.Println("Suma dos números + doble: ",
+ func(a, b int) int {
+ return (a + b) * 2
+ }(10, 2)) // Llamada con argumentos 10 y 2
+ // => Suma dos números + doble: 24
+
+ // Cuando lo necesites, te encantará.
+ goto encanto
+encanto:
+
+ aprendeFunciónFábrica() // func devolviendo func es divertido(3)(3)
+ aprendeADiferir() // Un rápido desvío a una importante palabra clave.
+ aprendeInterfaces() // ¡Buen material dentro de poco!
+}
- // For es la única sentencia de bucle en Go, pero tiene formas alternativas.
- for { // Bucle infinito.
- break // Solo bromeaba!
- continue // No llega.
- }
- // Como en for, := en una sentencia if significa declarar y asignar primero,
- // luego comprobar y > x.
- if y := expensiveComputation(); y > x {
- x = y
- }
- // Los literales de funciones son "closures".
- xBig := func() bool {
- return x > 100 // Referencia a x declarada encima de la sentencia switch.
- }
- fmt.Println("xBig:", xBig()) // verdadero (la última vez asignamos 1e6 a x).
- x /= m.Exp(9) // Esto lo hace x == e.
- fmt.Println("xBig:", xBig()) // Ahora es falso.
+func aprendeFunciónFábrica() {
+ // Las dos siguientes son equivalentes, la segunda es más práctica
+ fmt.Println(instrucciónFábrica("día")("Un bello", "de verano"))
+
+ d := instrucciónFábrica("atardecer")
+ fmt.Println(d("Un hermoso", "de verano"))
+ fmt.Println(d("Un maravilloso", "de verano"))
+}
- // Cuando lo necesites, te encantará.
- goto love
-love:
+// Los decoradores son comunes en otros lenguajes. Lo mismo se puede hacer
+// en Go con funciónes literales que aceptan argumentos.
+func instrucciónFábrica(micadena string) func(antes, después string) string {
+ return func(antes, después string) string {
+ return fmt.Sprintf("¡%s %s %s!", antes, micadena, después) // nueva cadena
+ }
+}
- learnInterfaces() // Buen material dentro de poco!
+func aprendeADiferir() (ok bool) {
+ // las instrucciones diferidas se ejecutan justo antes de que la
+ // función regrese.
+ defer fmt.Println("las instrucciones diferidas se ejecutan en orden inverso (PEPS).")
+ defer fmt.Println("\nEsta línea se imprime primero debido a que")
+ // Defer se usa comunmente para cerrar un fichero, por lo que la
+ // función que cierra el fichero se mantiene cerca de la función que lo
+ // abrió.
+ return true
}
// Define Stringer como un tipo interfaz con un método, String.
type Stringer interface {
- String() string
+ String() string
}
-// Define pair como un struct con dos campos int, x e y.
-type pair struct {
- x, y int
+// Define par como una estructura con dos campos int, x e y.
+type par struct {
+ x, y int
}
-// Define un método del tipo pair. Pair ahora implementa Stringer.
-func (p pair) String() string { // p se llama "recibidor"
- // Sprintf es otra función pública del paquete fmt.
- // La sintaxis con punto referencia campos de p.
- return fmt.Sprintf("(%d, %d)", p.x, p.y)
+// Define un método en el tipo par. Par ahora implementa a Stringer.
+func (p par) String() string { // p se conoce como el "receptor"
+ // Sprintf es otra función pública del paquete fmt.
+ // La sintaxis con punto se refiere a los campos de p.
+ return fmt.Sprintf("(%d, %d)", p.x, p.y)
}
-func learnInterfaces() {
- // La sintaxis de llaves es un "literal struct". Evalúa a un struct
- // inicializado. La sintaxis := declara e inicializa p a este struct.
- p := pair{3, 4}
- fmt.Println(p.String()) // Llamar al método String de p, de tipo pair.
- var i Stringer // Declarar i como interfaz tipo Stringer.
- i = p // Válido porque pair implementa Stringer.
- // Llamar al metodo String de i, de tipo Stringer. Misma salida que arriba.
- fmt.Println(i.String())
-
- // Las funciones en el paquete fmt llaman al método String para
- // preguntar a un objeto por una versión imprimible de si mismo.
- fmt.Println(p) // Salida igual que arriba. Println llama al método String.
- fmt.Println(i) // Salida igual que arriba.
-
- learnVariadicParams("great", "learning", "here!")
+func aprendeInterfaces() {
+ // La sintaxis de llaves es una "estructura literal". Evalúa a una
+ // estructura iniciada. La sintaxis := declara e inicia p a esta
+ // estructura.
+ p := par{3, 4}
+ fmt.Println(p.String()) // Llama al método String de p, de tipo par.
+ var i Stringer // Declara i como interfaz de tipo Stringer.
+ i = p // Válido porque par implementa Stringer.
+ // Llama al metodo String de i, de tipo Stringer. Misma salida que
+ // arriba.
+ fmt.Println(i.String())
+
+ // Las funciones en el paquete fmt llaman al método String para
+ // consultar un objeto por una representación imprimible de si
+ // mismo.
+ fmt.Println(p) // Salida igual que arriba. Println llama al método
+ // String.
+ fmt.Println(i) // Salida igual que arriba.
+ aprendeNúmeroVariableDeParámetros("¡gran", "aprendizaje", "aquí!")
}
// Las funciones pueden tener número variable de argumentos.
-func learnVariadicParams(myStrings ...interface{}) {
- // Iterar cada valor de la variadic.
- for _, param := range myStrings {
- fmt.Println("param:", param)
- }
-
- // Pasar valor variadic como parámetro variadic.
- fmt.Println("params:", fmt.Sprintln(myStrings...))
-
- learnErrorHandling()
+func aprendeNúmeroVariableDeParámetros(misCadenas ...interface{}) {
+ // Itera en cada valor de los argumentos variables.
+ // El espacio en blanco aquí omite el índice del argumento arreglo.
+ for _, parámetro := range misCadenas {
+ fmt.Println("parámetro:", parámetro)
+ }
+
+ // Pasa el valor de múltiples variables como parámetro variadic.
+ fmt.Println("parámetros:", fmt.Sprintln(misCadenas...))
+ aprendeManejoDeError()
}
-func learnErrorHandling() {
- // ", ok" forma utilizada para saber si algo funcionó o no.
- m := map[int]string{3: "three", 4: "four"}
- if x, ok := m[1]; !ok { // ok será falso porque 1 no está en el map.
- fmt.Println("no one there")
- } else {
- fmt.Print(x) // x sería el valor, si estuviera en el map.
- }
- // Un valor de error comunica más información sobre el problema aparte de "ok".
- if _, err := strconv.Atoi("non-int"); err != nil { // _ descarta el valor
- // Imprime "strconv.ParseInt: parsing "non-int": invalid syntax".
- fmt.Println(err)
- }
- // Revisarmeos las interfaces más tarde. Mientras tanto,
- learnConcurrency()
+func aprendeManejoDeError() {
+ // ", ok" forma utilizada para saber si algo funcionó o no.
+ m := map[int]string{3: "tres", 4: "cuatro"}
+ if x, ok := m[1]; !ok { // ok será falso porque 1 no está en el mapa.
+ fmt.Println("nada allí")
+ } else {
+ fmt.Print(x) // x sería el valor, si estuviera en el mapa.
+ }
+ // Un valor de error comunica más información sobre el problema aparte
+ // de "ok".
+ if _, err := strconv.Atoi("no-int"); err != nil { // _ descarta el
+ // valor
+ // Imprime "strconv.ParseInt: parsing "no-int": invalid syntax".
+ fmt.Println(err)
+ }
+ // Revisaremos las interfaces más adelante. Mientras tanto...
+ aprendeConcurrencia()
}
-// c es un canal, un objeto de comunicación de concurrencia segura.
+// c es un canal, un objeto de comunicación concurrente seguro.
func inc(i int, c chan int) {
- c <- i + 1 // <- es el operador "enviar" cuando un canal aparece a la izquierda.
+ c <- i + 1 // <- es el operador "enviar" cuando aparece un canal a la
+ // izquierda.
}
// Utilizaremos inc para incrementar algunos números concurrentemente.
-func learnConcurrency() {
- // Misma función make utilizada antes para crear un slice. Make asigna e
- // inicializa slices, maps, y channels.
- c := make(chan int)
- // Iniciar tres goroutines concurrentes. Los números serán incrementados
- // concurrentemente, quizás en paralelo si la máquina es capaz y
- // está correctamente configurada. Las tres envían al mismo channel.
- go inc(0, c) // go es una sentencia que inicia una nueva goroutine.
- go inc(10, c)
- go inc(-805, c)
- // Leer los tres resultados del channel e imprimirlos.
- // No se puede saber en que orden llegarán los resultados!
- fmt.Println(<-c, <-c, <-c) // Channel a la derecha, <- es el operador "recibir".
-
- cs := make(chan string) // Otro channel, este gestiona cadenas.
- ccs := make(chan chan string) // Un channel de cadenas de channels.
- go func() { c <- 84 }() // Iniciar una nueva goroutine solo para
- // enviar un valor.
- go func() { cs <- "wordy" }() // Otra vez, para cs en esta ocasión.
- // Select tiene una sintáxis parecida a la sentencia switch pero
- // cada caso involucra una operacion de channels. Selecciona un caso
- // de forma aleatoria de los casos que están listos para comunicarse.
- select {
- case i := <-c: // El valor recibido puede ser asignado a una variable,
- fmt.Printf("it's a %T", i)
- case <-cs: // o el valor puede ser descartado.
- fmt.Println("it's a string")
- case <-ccs: // Channel vacío, no está listo para la comunicación.
- fmt.Println("didn't happen.")
- }
-
- // En este punto un valor fue devuelvto de c o cs. Uno de las dos
- // goroutines que se iniciaron se ha completado, la otrá permancerá
- // bloqueada.
-
- learnWebProgramming() // Go lo hace. Tu también quieres hacerlo.
+func aprendeConcurrencia() {
+ // Misma función make utilizada antes para crear un sector. Make asigna
+ // e inicia sectores, mapas y canales.
+ c := make(chan int)
+ // Inicia tres rutinasgo concurrentes. Los números serán incrementados
+ // concurrentemente, quizás en paralelo si la máquina es capaz y está
+ // correctamente configurada. Las tres envían al mismo canal.
+ go inc(0, c) // go es una instrucción que inicia una nueva rutinago.
+ go inc(10, c)
+ go inc(-805, c)
+ // Lee los tres resultados del canal y los imprime.
+ // ¡No se puede saber en que orden llegarán los resultados!
+ fmt.Println(<-c, <-c, <-c) // Canal a la derecha, <- es el operador
+ // "recibe".
+
+ cs := make(chan string) // Otro canal, este gestiona cadenas.
+ ccs := make(chan chan string) // Un canal de canales cadena.
+ go func() { c <- 84 }() // Inicia una nueva rutinago solo para
+ // enviar un valor.
+ go func() { cs <- "verboso" }() // Otra vez, para cs en esta ocasión.
+ // Select tiene una sintáxis parecida a la instrucción switch pero cada
+ // caso involucra una operacion con un canal. Selecciona un caso de
+ // forma aleatoria de los casos que están listos para comunicarse.
+ select {
+ case i := <-c: // El valor recibido se puede asignar a una variable,
+ fmt.Printf("es un %T", i)
+ case <-cs: // o el valor se puede descartar.
+ fmt.Println("es una cadena")
+ case <-ccs: // Canal vacío, no está listo para la comunicación.
+ fmt.Println("no sucedió.")
+ }
+
+ // En este punto un valor fue devuelto de c o cs. Una de las dos
+ // rutinasgo que se iniciaron se ha completado, la otrá permancerá
+ // bloqueada.
+
+ aprendeProgramaciónWeb() // Go lo hace. Tú también quieres hacerlo.
}
// Una simple función del paquete http inicia un servidor web.
-func learnWebProgramming() {
- // El primer parámetro de la direccinón TCP a la que escuchar.
- // El segundo parámetro es una interfaz, concretamente http.Handler.
- err := http.ListenAndServe(":8080", pair{})
- fmt.Println(err) // no ignorar errores
+func aprendeProgramaciónWeb() {
+// El primer parámetro es la direccinón TCP a la que escuchar.
+ // El segundo parámetro es una interfaz, concretamente http.Handler.
+ go func() {
+ err := http.ListenAndServe(":8080", par{})
+ fmt.Println(err) // no ignora errores
+ }()
+ consultaAlServidor()
}
-// Haz pair un http.Handler implementando su único método, ServeHTTP.
-func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
- // Servir datos con un método de http.ResponseWriter.
- w.Write([]byte("You learned Go in Y minutes!"))
+// Hace un http.Handler de par implementando su único método, ServeHTTP.
+func (p par) ServeHTTP(w http.ResponseWriter, r *http.Request) {
+ // Sirve datos con un método de http.ResponseWriter.
+ w.Write([]byte("¡Aprendiste Go en Y minutos!"))
+}
+
+func consultaAlServidor() {
+ resp, err := http.Get("http://localhost:8080")
+ fmt.Println(err)
+ defer resp.Body.Close()
+ cuerpo, err := ioutil.ReadAll(resp.Body)
+ fmt.Printf("\nEl servidor web dijo: `%s`\n", string(cuerpo))
}
```
-## Para leer más
+## Más información
+
+La raíz de todas las cosas sobre Go es el
+[sitio web oficial de Go](http://golang.org/).
+Allí puedes seguir el tutorial, jugar interactivamente y leer mucho más.
-La raíz de todas las cosas de Go es la [web oficial de Go](http://golang.org/).
-Ahí puedes seguir el tutorial, jugar interactivamente y leer mucho.
+La definición del lenguaje es altamente recomendada. Es fácil de leer y
+sorprendentemente corta (como la definición del lenguaje Go en estos
+días).
-La propia definición del lenguaje también está altamente
-recomendada. Es fácil de leer e increíblemente corta (como otras
-definiciones de lenguajes hoy en día)
+Puedes jugar con el código en el
+[parque de diversiones Go](https://play.golang.org/p/ncRC2Zevag). ¡Trata
+de cambiarlo y ejecutarlo desde tu navegador! Ten en cuenta que puedes
+utilizar [https://play.golang.org]( https://play.golang.org) como un
+[REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) para probar
+cosas y el código en el navegador, sin ni siquiera instalar Go.
-En la lista de lectura de estudiantes de Go está el código fuente de
-la librería estándar. Muy bien documentada, demuestra lo mejor de Go
-leíble, comprendible, estilo Go y formas Go. Pincha en el nombre de
-una función en la documentación y te aparecerá el código fuente!
+En la lista de lecturas para estudiantes de Go está el
+[código fuente de la biblioteca estándar](http://golang.org/src/pkg/).
+Ampliamente documentado, que demuestra lo mejor del legible y comprensible
+Go, con su característico estilo y modismos. ¡O puedes hacer clic en un
+nombre de función en [la documentación](http://golang.org/pkg/) y
+aparecerá el código fuente!
+Otro gran recurso para aprender Go está en
+[Go con ejemplos](http://goconejemplos.com/).
diff --git a/es-es/javascript-es.html.markdown b/es-es/javascript-es.html.markdown
index a1348508..fd01e7b9 100644
--- a/es-es/javascript-es.html.markdown
+++ b/es-es/javascript-es.html.markdown
@@ -16,8 +16,7 @@ con Java para aplicaciones más complejas. Debido a su integracion estrecha con
web y soporte por defecto de los navegadores modernos se ha vuelto mucho más común
para front-end que Java.
-JavaScript no sólo se limita a los navegadores web:
-* Node.js: Un proyecto que provee con un ambiente para el motor V8 de Google Chrome.
+JavaScript no sólo se limita a los navegadores web, aunque: Node.js, Un proyecto que proporciona un entorno de ejecución independiente para el motor V8 de Google Chrome, se está volviendo más y más popular.
¡La retroalimentación es bienvenida! Puedes encontrarme en:
[@adambrenecki](https://twitter.com/adambrenecki), o
@@ -49,6 +48,7 @@ hazAlgo()
// Toda la aritmética básica funciona como uno esperaría.
1 + 1; // = 2
+0.1 + 0.2; // = 0.30000000000000004
8 - 1; // = 7
10 * 2; // = 20
35 / 5; // = 7
@@ -102,9 +102,11 @@ false;
// Los tipos no importan con el operador ==...
"5" == 5; // = true
+null == undefined; // = true
// ...a menos que uses ===
"5" === 5; // = false
+null === undefined; // false
// Los Strings funcionan como arreglos de caracteres
// Puedes accesar a cada caracter con la función charAt()
@@ -126,7 +128,7 @@ undefined; // usado para indicar que un valor no está presente actualmente
// Aunque 0 === "0" sí es false.
///////////////////////////////////
-// 2. Variables, Arreglos y Objetos
+// 2. Variables, Arrays y Objetos
// Las variables se declaran con la palabra var. JavaScript cuenta con tipado dinámico,
// así que no se necesitan aplicar tipos. La asignación se logra con el operador =.
@@ -220,7 +222,6 @@ for (var i = 0; i < 5; i++){
}
// && es un "y" lógico, || es un "o" lógico
-var casa = {tamano:"grande",casa:"color"};
if (casa.tamano == "grande" && casa.color == "azul"){
casa.contiene = "oso";
}
diff --git a/es-es/julia-es.html.markdown b/es-es/julia-es.html.markdown
index 203ee3bb..95a16412 100644
--- a/es-es/julia-es.html.markdown
+++ b/es-es/julia-es.html.markdown
@@ -4,757 +4,937 @@ contributors:
- ["Leah Hanson", "http://leahhanson.us"]
translators:
- ["Guillermo Garza", "http://github.com/ggarza"]
+ - ["Ismael Venegas Castelló", "https://github.com/Ismael-VC"]
filename: learnjulia-es.jl
lang: es-es
---
-Julia es un nuevo lenguaje funcional homoiconic enfocado en computación técnica.
-Aunque que tiene todo el poder de macros homoiconic, funciones de primera
-clase, y control de bajo nivel, Julia es tan fácil de aprender y utilizar como
-Python.
+![JuliaLang](http://s13.postimg.org/z89djuwyf/julia_small.png)
-Esto se basa en la versión de desarrollo actual de Julia, del 18 de octubre de
-2013.
+[Julia](http://julialanges.github.io) es un [lenguaje de programación](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n) [multiplataforma](http://es.wikipedia.org/wiki/Multiplataforma) y [multiparadigma](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n_multiparadigma) de [tipado dinámico](http://es.wikipedia.org/wiki/Tipado_din%C3%A1mico), [alto nivel](http://es.wikipedia.org/wiki/Lenguaje_de_alto_nivel) y [alto desempeño](http://es.wikipedia.org/wiki/Computaci%C3%B3n_de_alto_rendimiento) para la computación [genérica](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n_de_prop%C3%B3sito_general), [técnica y científica](http://es.wikipedia.org/wiki/Computaci%C3%B3n_cient%C3%ADfica), con una sintaxis que es familiar para los usuarios de otros entornos de computación técnica y científica. Provee de un [sofisticado compilador JIT](http://es.wikipedia.org/wiki/Compilaci%C3%B3n_en_tiempo_de_ejecuci%C3%B3n), [ejecución distribuida y paralela](http://docs.julialang.org/en/release-0.3/manual/parallel-computing), [precisión numérica](http://julia.readthedocs.org/en/latest/manual/integers-and-floating-point-numbers) y de una [extensa librería con funciones matemáticas](http://docs.julialang.org/en/release-0.3/stdlib). La librería estándar, escrita casi completamente en Julia, también integra las mejores y más maduras librerías de C y Fortran para el [álgebra lineal](http://docs.julialang.org/en/release-0.3/stdlib/linalg), [generación de números aleatorios](http://docs.julialang.org/en/release-0.3/stdlib/numbers/?highlight=random#random-numbers), [procesamiento de señales](http://docs.julialang.org/en/release-0.3/stdlib/math/?highlight=signal#signal-processing), y [procesamiento de cadenas](http://docs.julialang.org/en/release-0.3/stdlib/strings). Adicionalmente, la comunidad de [desarrolladores de Julia](https://github.com/JuliaLang/julia/graphs/contributors) contribuye un número de [paquetes externos](http://pkg.julialang.org) a través del gestor de paquetes integrado de Julia a un paso acelerado. [IJulia](https://github.com/JuliaLang/IJulia.jl), una colaboración entre las comunidades de [IPython](http://ipython.org) y Julia, provee de una poderosa interfaz gráfica basada en el [navegador para Julia](https://juliabox.org).
-```ruby
+En Julia los programas están organizados entorno al [despacho múltiple](http://docs.julialang.org/en/release-0.3/manual/methods/#man-methods); definiendo funciones y sobrecargándolas para diferentes combinaciones de tipos de argumentos, los cuales también pueden ser definidos por el usuario.
+
+### ¡Prueba Julia ahora mismo!
+
+* [TryJupyter](https://try.jupyter.org)
+* [JuliaBox](https://juliabox.org)
+* [SageMathCloud](https://cloud.sagemath.com)
+
+### Resumen de Características:
-# Comentarios de una línea comienzan con una almohadilla (o signo gato)
+* [Despacho múltiple](http://en.wikipedia.org/wiki/Multiple_dispatch): permite definir el comportamiento de las funciones a través de múltiples combinaciones de tipos de argumentos (**métodos**).
+* Sistema de **tipado dinámico**: tipos para la documentación, la optimización y el despacho.
+* [Buen desempeño](http://julialang.org/benchmarks), comparado al de lenguajes **estáticamente compilados** como C.
+* [Gestor de paquetes](http://docs.julialang.org/en/release-0.3/stdlib/pkg) integrado.
+* [Macros tipo Lisp](http://docs.julialang.org/en/release-0.3/manual/metaprogramming/#macros) y otras comodidades para la [meta programación](http://docs.julialang.org/en/release-0.3/manual/metaprogramming).
+* Llamar funciones de otros lenguajes, mediante paquetes como: **Python** ([PyCall](https://github.com/stevengj/PyCall.jl)), [Mathematica](http://github.com/one-more-minute/Mathematica.jl), **Java** ([JavaCall](http://github.com/aviks/JavaCall.jl)), **R** ([Rif](http://github.com/lgautier/Rif.jl) y [RCall](http://github.com/JuliaStats/RCall.jl)) y **Matlab** ([MATLAB](http://github.com/JuliaLang/MATLAB.jl)).
+* [Llamar funciones de C y Fortran](http://docs.julialang.org/en/release-0.3/manual/calling-c-and-fortran-code) **directamente**: sin necesidad de usar envoltorios u APIs especiales.
+* Poderosas características de **línea de comandos** para [gestionar otros procesos](http://docs.julialang.org/en/release-0.3/manual/running-external-programs).
+* Diseñado para la [computación paralela y distribuida](http://docs.julialang.org/en/release-0.3/manual/parallel-computing) **desde el principio**.
+* [Corrutinas](http://en.wikipedia.org/wiki/Coroutine): hilos ligeros "**verdes**".
+* Los [tipos definidos por el usuario](http://docs.julialang.org/en/release-0.3/manual/types) son tan **rápidos y compactos** como los tipos estándar integrados.
+* [Generación automática de código](http://docs.julialang.org/en/release-0.3/stdlib/base/?highlight=%40code#internals) **eficiente y especializado** para diferentes tipos de argumentos.
+* [Conversiones y promociones](http://docs.julialang.org/en/release-0.3/manual/conversion-and-promotion) para tipos numéricos y de otros tipos, **elegantes y extensibles**.
+* Soporte eficiente para [Unicode](http://es.wikipedia.org/wiki/Unicode), incluyendo [UTF-8](http://es.wikipedia.org/wiki/UTF-8) pero sin limitarse solo a este.
+* [Licencia MIT](https://github.com/JuliaLang/julia/blob/master/LICENSE.md): libre y de código abierto.
+
+Esto se basa en la versión `0.3.11`.
+
+```ruby
+# Los comentarios de una línea comienzan con una almohadilla (o signo de gato).
-#= Commentarios multilinea pueden escribirse
- usando '#=' antes de el texto y '=#'
- después del texto. También se pueden anidar.
+#=
+ Los commentarios multilínea pueden escribirse
+ usando '#=' antes de el texto y '=#'
+ después del texto. También se pueden anidar.
=#
-####################################################
-## 1. Tipos de datos primitivos y operadores.
-####################################################
-# Todo en Julia es una expresión.
+##############################################
+# 1. Tipos de datos primitivos y operadores. #
+##############################################
+
+# Todo en Julia es una expresión (Expr).
# Hay varios tipos básicos de números.
-3 # => 3 (Int64)
-3.2 # => 3.2 (Float64)
-2 + 1im # => 2 + 1im (Complex{Int64})
-2//3 # => 2//3 (Rational{Int64})
+3 # => 3 # Int64
+3.2 # => 3.2 # Float64
+2 + 1im # => 2 + 1im # Complex{Int64}
+2 // 3 # => 2//3 # Rational{Int64}
# Todos los operadores infijos normales están disponibles.
-1 + 1 # => 2
-8 - 1 # => 7
-10 * 2 # => 20
-35 / 5 # => 7.0
-5/2 # => 2.5 # dividir un Int por un Int siempre resulta en un Float
-div (5, 2) # => 2 # para un resultado truncado, usa div
-5 \ 35 # => 7.0
-2 ^ 2 # => 4 # exponente, no es xor
-12 % 10 # => 2
-
-# Refuerza la precedencia con paréntesis
-(1 + 3) * 2 # => 8
-
-# Operadores a nivel de bit
-~2 # => -3 # bitwise not
-3 & 5 # => 1 # bitwise and
-2 | 4 # => 6 # bitwise or
-2 $ 4 # => 6 # bitwise xor
-2 >>> 1 # => 1 # logical shift right
-2 >> 1 # => 1 # arithmetic shift right
-2 << 1 # => 4 # logical/arithmetic shift left
-
-# Se puede utilizar la función bits para ver la representación binaria de un
-# número.
+1 + 1 # => 2
+8 - 1 # => 7
+10 * 2 # => 20
+35 / 5 # => 7.0 # dividir un Int por un Int siempre resulta
+ # en un Float
+5 / 2 # => 2.5
+div(5, 2) # => 2 # para un resultado truncado, usa la función div
+5 \ 35 # => 7.0
+2 ^ 2 # => 4 # exponente, no es XOR
+12 % 10 # => 2
+
+# Refuerza la precedencia con paréntesis.
+(1 + 3) * 2 # => 8
+
+# Operadores a nivel de bit.
+~2 # => -3 # bitwise NOT
+3 & 5 # => 1 # bitwise AND
+2 | 4 # => 6 # bitwise OR
+2 $ 4 # => 6 # bitwise XOR
+2 >>> 1 # => 1 # desplazamiento lógico hacia la derecha
+2 >> 1 # => 1 # desplazamiento aritmético hacia la derecha
+2 << 1 # => 4 # desplazamiento lógico/aritmético hacia la izquierda
+
+# Se puede utilizar la función bits para ver la representación
+# binaria de un número.
bits(12345)
# => "0000000000000000000000000000000000000000000000000011000000111001"
+
bits(12345.0)
# => "0100000011001000000111001000000000000000000000000000000000000000"
-# Valores 'boolean' (booleanos) son primitivos
-true
-false
-
-# Operadores Boolean (booleanos)
-!true # => false
-!false # => true
-1 == 1 # => true
-2 == 1 # => false
-1 != 1 # => false
-2 != 1 # => true
-1 < 10 # => true
-1 > 10 # => false
-2 <= 2 # => true
-2 >= 2 # => true
+# Los valores booleanos (Bool) son primitivos.
+true # => true
+false # => false
+
+# Operadores booleanos.
+!true # => false
+!false # => true
+1 == 1 # => true
+2 == 1 # => false
+1 != 1 # => false
+2 != 1 # => true
+1 < 10 # => true
+1 > 10 # => false
+2 <= 2 # => true
+2 >= 2 # => true
+
# ¡Las comparaciones pueden ser concatenadas!
-1 < 2 < 3 # => true
-2 < 3 < 2 # => false
+1 < 2 < 3 # => true
+2 < 3 < 2 # => false
-# Strings se crean con "
-"Esto es un string."
+# Los literales de cadenas (String) se crean con la comilla doble: "
+"Esto es una cadena."
-# Literales de caracteres se escriben con '
+# Los literales de caracteres (Char) se crean con la comilla simple: '
'a'
-# Una string puede ser indexado como una array de caracteres
-"Esto es un string."[1] # => 'E' # Índices en Julia empiezen del 1
-# Sin embargo, esto no va a funcionar bien para strings UTF8,
+# Una cadena puede ser indexada como una arreglo de caracteres.
+"Esto es un string."[1] # => 'E' # Los índices en Julia comienzan en: 1
+
+# Sin embargo, esto no va a funcionar bien para las cadenas UTF8 (UTF8String),
# Lo que se recomienda es la iteración (map, for, etc).
-# $ puede ser utilizado para la interpolación de strings:
-"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
-# Se puede poner cualquier expresión de Julia dentro los paréntesis.
+# $ puede ser utilizado para la interpolación de cadenas, se puede poner
+# cualquier expresión de Julia dentro los paréntesis.
+"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
-# Otro forma de formatear strings es el macro printf
-@printf "%d es menor de %f" 4.5 5.3 # 5 es menor de 5.300000
+# Otra forma para formatear cadenas es usando el macro printf.
+@printf "%d es menor de %f\n" 4.5 5.3 # 5 es menor de 5.300000
-# Imprimir es muy fácil
-println("Soy Julia. ¡Encantado de conocerte!")
+# ¡Imprimir es muy fácil!
+println("¡Hola Julia!") # ¡Hola Julia!
-####################################################
-## 2. Variables y Colecciones
-####################################################
+
+##############################
+# 2. Variables y Colecciones #
+##############################
# No hay necesidad de declarar las variables antes de asignarlas.
-una_variable = 5 # => 5
-una_variable # => 5
+una_variable = 5 # => 5
+una_variable # => 5
-# Acceder a variables no asignadas previamente es una excepción.
+# Acceder a una variable no asignada previamente es una excepción.
try
- otra_variable # => ERROR: some_other_var not defined
+ otra_variable # ERROR: otra_variable not defined
catch e
- println(e)
+ println(e) # UndefVarError(:otra_variable)
end
-# Los nombres de variables comienzan con una letra.
-# Después de eso, puedes utilizar letras, dígitos, guiones y signos de
+# Los nombres de variables comienzan con una letra o guion bajo: _.
+# Después de eso, puedes utilizar letras, dígitos, guiones bajos y signos de
# exclamación.
-OtraVariable123! = 6 # => 6
+otraVariable_123! = 6 # => 6
+
+# También puedes utilizar caracteres Unicode.
+☃ = 8 # => 8
-# También puede utilizar caracteres unicode
-☃ = 8 # => 8
# Estos son especialmente útiles para la notación matemática
-2 * π # => 6.283185307179586
-
-# Una nota sobre las convenciones de nomenclatura de Julia:
-#
-# * Los nombres de las variables aparecen en minúsculas, con separación de
-# palabra indicado por underscore ('\ _').
-#
-# * Los nombres de los tipos comienzan con una letra mayúscula y separación de
-# palabras se muestra con CamelCase en vez de underscore.
-#
-# * Los nombres de las funciones y los macros están en minúsculas, sin
-# underscore.
-#
-# * Funciones que modifican sus inputs tienen nombres que terminan en!. Estos
-# funciones a veces se llaman mutating functions o in-place functions.
-
-# Los Arrays almacenan una secuencia de valores indexados entre 1 hasta n
-a = Int64[] # => 0-element Int64 Array
-
-# Literales de arrays 1-dimensionales se pueden escribir con valores separados
-# por comas.
-b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6]
-b[1] # => 4
-b[end] # => 6
-
-# Los arrays 2-dimensionales usan valores separados por espacios y filas
-# separados por punto y coma.
-matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
-
-# Añadir cosas a la final de una lista con push! y append!
-push!(a,1) # => [1]
-push!(a,2) # => [1,2]
-push!(a,4) # => [1,2,4]
-push!(a,3) # => [1,2,4,3]
-append!(a,b) # => [1,2,4,3,4,5,6]
-
-# Eliminar de la final con pop
-pop!(b) # => 6 y b ahora es [4,5]
-
-# Vamos a ponerlo de nuevo
-push!(b, 6) # b es ahora [4,5,6] de nuevo.
-
-a[1] # => 1 # recuerdan que los índices de Julia empiezan desde 1, no desde 0!
-
-# end es una abreviatura para el último índice. Se puede utilizar en cualquier
-# expresión de indexación
-a[end] # => 6
-
-# tambien hay shift y unshift
-shift!(a) # => 1 y a es ahora [2,4,3,4,5,6]
-unshift!(a,7) # => [7,2,4,3,4,5,6]
-
-# Nombres de funciónes que terminan en exclamaciones indican que modifican
-# su argumento.
-arr = [5,4,6] # => 3-element Int64 Array: [5,4,6]
-sort(arr) # => [4,5,6]; arr es todavía [5,4,6]
-sort!(arr) # => [4,5,6]; arr es ahora [4,5,6]
-
-# Buscando fuera de límites es un BoundsError
+# (multiplicación implicita).
+2π # => 6.283185307179586
+
+#=
+ Una nota sobre las convenciones de nomenclatura de Julia:
+
+ * Los nombres de las variables aparecen en minúsculas, con separación de
+ palabra indicado por un guion bajo:
+
+ otra_variable
+
+ * Los nombres de los tipos comienzan con una letra mayúscula y separación de
+ palabras se muestra con CamelCase en vez de guion bajo:
+
+ OtroTipo
+
+ * Los nombres de las funciones y los macros están en minúsculas, sin
+ underscore:
+
+ otromacro
+
+ * Funciones que modifican sus entradas tienen nombres que terminan en: !.
+ Estas funciones a veces se les llaman funciones transformadoras o
+ funciones in situ:
+
+ otra_funcion!
+=#
+
+# Los arreglos (Array) almacenan una secuencia de valores indexados de entre 1 hasta n.
+a = Int64[] # => 0-element Array{Int64,1}
+
+# Los literales de arregos unidimensionales se pueden escribir con valores
+# separados por comas.
+b = [4, 5, 6]
+#=
+ => 3-element Array{Int64,1}:
+ 4
+ 5
+ 6
+=#
+b[1] # => 4
+b[end] # => 6
+
+# Los arreglos bidimensionales usan valores separados por espacios y filas
+# separadas por punto y coma.
+matrix = [1 2; 3 4]
+#=
+ => 2x2 Array{Int64,2}:
+ 1 2
+ 3 4
+=#
+
+# Añadir cosas a la final de un arreglo con push! y append!.
+push!(a, 1) # => [1]
+push!(a, 2) # => [1,2]
+push!(a, 4) # => [1,2,4]
+push!(a, 3) # => [1,2,4,3]
+append!(a, b) # => [1,2,4,3,4,5,6]
+
+# Eliminar del final con pop!.
+pop!(b) # => 6 y b ahora es: [4,5]
+
+# Vamos a ponerlo de nuevo.
+push!(b, 6) # b es ahora [4,5,6] de nuevo
+
+a[1] # => 1 # recuerda, los índices de Julia empiezan desde 1, no desde 0!
+
+# end es una abreviatura para el último índice. Se puede utilizar en cualquier
+# expresión de indexación.
+a[end] # => 6
+
+# También hay shift! y unshift!.
+shift!(a) # => 1 y a es ahora: [2,4,3,4,5,6]
+unshift!(a, 7) # => [7,2,4,3,4,5,6]
+
+# Los nombres de funciónes que terminan en exclamaciones indican que modifican
+# su o sus argumentos de entrada.
+arr = [5, 4, 6] # => 3-element Array{Int64,1}: [5,4,6]
+sort(arr) # => [4,5,6] y arr es todavía: [5,4,6]
+sort!(arr) # => [4,5,6] y arr es ahora: [4,5,6]
+
+# Buscando fuera de límites es un BoundsError.
try
- a[0] # => ERROR: BoundsError() in getindex at array.jl:270
- a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270
+ a[0] # ERROR: BoundsError() in getindex at array.jl:270
+ a[end+1] # ERROR: BoundsError() in getindex at array.jl:270
catch e
- println(e)
+ println(e) # BoundsError()
end
-# Errors dan la línea y el archivo de su procedencia, aunque sea en el standard
-# library. Si construyes Julia de source, puedes buscar en el source para
-# encontrar estos archivos.
+# Las excepciones y los errores dan la línea y el archivo de su procedencia,
+# aunque provenga de la librería estándar. Si compilas Julia del código fuente,
+# puedes buscar en el código para encontrar estos archivos.
-# Se puede inicializar arrays de un range
-a = [1:5] # => 5-element Int64 Array: [1,2,3,4,5]
+# Se puede inicializar un arreglo con un rango (Range).
+a = [1:5] # => 5-element Array{Int64,1}: [1,2,3,4,5]
-# Puedes mirar en ranges con sintaxis slice.
-a[1:3] # => [1, 2, 3]
-a[2:end] # => [2, 3, 4, 5]
+# Puedes mirar en los rangos con la sintaxis de rebanada.
+a[1:3] # => [1,2,3]
+a[2:end] # => [2,3,4,5]
-# Eliminar elementos de una array por índice con splice!
-arr = [3,4,5]
-splice!(arr,2) # => 4 ; arr es ahora [3,5]
+# Eliminar elementos de un arreglo por índice con splice!
+arr = [3, 4, 5]
+splice!(arr, 2) # => 4 y arr es ahora: [3,5]
-# Concatenar listas con append!
-b = [1,2,3]
-append!(a,b) # ahroa a es [1, 2, 3, 4, 5, 1, 2, 3]
+# Concatenar arreglos con append!
+b = [1, 2, 3]
+append!(a, b) # a ahora es: [1,2,3,4,5,1,2,3]
-# Comprueba la existencia en una lista con in
-in(1, a) # => true
+# Comprueba la existencia de un elemento en un arreglo con in.
+in(1, a) # => true
-# Examina la longitud con length
-length(a) # => 8
+# Examina la longitud con length.
+length(a) # => 8
+
+# Las tuplas (Tuple) son inmutables.
+tup = (1, 2, 3) # => (1,2,3) # una tupla tipo (Int64,Int64,Int64)
+tup[1] # => 1
-# Tuples son immutable.
-tup = (1, 2, 3) # => (1,2,3) # un (Int64,Int64,Int64) tuple.
-tup[1] # => 1
try:
- tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
+ tup[1] = 3 # ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
catch e
- println(e)
+ println(e) # MethodError(setindex!,(:tup,3,1))
end
-# Muchas funciones de lista también trabajan en las tuples
-length(tup) # => 3
-tup[1:2] # => (1,2)
-in(2, tup) # => true
+# Muchas funciones de arreglos también trabajan en con las tuplas.
+length(tup) # => 3
+tup[1:2] # => (1,2)
+in(2, tup) # => true
+
+# Se pueden desempacar las tuplas en variables individuales.
+a, b, c = (1, 2, 3) # => (1,2,3) # ahora a es 1, b es 2 y c es 3
+
+# Los tuplas se crean, incluso si se omiten los paréntesis.
+d, e, f = 4, 5, 6 # => (4,5,6)
-# Se puede desempacar tuples en variables
-a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3
+# Una tupla de un elemento es distinta del valor que contiene.
+(1,) == 1 # => false
+(1) == 1 # => true
-# Los tuples se crean, incluso si se omite el paréntesis
-d, e, f = 4, 5, 6 # => (4,5,6)
+# Mira que fácil es cambiar dos valores!
+e, d = d, e # => (5,4) # ahora d es 5 y e es 4
-# Un tuple 1-elemento es distinto del valor que contiene
-(1,) == 1 # => false
-(1) == 1 # => true
+# Los diccionarios (Dict) son arreglos asociativos.
+dicc_vacio = Dict() # => Dict{Any,Any} with 0 entries
-# Mira que fácil es cambiar dos valores
-e, d = d, e # => (5,4) # d is now 5 and e is now 4
+# Se puede crear un diccionario usando una literal.
+dicc_lleno = ["uno" => 1, "dos" => 2, "tres" => 3]
+#=
+ => Dict{ASCIIString,Int64} with 3 entries:
+ "tres" => 3
+ "dos" => 2
+ "uno" => 1
+=#
+# Busca valores con: [].
+dicc_lleno["uno"] # => 1
-# Dictionaries almanecan mapeos
-dict_vacio = Dict() # => Dict{Any,Any}()
+# Obtén todas las claves con.
+keys(dicc_lleno)
+#=
+ => KeyIterator for a Dict{ASCIIString,Int64} with 3 entries. Keys:
+ "tres"
+ "dos"
+ "uno"
+=#
-# Se puede crear un dictionary usando un literal
-dict_lleno = ["one"=> 1, "two"=> 2, "three"=> 3]
-# => Dict{ASCIIString,Int64}
+# Nota: los elementos del diccionario no están ordenados y no se guarda el orden
+# en que se insertan.
-# Busca valores con []
-dict_lleno["one"] # => 1
+# Obtén todos los valores.
+values(dicc_lleno)
+#=
+ => ValueIterator for a Dict{ASCIIString,Int64} with 3 entries. Values:
+ 3
+ 2
+ 1
+=#
-# Obtén todas las claves
-keys(dict_lleno)
-# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
-# Nota - claves del dictionary no están ordenados ni en el orden en que se
-# insertan.
+# Nota: igual que el anterior en cuanto a ordenamiento de los elementos.
-# Obtén todos los valores
-values(dict_lleno)
-# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
-# Nota - Igual que el anterior en cuanto a ordenamiento de claves.
+# Comprueba si una clave existe en un diccionario con in y haskey.
+in(("uno", 1), dicc_lleno) # => true
+in(("tres", 3), dicc_lleno) # => false
-# Compruebe si hay existencia de claves en un dictionary con in y haskey
-in(("uno", 1), dict_lleno) # => true
-in(("tres", 3), dict_lleno) # => false
-haskey(dict_lleno, "one") # => true
-haskey(dict_lleno, 1) # => false
+haskey(dicc_lleno, "uno") # => true
+haskey(dicc_lleno, 1) # => false
-# Tratando de buscar una clave que no existe producirá un error
+# Tratar de obtener un valor con una clave que no existe producirá un error.
try
- dict_lleno["dos"] # => ERROR: key not found: dos in getindex at dict.jl:489
+ # ERROR: key not found: cuatro in getindex at dict.jl:489
+ dicc_lleno["cuatro"]
catch e
- println(e)
+ println(e) # KeyError("cuatro")
end
-# Utilice el método get para evitar ese error proporcionando un valor
-# predeterminado
-# get(dictionary,key,default_value)
-get(dict_lleno,"one",4) # => 1
-get(dict_lleno,"four",4) # => 4
+# Utiliza el método get para evitar este error proporcionando un valor
+# predeterminado: get(diccionario, clave, valor_predeterminado).
+get(dicc_lleno, "uno", 4) # => 1
+get(dicc_lleno, "cuatro", 4) # => 4
-# Usa Sets para representar colecciones (conjuntos) de valores únicos, no
-# ordenadas
-conjunto_vacio = Set() # => Set{Any}()
-# Iniciar una set de valores
-conjunto_lleno = Set(1,2,2,3,4) # => Set{Int64}(1,2,3,4)
+# Usa conjuntos (Set) para representar colecciones de valores únicos, no
+# ordenados.
+conjunto_vacio = Set() # => Set{Any}({})
-# Añadir más valores a un conjunto
-push!(conjunto_lleno,5) # => Set{Int64}(5,4,2,3,1)
-push!(conjunto_lleno,5) # => Set{Int64}(5,4,2,3,1)
+# Iniciar una conjunto de valores.
+conjunto_lleno = Set(1, 2, 2, 3, 4) # => Set{Int64}({4,2,3,1})
-# Compruebe si los valores están en el conjunto
-in(2, conjunto_lleno) # => true
-in(10, conjunto_lleno) # => false
+# Añadir más valores a un conjunto.
+push!(conjunto_lleno, 5) # => Set{Int64}({4,2,3,5,1})
+push!(conjunto_lleno, 5) # => Set{Int64}({4,2,3,5,1})
-# Hay funciones de intersección de conjuntos, la unión, y la diferencia.
-conjunto_otro= Set(3, 4, 5, 6) # => Set{Int64}(6,4,5,3)
-intersect(conjunto_lleno, conjunto_otro) # => Set{Int64}(3,4,5)
-union(conjunto_lleno, conjunto_otro) # => Set{Int64}(1,2,3,4,5,6)
-setdiff(Set(1,2,3,4),Set(2,3,5)) # => Set{Int64}(1,4)
+# Comprobar si los valores están en el conjunto.
+in(2, conjunto_lleno) # => true
+in(10, conjunto_lleno) # => false
+# Hay funciones de intersección, unión y diferencia de conjuntos.
+otro_conjunto = Set(3, 4, 5, 6) # => Set{Int64}({6,4,5,3})
+intersect(conjunto_lleno, otro_conjunto) # => Set{Int64}({3,4,5})
+union(conjunto_lleno, otro_conjunto) # => Set{Int64}({1,2,3,4,5,6})
+setdiff(Set(1, 2, 3, 4), Set(2, 3, 5)) # => Set{Int64}({1,4})
-####################################################
-## 3. Control de Flujo
-####################################################
-# Hagamos una variable
+#######################
+# 3. Control de Flujo #
+#######################
+
+# Hagamos una variable.
una_variable = 5
-# Aquí está una declaración de un 'if'. La indentación no es significativa en
-# Julia
+# Aquí está la declaración de un if. La indentación no es significativa en
+# Julia.
if una_variable > 10
- println("una_variable es completamente mas grande que 10.")
-elseif una_variable < 10 # Este condición 'elseif' es opcional.
- println("una_variable es mas chica que 10.")
-else # Esto también es opcional.
- println("una_variable es de hecho 10.")
+ println("una_variable es completamente mayor que 10.")
+elseif una_variable < 10 # esta condición elseif es opcional
+ println("una_variable es menor que 10.")
+else # esto también es opcional
+ println("De echo una_variable es 10.")
end
-# => imprime "una_variable es mas chica que 10."
+# imprime: una_variable es menor que 10.
-# For itera sobre tipos iterables
-# Tipos iterables incluyen Range, Array, Set, Dict, y String.
-for animal=["perro", "gato", "raton"]
- println("$animal es un mamifero")
- # Se puede usar $ para interpolar variables o expresiónes en strings
+# El bucle for itera sobre tipos iterables, ie. Range, Array, Set,
+# Dict y String.
+for animal in ["perro", "gato", "ratón"]
+ # Se puede usar $ para interpolar variables o expresiones en ls cadenas.
+ println("$animal es un mamífero.")
end
-# imprime:
-# perro es un mamifero
-# gato es un mamifero
-# raton es un mamifero
+#=
+ imprime:
+ perro es un mamífero.
+ gato es un mamífero.
+ ratón es un mamífero.
+=#
-for a in ["perro"=>"mamifero","gato"=>"mamifero","raton"=>"mamifero"]
- println("$(a[1]) es un $(a[2])")
+for a in ["perro" => "mamífero", "gato" => "mamífero", "ratón" => "mamífero"]
+ println("$(a[1]) es un $(a[2]).")
end
-# imprime:
-# perro es un mamifero
-# gato es un mamifero
-# raton es un mamifero
+#=
+ imprime:
+ perro es un mamífero.
+ gato es un mamífero.
+ ratón es un mamífero.
+=#
-for (k,v) in ["perro"=>"mamifero", "gato"=>"mamifero", "raton"=>"mamifero"]
- println("$k es un $v")
+for (k,v) in ["perro"=>"mamífero", "gato"=>"mamífero", "ratón"=>"mamífero"]
+ println("$k es un $v.")
end
-# imprime:
-# perro es un mamifero
-# gato es un mamifero
-# raton es un mamifero
+#=
+ imprime:
+ perro es un mamífero.
+ gato es un mamífero.
+ ratón es un mamífero.
+=#
-# While itera hasta que una condición no se cumple.
+# El bucle while itera hasta que una condición se deje de cumplir.
x = 0
while x < 4
println(x)
- x += 1 # versión corta de x = x + 1
+ x += 1 # versión corta de: x = x + 1
end
-# imprime:
-# 0
-# 1
-# 2
-# 3
+#=
+imprime:
+ 0
+ 1
+ 2
+ 3
+=#
-# Maneja excepciones con un bloque try/catch
-try
- error("ayuda")
+# Maneja excepciones con un bloque try/catch.
+try # intentar
+ error("Ooops!")
catch e
- println("capturando $e")
+ println("capturando: $e") # capturando: ErrorException("Ooops!")
end
-# => capturando ErrorException("ayuda")
-####################################################
-## 4. Funciones
-####################################################
+################
+# 4. Funciones #
+################
-# Usa 'function' para crear nuevas funciones
+# Usa function para crear nuevas funciones.
-#function nombre(arglist)
-# cuerpo...
-#end
+#=
+ function nombre(arglist)
+ cuerpo...
+ end
+=#
function suma(x, y)
println("x es $x e y es $y")
- # Las funciones devuelven el valor de su última declaración
+ # las funciones devuelven el valor de su última expresión
x + y
end
+# => suma (generic function with 1 method)
+
+suma(5, 6) # => 11 # después de imprimir: x es 5 e y es 6
-suma(5, 6) # => 11 # después de imprimir "x es 5 e y es de 6"
+# También puedes usar esta otra sintaxis para definir funciones!
+resta(x, y) = x - y # => resta (generic function with 1 method)
# Puedes definir funciones que toman un número variable de
-# argumentos posicionales
+# argumentos posicionales (el ... se llama un splat).
function varargs(args...)
+ # Usa la palabra clave return para regresar desde cualquier
+ # lugar de la función.
return args
- # Usa la palabra clave return para devolver en cualquier lugar de la función
end
# => varargs (generic function with 1 method)
-varargs(1,2,3) # => (1,2,3)
+varargs(1, 2, 3) # => (1,2,3)
+varargs([1, 2, 3]) # => ([1,2,3],)
-# El ... se llama un splat.
-# Acabamos de utilizar lo en una definición de función.
-# También se puede utilizar en una llamada de función,
-# donde va splat un Array o el contenido de un Tuple en la lista de argumentos.
-Set([1,2,3]) # => Set{Array{Int64,1}}([1,2,3]) # Produce un Set de Arrays
-Set([1,2,3]...) # => Set{Int64}(1,2,3) # esto es equivalente a Set(1,2,3)
+# Acabamos de utilizar el splat (...) en la definición de una función. También
+# se puede utilizar al llamar a una función, donde se esparce un arreglo, tupla
+# o en general una secuencia iterable en la tupla de argumentos.
+varargs([1, 2, 3]...) # => (1,2,3) # igual que: varargs(1, 2, 3)
-x = (1,2,3) # => (1,2,3)
-Set(x) # => Set{(Int64,Int64,Int64)}((1,2,3)) # un Set de Tuples
-Set(x...) # => Set{Int64}(2,3,1)
+x = (1, 2, 3) # => (1,2,3)
+varargs(x) # => ((1,2,3),)
+varargs(x...) # => (1,2,3)
+varargs("abc"...) # => ('a','b','c')
-# Puede definir funciones con argumentos posicionales opcionales
-function defaults(a,b,x=5,y=6)
+# Puedes definir funciones con argumentos posicionales opcionales.
+function defaults(a, b, x=5, y=6)
return "$a $b y $x $y"
end
+# => defaults (generic function with 3 methods)
+
+defaults('h', 'g') # => "h g y 5 6"
+defaults('h', 'g', 'j') # => "h g y j 6"
+defaults('h', 'g', 'j', 'k') # => "h g y j k"
-defaults('h','g') # => "h g y 5 6"
-defaults('h','g','j') # => "h g y j 6"
-defaults('h','g','j','k') # => "h g y j k"
try
- defaults('h') # => ERROR: no method defaults(Char,)
- defaults() # => ERROR: no methods defaults()
+ defaults('h') # ERROR: `defaults` has no method matching defaults(::Char)
+ defaults() # ERROR: `defaults` has no method matching defaults()
catch e
- println(e)
+ println(e) # MethodError(defaults,('h',))
end
-# Puedes definir funciones que toman argumentos de palabra clave
-function args_clave(;k1=4,nombre2="hola") # note the ;
- return ["k1"=>k1,"nombre2"=>nombre2]
+# Puedes definir funciones que tomen argumentos de palabras clave.
+function args_clave(;k1=4, nombre2="hola") # nota el punto y coma: ;
+ return ["k1" => k1, "nombre2" => nombre2]
end
+# => args_clave (generic function with 1 method)
-args_clave(nombre2="ness") # => ["nombre2"=>"ness","k1"=>4]
-args_clave(k1="mine") # => ["k1"=>"mine","nombre2"=>"hola"]
-args_clave() # => ["nombre2"=>"hola","k1"=>4]
+args_clave(nombre2="ness") # => ["nombre2"=>"ness","k1"=>4]
+args_clave(k1="mine") # => ["k1"=>"mine","nombre2"=>"hola"]
+args_clave() # => ["nombre2"=>"hola","k1"=>4]
-# Puedes combinar todo tipo de argumentos en la misma función
-function todos_los_args(arg_normal, arg_posicional_opcional=2; arg_clave="foo")
- println("argumento normal: $arg_normal")
- println("argumento optional: $arg_posicional_opcional")
- println("argumento de clave: $arg_clave")
+# Puedes combinar todo tipo de argumentos en la misma función.
+function todos_los_args(arg_posicional, arg_opcional=2; arg_clave="foo")
+ println("argumento posicional: $arg_posicional")
+ println(" argumento opcional: $arg_opcional")
+ println(" argumento clave: $arg_clave")
end
+# => todos_los_args (generic function with 2 methods)
+# No se necesita punto y coma ; al llamar la función usando un argumento clave,
+# esto solo es necesario en la definición de la función.
todos_los_args(1, 3, arg_clave=4)
-# imprime:
-# argumento normal: 1
-# argumento optional: 3
-# argumento de clave: 4
+#=
+ imprime:
+ argumento posicional: 1
+ argumento opcional: 3
+ argumento clave: 4
+=#
-# Julia tiene funciones de primera clase
+# Julia tiene funciones de primera clase.
function crear_suma(x)
- suma = function (y)
+ suma = function (y) # función anónima
return x + y
end
return suma
end
+# => crear_suma (generic function with 1 method)
-# Esta es el sintaxis "stabby lambda" para crear funciones anónimas
-(x -> x > 2)(3) # => true
+# Esta es otra sintaxis (estilo cálculo lambda), para crear funciones anónimas.
+(x -> x > 2)(3) # => true
# Esta función es idéntica a la crear_suma implementación anterior.
-function crear_suma(x)
- y -> x + y
-end
+crear_suma(x) = y -> x + y
-# También puedes nombrar la función interna, si quieres
+# También puedes nombrar la función interna, si quieres.
function crear_suma(x)
function suma(y)
x + y
end
suma
end
+# => crear_suma (generic function with 1 method)
-suma_10 = crear_suma(10)
-suma_10(3) # => 13
+suma_10 = crear_suma(10) # => suma (generic function with 1 method)
+suma_10(3) # => 13
+# Hay funciones integradas de orden superior.
+map(suma_10, [1, 2, 3]) # => [11,12,13]
+filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6,7]
-# Hay funciones integradas de orden superior
-map(suma_10, [1,2,3]) # => [11, 12, 13]
-filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
+# Se puede pasar un bloque a las funciones cuyo primer argumento posicional
+# es otra función, como en map y filter.
+map([1, 2, 3]) do arr
+ suma_10(arr)
+end
+#=
+ => 3-element Array{Int64,1}:
+ 11
+ 12
+ 13
+=#
-# Podemos usar listas por comprensión para mapeos
-[suma_10(i) for i=[1, 2, 3]] # => [11, 12, 13]
-[suma_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
+filter([3, 4, 5, 6, 7]) do arr
+ (x -> x > 5)(arr)
+end
+#=
+ => 2-element Array{Int64,1}:
+ 6
+ 7
+=#
-####################################################
-## 5. Tipos
-####################################################
+# Podemos usar comprensiones de listas multidimensionales.
+[suma_10(i) for i = [1, 2, 3]] # => [11, 12, 13] # 1D
+[suma_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
+
+[i*j for i = [1:3], j in [1:3]] # 2D
+#=
+ => 3x3 Array{Int64,2}:
+ 1 2 3
+ 2 4 6
+ 3 6 9
+=#
+
+[i*j/k for i = [1:3], j = [1:3], k in [1:3]] # 3D
+#=
+ => 3x3x3 Array{Float64,3}:
+ [:, :, 1] =
+ 1.0 2.0 3.0
+ 2.0 4.0 6.0
+ 3.0 6.0 9.0
+
+ [:, :, 2] =
+ 0.5 1.0 1.5
+ 1.0 2.0 3.0
+ 1.5 3.0 4.5
+
+ [:, :, 3] =
+ 0.333333 0.666667 1.0
+ 0.666667 1.33333 2.0
+ 1.0 2.0 3.0
+=#
+
+
+############
+# 5. Tipos #
+############
-# Julia tiene sistema de tipos.
# Cada valor tiene un tipo y las variables no tienen propios tipos.
-# Se puede utilizar la función `typeof` para obtener el tipo de un valor.
-typeof(5) # => Int64
+# Se puede utilizar la función typeof para obtener el tipo de un valor.
+typeof(5) # => Int64 # en un sistema de 64 bits, de lo contrario: Int32
-# Los tipos son valores de primera clase
-typeof(Int64) # => DataType
-typeof(DataType) # => DataType
-# DataType es el tipo que representa los tipos, incluyéndose a sí mismo.
+# Los tipos son valores de primera clase, DataType es el tipo que representa a
+# los tipos, incluyéndose a sí mismo.
+typeof(Int64) # => DataType
+typeof(DataType) # => DataType
-# Los tipos se usan para la documentación, optimizaciones, y envio.
-# No están comprobados estáticamente.
+# Los tipos se usan para la documentación, para optimizaciones
+# y el despacho múltiple. No están comprobados estáticamente.
-# Los usuarios pueden definir tipos
-# Son como registros o estructuras en otros idiomas.
-# Nuevos tipos se definen utilizado la palabra clave `type`.
+# Los usuarios pueden definir sus propios tipos.
+# Son como registros o estructuras en otros idiomas.
+# Un nuevo tipos se define utilizado la palabra clave type.
# type Nombre
-# field::OptionalType
+# atributo::UnTipo # las anotaciones de tipos son opcionales
# ...
# end
type Tigre
- longituddecola::Float64
- colordelpelaje # no incluyendo una anotación de tipo es el mismo que `::Any`
+ longitud_cola::Float64
+ color_pelaje # sin una anotación de tipo, es lo mismo que `::Any`
end
-# Los argumentos del constructor por default son las propiedades
-# del tipo, en el orden en que están listados en la definición
-tigger = Tigre(3.5,"anaranjado") # => Tiger(3.5,"anaranjado")
+# Los argumentos del constructor por defecto son los atributos
+# del tipo, en el orden en que están listados en la definición.
+tigre = Tigre(3.5, "anaranjado") # => Tigre(3.5,"anaranjado")
-# El tipo funciona como la función constructora de valores de ese tipo
-sherekhan = typeof(tigger)(5.6,"fuego") # => Tiger(5.6,"fuego")
+# El tipo funciona como método constructor para los valores de ese tipo.
+sherekhan = typeof(tigre)(5.6, "fuego") # => Tigre(5.6,"fuego")
-# Este estilo de tipos son llamados tipos concrete
-# Se pueden crear instancias, pero no pueden tener subtipos.
-# La otra clase de tipos es tipos abstractos (abstract types).
+# Este estilo de tipos son llamados tipos concretos.
+# Se pueden crear instancias de estos, pero no pueden tener subtipos.
+# La otra clase de tipos son los tipos abstractos.
# abstract Nombre
-abstract Gato # sólo un nombre y un punto en la jerarquía de tipos
-
-# De los tipos Abstract no se pueden crear instancias, pero pueden tener
-# subtipos. Por ejemplo, Number es un tipo abstracto.
-subtypes(Number) # => 6-element Array{Any,1}:
- # Complex{Float16}
- # Complex{Float32}
- # Complex{Float64}
- # Complex{T<:Real}
- # Real
-subtypes(Gato) # => 0-element Array{Any,1}
-
-# Cada tipo tiene un supertipo, utilice la función `súper` para conseguirlo.
-typeof(5) # => Int64
-super(Int64) # => Signed
-super(Signed) # => Real
-super(Real) # => Number
-super(Number) # => Any
-super(super(Signed)) # => Number
-super(Any) # => Any
-# Todo de estos tipos, a excepción de Int64, son abstractos.
-
-# <: es el operador de subtipos
-type Leon <: Gato # Leon es un subtipo de Gato
- color_de_crin
- rugido::String
-end
+abstract Gato # sólo un nombre y un punto en la jerarquía de tipos
+
+# No se pueden crear instancias de los tipos abstractos, pero pueden tener
+# subtipos. Por ejemplo, Number es un tipo abstracto.
+subtypes(Number)
+#=
+ => 2-element Array{Any,1}:
+ Complex{T<:Real}
+ Real
+=#
+
+subtypes(Gato) # => 0-element Array{Any,1}
-# Se puede definir más constructores para su tipo.
-# Sólo defina una función del mismo nombre que el tipo
-# y llame a un constructor existente para obtener un valor del tipo correcto
-Leon(rugido::String) = Leon("verde",rugido)
-# Este es un constructor externo porque es fuera de la definición del tipo
-
-type Pantera <: Gato # Pantera tambien es un a subtipo de Cat
- color_de_ojos
- Pantera() = new("verde")
- # Panteras sólo tendrán este constructor, y ningún constructor
- # predeterminado.
+# Cada tipo tiene un supertipo, utiliza la función súper para conseguirlo.
+typeof(5) # => Int64
+super(Int64) # => Signed
+super(Signed) # => Integer
+super(Integer) # => Real
+super(Real) # => Number
+super(Number) # => Any
+super(super(Signed)) # => Real
+super(Any) # => Any
+
+# Todos estos tipos, a excepción de Int64, son abstractos.
+
+# <: es el operador de subtipos.
+type Leon <: Gato # Leon es un subtipo de Gato
+ color_crin
+ rugido::String
end
-# Utilizar constructores internos, como Panther hace, te da control sobre cómo
-# se pueden crear valores del tipo. Cuando sea posible, debes utilizar
-# constructores exteriores en lugar de los internos.
-####################################################
-## 6. Envio múltiple
-####################################################
+# Se pueden definir más constructores para un tipo.
+# Sólo define una función del mismo nombre que el tipo y llama al constructor
+# existente para obtener un valor del tipo correcto.
-# En Julia, todas las funciones nombradas son funciones genéricas.
-# Esto significa que se construyen a partir de muchos métodos pequeños
-# Cada constructor de Leon es un método de la función genérica Leon.
+# Este es un constructor externo porque es fuera de la definición del tipo.
+Leon(rugido::String) = Leon("verde", rugido)
-# Por ejemplo, vamos a hacer un maullar función:
+type Pantera <: Gato # Pantera también es un a subtipo de Gato
+ color_ojos
-# Definiciones para Leon, Pantera, y Tigre
-function maullar(animal::Leon)
- animal.rugido # acceso utilizando notación de puntos
+ # Pantera sólo tendrá este constructor, y ningún constructor predeterminado.
+ Pantera() = new("verde")
end
-function maullar(animal::Pantera)
- "grrr"
-end
+# Utilizar constructores internos, como se hace en Pantera, te da control sobre
+# cómo se pueden crear valores de este tipo. Cuando sea posible, debes utilizar
+# constructores externos en lugar de internos.
-function maullar(animal::Tigre)
- "rawwwr"
-end
-# Prueba de la función maullar
-maullar(tigger) # => "rawwr"
-maullar(Leon("cafe","ROAAR")) # => "ROAAR"
-maullar(Pantera()) # => "grrr"
+########################
+# 6. Despacho Múltiple #
+########################
-# Revisar la jerarquía de tipos locales
-issubtype(Tigre,Gato) # => false
-issubtype(Leon,Gato) # => true
-issubtype(Pantera,Gato) # => true
+# En Julia, todas las funciones nombradas son funciones genéricas.
+# Esto significa que se construyen a partir de muchos métodosmás pequeños.
+# Cada constructor de Leon es un método de la función genérica Leon.
-# Definición de una función que toma Gatos
-function mascota(gato::Gato)
- println("El gato dice $(maullar(gato))")
-end
+# Por ejemplo, vamos a hacer métodos para para Leon, Pantera, y Tigre de una
+# función genérica maullar:
+
+# acceso utilizando notación de puntos
+maullar(animal::Leon) = animal.rugido
+# => maullar (generic function with 1 method)
+maullar(animal::Pantera) = "grrr"
+# => maullar (generic function with 2 methods)
+maullar(animal::Tigre) = "rawwwr"
+# => maullar (generic function with 3 methods)
+
+# Se puede obtener una lista de métodos con la función methods.
+methods(maullar)
+#=
+ # 3 methods for generic function "maullar":
+ maullar(animal::Leon) at none:1
+ maullar(animal::Pantera) at none:1
+ maullar(animal::Tigre) at none:1
+=#
+
+# Prueba de la función maullar.
+maullar(tigre) # => "rawwwr"
+maullar(Leon("cafe", "ROAAR")) # => "ROAAR"
+maullar(Pantera()) # => "grrr"
+
+# Revisar la jerarquía de tipos locales.
+issubtype(Tigre, Gato) # => false # igual que: Tigre <: Gato
+issubtype(Leon, Gato) # => true # igual que: Leon <: Gato
+issubtype(Pantera, Gato) # => true
+
+# Definición de una función que acepta argumentos de tipo Gato.
+mascota(gato::Gato) = println("El gato dice $(maullar(gato))")
+
+mascota(Leon("42")) # El gato dice 42
-mascota(Leon("42")) # => imprime "El gato dice 42"
try
- mascota(tigger) # => ERROR: no method mascota(Tigre))
+ mascota(tigre) # ERROR: `mascota` has no method matching mascota(::Tigre)
catch e
- println(e)
+ println(e) # MethodError(mascota,(Tigre(3.5,"anaranjado"),))
end
-# En los lenguajes orientados a objetos, expedición única es común. Esto
-# significa que el método se recogió basándose en el tipo del primer argumento.
-# En Julia, todos los tipos de argumentos contribuyen a seleccionar el mejor
-# método.
+# En los lenguajes orientados a objetos, el despacho simple es común. Esto
+# significa que la implementación del método a llamar se selecciona en base
+# al tipo del primer argumento.
+
+# En Julia, los tipos de todos los argumentos contribuyen a seleccionar método
+# más específico.
# Vamos a definir una función con más argumentos, para que podamos ver la
# diferencia
-function pelear(t::Tigre,c::Gato)
- println("¡El tigre $(t.colordelpelaje) gana!")
-end
+pelear(t::Tigre, c::Gato) = println("¡El tigre $(t.color_pelaje) gana!")
# => pelear (generic function with 1 method)
-pelear(tigger,Pantera()) # => imprime ¡El tigre anaranjado gana!
-pelear(tigger,Leon("ROAR")) # => ¡El tigre anaranjado gana!
+pelear(tigre, Pantera()) # ¡El tigre anaranjado gana!
+pelear(tigre, Leon("ROAR")) # ¡El tigre anaranjado gana!
-# Vamos a cambiar el comportamiento cuando el Gato es específicamente un Leon
-pelear(t::Tigre,l::Leon) = println("El león con melena $(l.color_de_crin) gana")
+# Vamos a cambiar el comportamiento cuando el Gato sea específicamente un Leon.
+pelear(t::Tigre, l::Leon) = println("El león con melena $(l.color_crin) gana.")
# => pelear (generic function with 2 methods)
-pelear(tigger,Pantera()) # => imprime ¡El tigre anaranjado gana!
-pelear(tigger,Leon("ROAR")) # => imprime El león con melena verde gana
+pelear(tigre, Pantera()) # ¡El tigre anaranjado gana!
+pelear(tigre, Leon("ROAR")) # El león con melena verde gana.
-# No necesitamos un tigre para poder luchar
-pelear(l::Leon,c::Gato) = println("El gato victorioso dice $(maullar(c))")
-# => fight (generic function with 3 methods)
+# No necesitamos un tigre para poder luchar.
+pelear(l::Leon, c::Gato) = println("El gato victorioso dice $(maullar(c)).")
+# => pelear (generic function with 3 methods)
-pelear(Leon("balooga!"),Pantera()) # => imprime El gato victorioso dice grrr
+methods(pelear)
+#=
+ # 3 methods for generic function "pelear":
+ pelear(t::Tigre,l::Leon) at none:2
+ pelear(t::Tigre,c::Gato) at none:1
+ pelear(l::Leon,c::Gato) at none:2
+=#
+
+pelear(Leon("balooga!"), Pantera()) # El gato victorioso dice grrr.
try
- pelear(Pantera(),Leon("RAWR")) # => ERROR: no method pelear(Pantera, Leon))
-catch
+ # ERROR: `pelear` has no method matching pelear(::Pantera, ::Leon)
+ pelear(Pantera(),Leon("RAWR"))
+catch # no hacer nada con la excepción atrapada
end
-# Un metodo con el gato primero
+# Un metodo con el tipo Gato primero.
pelear(c::Gato,l::Leon) = println("El gato le gana al León")
-# Warning: New definition
-# pelear(Gato,Leon) at none:1
-# is ambiguous with:
-# pelear(Leon,Gato) at none:1.
-# To fix, define
-# pelear(Leon,Leon)
-# before the new definition.
-# pelear (generic function with 4 methods)
-
-# Esta advertencia se debe a que no está claro que metodo de pelear será llamado
-# en:
-pelear(Leon("RAR"),Leon("cafe","rar")) # => imprime El gato victorioso dice rar
-# El resultado puede ser diferente en otras versiones de Julia
+#=
+ Warning: New definition
+ pelear(Gato,Leon) at none:1
+ is ambiguous with:
+ pelear(Leon,Gato) at none:1.
+ To fix, define
+ pelear(Leon,Leon)
+ before the new definition.
+ pelear (generic function with 4 methods)
+=#
+# Esta advertencia se debe a que no está claro que método de pelear
+# será llamado en:
+pelear(Leon("RAR"),Leon("cafe","rar")) # El gato victorioso dice rar.
+
+# El resultado puede ser diferente en otras versiones de Julia
pelear(l::Leon,l2::Leon) = println("Los leones llegan a un empate")
-pelear(Leon("GR"),Leon("cafe","rar")) # => imprime Los leones llegan a un empate
-
-
-# Un vistazo al nivel bajo
-# Se puede echar un vistazo a la LLVM y el código ensamblador generado.
-
-area_cuadrada(l) = l * l # area_cuadrada (generic function with 1 method)
-
-area_cuadrada(5) # => 25
-
-# ¿Qué sucede cuando damos area_cuadrada diferentes argumentos?
-code_native(area_cuadrada, (Int32,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1 # Prologue
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # movsxd RAX, EDI # Fetch l from memory?
- # imul RAX, RAX # Square l and store the result in RAX
- # pop RBP # Restore old base pointer
- # ret # Result will still be in RAX
-
-code_native(area_cuadrada, (Float32,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # vmulss XMM0, XMM0, XMM0 # Scalar single precision multiply (AVX)
- # pop RBP
- # ret
-
-code_native(area_cuadrada, (Float64,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX)
- # pop RBP
- # ret
- #
-
-# Ten en cuenta que Julia usará instrucciones de "floating point" si alguno de
-# los argumentos son "floats"
-# Vamos a calcular el área de un círculo
-area_circulo(r) = pi * r * r # circle_area (generic function with 1 method)
-area_circulo(5) # 78.53981633974483
+
+pelear(Leon("GR"),Leon("cafe","rar")) # Los leones llegan a un empate
+
+
+################################
+# 7. Un vistazo de bajo nivel. #
+################################
+
+# Se puede echar un vistazo al código IR de LLVM y al código
+# ensamblador generado.
+area_cuadrado(l) = l * l # => area_cuadrado (generic function with 1 method)
+
+area_cuadrado(5) # => 25
+
+# ¿Qué sucede cuando damos area_cuadrada diferentes tipos de argumentos?
+code_native(area_cuadrado, (Int32,))
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1 # prólogo
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ imul RDI, RDI # elevar l al cuadrado
+ mov RAX, RDI # almacenar el resultado en RAX
+ pop RBP # restaurar el puntero base anterior
+ ret # el resultado estará en RAX
+=#
+
+code_native(area_cuadrado, (Float32,))
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ mulss XMM0, XMM0 # multiplicación escalar de presición simple (AVX)
+ pop RBP
+ ret
+=#
+
+code_native(area_cuadrado, (Float64,))
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ mulsd XMM0, XMM0 # multiplicación escalar de presición doble (AVX)
+ pop RBP
+ ret
+=#
+
+# Ten en cuenta que Julia usará instrucciones de punto flotante si el tipo de
+# alguno de los argumentos es flotante.
+
+# Vamos a calcular el área de un círculo.
+area_circulo(r) = π * r * r # area_circulo (generic function with 1 method)
+area_circulo(5) # 78.53981633974483
code_native(area_circulo, (Int32,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # vcvtsi2sd XMM0, XMM0, EDI # Load integer (r) from memory
- # movabs RAX, 4593140240 # Load pi
- # vmulsd XMM1, XMM0, QWORD PTR [RAX] # pi * r
- # vmulsd XMM0, XMM0, XMM1 # (pi * r) * r
- # pop RBP
- # ret
- #
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ cvtsi2sd XMM1, EDI # cargar entero r de la memoria
+ movabs RAX, 4477117456 # cargar constante matemática π
+ movsd XMM0, QWORD PTR [RAX]
+ mulsd XMM0, XMM1 # π * r
+ mulsd XMM0, XMM1 # (π * r) * r
+ pop RBP
+ ret
+=#
code_native(area_circulo, (Float64,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # movabs RAX, 4593140496
- # Source line: 1
- # vmulsd XMM1, XMM0, QWORD PTR [RAX]
- # vmulsd XMM0, XMM1, XMM0
- # pop RBP
- # ret
- #
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ movabs RAX, 4477120336
+ movsd XMM1, QWORD PTR [RAX]
+ Source line: 1
+ mulsd XMM1, XMM0
+ mulsd XMM1, XMM0
+ movaps XMM0, XMM1
+ pop RBP
+ ret
+=#
```
-## ¿Listo para más?
+![Julia-tan](http://s27.postimg.org/x37ndhz0j/julia_tan_small.png)
-Puedes obtener muchos más detalles en [The Julia Manual](http://docs.julialang.org/en/latest/manual/)
+## ¿Listo para más?
-El mejor lugar para obtener ayuda con Julia es el (muy amable) [lista de correos](https://groups.google.com/forum/#!forum/julia-users).
+Para más detalles, lee el [manual de Julia](http://docs.julialang.org/en/release-0.3).
+El mejor lugar para obtener ayuda con Julia, es en su amigable [lista de correos](https://groups.google.com/forum/#!forum/julia-users).
diff --git a/es-es/python-es.html.markdown b/es-es/python-es.html.markdown
index f7a0ec02..4930eebc 100644
--- a/es-es/python-es.html.markdown
+++ b/es-es/python-es.html.markdown
@@ -4,6 +4,7 @@ contributors:
- ["Louie Dinh", "http://ldinh.ca"]
translators:
- ["Camilo Garrido", "http://www.twitter.com/hirohope"]
+ - ["Fabio Souto", "http://fabiosouto.me"]
lang: es-es
filename: learnpython-es.py
---
@@ -30,27 +31,47 @@ Nota: Este artículo aplica a Python 2.7 específicamente, pero debería ser apl
# Tienes números
3 #=> 3
-# Matemática es lo que esperarías
-1 + 1 #=> 2
-8 - 1 #=> 7
-10 * 2 #=> 20
-35 / 5 #=> 7
+# Evidentemente puedes realizar operaciones matemáticas
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+35 / 5 #=> 7
# La división es un poco complicada. Es división entera y toma la parte entera
# de los resultados automáticamente.
-5 / 2 #=> 2
+5 / 2 #=> 2
# Para arreglar la división necesitamos aprender sobre 'floats'
# (números de coma flotante).
2.0 # Esto es un 'float'
-11.0 / 4.0 #=> 2.75 ahhh...mucho mejor
+11.0 / 4.0 #=> 2.75 ahhh...mucho mejor
+
+# Resultado de la división de enteros truncada para positivos y negativos
+5 // 3 # => 1
+5.0 // 3.0 # => 1.0 # funciona con números en coma flotante
+-5 // 3 # => -2
+-5.0 // 3.0 # => -2.0
+
+# El operador módulo devuelve el resto de una división entre enteros
+7 % 3 # => 1
+
+# Exponenciación (x elevado a y)
+2**4 # => 16
# Refuerza la precedencia con paréntesis
-(1 + 3) * 2 #=> 8
+(1 + 3) * 2 #=> 8
+
+# Operadores booleanos
+# Nota: "and" y "or" son sensibles a mayúsculas
+True and False #=> False
+False or True #=> True
-# Valores 'boolean' (booleanos) son primitivos
-True
-False
+# Podemos usar operadores booleanos con números enteros
+0 and 2 #=> 0
+-5 or 0 #=> -5
+0 == False #=> True
+2 == True #=> False
+1 == True #=> True
# Niega con 'not'
not True #=> False
@@ -90,7 +111,7 @@ not False #=> True
# Una forma más reciente de formatear strings es el método 'format'.
# Este método es la forma preferida
"{0} pueden ser {1}".format("strings", "formateados")
-# Puedes usar palabras claves si no quieres contar.
+# Puedes usar palabras clave si no quieres contar.
"{nombre} quiere comer {comida}".format(nombre="Bob", comida="lasaña")
# None es un objeto
@@ -107,8 +128,8 @@ None is None #=> True
# None, 0, y strings/listas vacíos(as) todas se evalúan como False.
# Todos los otros valores son True
-0 == False #=> True
-"" == False #=> True
+bool(0) #=> False
+bool("") #=> False
####################################################
@@ -130,16 +151,16 @@ otra_variable # Levanta un error de nombre
# 'if' puede ser usado como una expresión
"yahoo!" if 3 > 2 else 2 #=> "yahoo!"
-# Listas almacenan secuencias
+# Las listas almacenan secuencias
lista = []
# Puedes empezar con una lista prellenada
otra_lista = [4, 5, 6]
# Añadir cosas al final de una lista con 'append'
-lista.append(1) #lista ahora es [1]
-lista.append(2) #lista ahora es [1, 2]
-lista.append(4) #lista ahora es [1, 2, 4]
-lista.append(3) #lista ahora es [1, 2, 4, 3]
+lista.append(1) # lista ahora es [1]
+lista.append(2) # lista ahora es [1, 2]
+lista.append(4) # lista ahora es [1, 2, 4]
+lista.append(3) # lista ahora es [1, 2, 4, 3]
# Remueve del final de la lista con 'pop'
lista.pop() #=> 3 y lista ahora es [1, 2, 4]
# Pongámoslo de vuelta
@@ -173,11 +194,11 @@ lista.extend(otra_lista) # lista ahora es [1, 2, 3, 4, 5, 6]
# Chequea la existencia en una lista con
1 in lista #=> True
-# Examina el largo de una lista con 'len'
+# Examina el tamaño de una lista con 'len'
len(lista) #=> 6
-# Tuplas son como listas pero son inmutables.
+# Las tuplas son como las listas, pero son inmutables.
tupla = (1, 2, 3)
tupla[0] #=> 1
tupla[0] = 3 # Levanta un error TypeError
@@ -266,7 +287,7 @@ conjunto_lleno | otro_conjunto #=> {1, 2, 3, 4, 5, 6}
# Hagamos sólo una variable
una_variable = 5
-# Aquí está una declaración de un 'if'. ¡La indentación es significativa en Python!
+# Aquí está una declaración de un 'if'. ¡La indentación es importante en Python!
# imprime "una_variable es menor que 10"
if una_variable > 10:
print "una_variable es completamente mas grande que 10."
@@ -400,12 +421,12 @@ class Humano(object):
# Un atributo de clase es compartido por todas las instancias de esta clase
especie = "H. sapiens"
- # Constructor basico
+ # Constructor básico, se llama al instanciar la clase.
def __init__(self, nombre):
# Asigna el argumento al atributo nombre de la instancia
self.nombre = nombre
- # Un metodo de instancia. Todos los metodos toman self como primer argumento
+ # Un método de instancia. Todos los metodos toman self como primer argumento
def decir(self, msg):
return "%s: %s" % (self.nombre, msg)
@@ -470,6 +491,56 @@ import math
dir(math)
+####################################################
+## 7. Avanzado
+####################################################
+
+# Los generadores permiten evaluación perezosa
+def duplicar_numeros(iterable):
+ for i in iterable:
+ yield i + i
+
+# Un generador crea valores sobre la marcha
+# En vez de generar y devolver todos los valores de una vez, crea un valor
+# en cada iteración. En este ejemplo los valores mayores que 15 no serán
+# procesados en duplicar_numeros.
+# Nota: xrange es un generador que hace lo mismo que range.
+# Crear una lista de 1 a 900000000 lleva mucho tiempo y ocupa mucho espacio.
+# xrange crea un generador, mientras que range crea toda la lista.
+# Añadimos un guion bajo a los nombres de variable que coinciden con palabras
+# reservadas de python.
+xrange_ = xrange(1, 900000000)
+
+# duplica todos los números hasta que encuentra un resultado >= 30
+for i in duplicar_numeros(xrange_):
+ print i
+ if i >= 30:
+ break
+
+# Decoradores
+# en este ejemplo pedir rodea a hablar
+# Si por_favor es True se cambiará el mensaje.
+from functools import wraps
+
+
+def pedir(target_function):
+ @wraps(target_function)
+ def wrapper(*args, **kwargs):
+ msg, por_favor = target_function(*args, **kwargs)
+ if por_favor:
+ return "{} {}".format(msg, "¡Por favor! Soy pobre :(")
+ return msg
+
+ return wrapper
+
+
+@pedir
+def hablar(por_favor=False):
+ msg = "¿Me puedes comprar una cerveza?"
+ return msg, por_favor
+
+print hablar() # ¿Me puedes comprar una cerveza?
+print hablar(por_favor=True) # ¿Me puedes comprar una cerveza? ¡Por favor! Soy pobre :(
```
## ¿Listo para más?
@@ -481,6 +552,7 @@ dir(math)
* [The Official Docs](http://docs.python.org/2.6/)
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
* [Python Module of the Week](http://pymotw.com/2/)
+* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182)
### Encuadernados
diff --git a/fr-fr/livescript-fr.html.markdown b/fr-fr/livescript-fr.html.markdown
new file mode 100644
index 00000000..9c3b8003
--- /dev/null
+++ b/fr-fr/livescript-fr.html.markdown
@@ -0,0 +1,360 @@
+---
+language: LiveScript
+filename: learnLivescript-fr.ls
+contributors:
+ - ["Christina Whyte", "http://github.com/kurisuwhyte/"]
+translators:
+ - ["Morgan Bohn", "https://github.com/morganbohn"]
+lang: fr-fr
+---
+
+LiveScript est un langage qui compile en JavaScript. Il a un rapport direct
+avec JavaScript, et vous permet d'écrire du JavaScript plus simplement, plus
+efficacement et sans répétitivité. LiveScript ajoute non seulement des
+fonctionnalités pour écrire du code fonctionnel, mais possède aussi nombre
+d'améliorations pour la programmation orientée objet et la programmation
+impérative.
+
+LiveScript est un descendant direct de [Coco][], indirect de [CoffeeScript][],
+avec lequel il a beaucoup plus de compatibilité.
+
+[Coco]: http://satyr.github.io/coco/
+[CoffeeScript]: http://coffeescript.org/
+
+Vous pouvez contacter l'auteur du guide original en anglais ici :
+[@kurisuwhyte](https://twitter.com/kurisuwhyte)
+
+
+```coffeescript
+# Comme son cousin CoffeeScript, LiveScript utilise le symbole dièse pour les
+# commentaires sur une ligne.
+
+/*
+ Les commentaires sur plusieurs lignes utilisent la syntaxe du C. Utilisez-les
+ si vous voulez préserver les commentaires dans la sortie JavaScript.
+ */
+```
+```coffeescript
+# LiveScript utilise l'indentation pour délimiter les blocs de code plutôt que
+# les accolades, et les espaces pour appliquer les fonctions (bien que les
+# parenthèses soient utilisables).
+
+
+########################################################################
+## 1. Valeurs basiques
+########################################################################
+
+# Les valeurs non définies sont représentées par le mot clé `void` à la place de
+# `undefined`
+void # comme `undefined` mais plus sûr (ne peut pas être redéfini)
+
+# Une valeur non valide est représentée par Null.
+null
+
+
+# Les booléens s'utilisent de la façon suivante:
+true
+false
+
+# Et il existe divers alias les représentant également:
+on; off
+yes; no
+
+
+# Puis viennent les nombres entiers et décimaux.
+10
+0.4 # Notez que le `0` est requis
+
+# Dans un souci de lisibilité, vous pouvez utiliser les tirets bas et les
+# suffixes sur les nombres. Il seront ignorés à la compilation.
+12_344km
+
+
+# Les chaînes sont des séquences immutables de caractères, comme en JS:
+"Christina" # Les apostrophes fonctionnent également!
+"""Multi-line
+ strings
+ are
+ okay
+ too."""
+
+# De temps à autre, vous voulez encoder un mot clé; la notation en backslash
+# rend cela facile:
+\keyword # => 'keyword'
+
+
+# Les tableaux sont des collections ordonnées de valeurs.
+fruits =
+ * \apple
+ * \orange
+ * \pear
+
+# Il peuvent être écrits de manière plus consises à l'aide des crochets:
+fruits = [ \apple, \orange, \pear ]
+
+# Vous pouvez également utiliser la syntaxe suivante, à l'aide d'espaces, pour
+# créer votre liste de valeurs:
+fruits = <[ apple orange pear ]>
+
+# Vous pouvez récupérer une entrée à l'aide de son index:
+fruits[0] # => "apple"
+
+# Les objets sont une collection non ordonnées de paires clé/valeur, et
+# d'autres choses (que nous verrons plus tard).
+person =
+ name: "Christina"
+ likes:
+ * "kittens"
+ * "and other cute stuff"
+
+# A nouveau, vous pouvez utiliser une expression plus consise à l'aide des
+# accolades:
+person = {name: "Christina", likes: ["kittens", "and other cute stuff"]}
+
+# Vous pouvez récupérer une entrée via sa clé:
+person.name # => "Christina"
+person["name"] # => "Christina"
+
+
+# Les expressions régulières utilisent la même syntaxe que JavaScript:
+trailing-space = /\s$/ # les mots-composés deviennent motscomposés
+
+# A l'exception que vous pouvez pouvez utiliser des expressions sur plusieurs
+# lignes!
+# (les commentaires et les espaces seront ignorés)
+funRE = //
+ function\s+(.+) # nom
+ \s* \((.*)\) \s* # arguments
+ { (.*) } # corps
+ //
+
+
+########################################################################
+## 2. Les opérations basiques
+########################################################################
+
+# Les opérateurs arithmétiques sont les mêmes que pour JavaScript:
+1 + 2 # => 3
+2 - 1 # => 1
+2 * 3 # => 6
+4 / 2 # => 2
+3 % 2 # => 1
+
+
+# Les comparaisons sont presque identiques, à l'exception que `==` équivaut au
+# `===` de JS, là où le `==` de JS est `~=` en LiveScript, et `===` active la
+# comparaison d'objets et de tableaux, ainsi que les comparaisons strictes
+# (sans conversion de type)
+2 == 2 # => true
+2 == "2" # => false
+2 ~= "2" # => true
+2 === "2" # => false
+
+[1,2,3] == [1,2,3] # => false
+[1,2,3] === [1,2,3] # => true
+
++0 == -0 # => true
++0 === -0 # => false
+
+# Les opérateurs suivants sont également disponibles: <, <=, > et >=
+
+# Les valeurs logiques peuvent être combinéees grâce aux opérateurs logiques
+# `or`, `and` et `not`
+true and false # => false
+false or true # => true
+not false # => true
+
+
+# Les collections ont également des opérateurs additionnels
+[1, 2] ++ [3, 4] # => [1, 2, 3, 4]
+'a' in <[ a b c ]> # => true
+'name' of { name: 'Chris' } # => true
+
+
+########################################################################
+## 3. Fonctions
+########################################################################
+
+# Puisque LiveScript est fonctionnel, vous vous attendez à une bonne prise en
+# charge des fonctions. En LiveScript, il est encore plus évident que les
+# fonctions sont de premier ordre:
+add = (left, right) -> left + right
+add 1, 2 # => 3
+
+# Les fonctions qui ne prennent pas d'arguments peuvent être appelées avec un
+# point d'exclamation!
+two = -> 2
+two!
+
+# LiveScript utilise l'environnement de la fonction, comme JavaScript.
+# A l'inverse de JavaScript, le `=` fonctionne comme un opérateur de
+# déclaration, et il déclarera toujours la variable située à gauche (sauf si
+# la variable a été déclarée dans l'environnement parent).
+
+# L'opérateur `:=` est disponible pour réutiliser un nom provenant de
+# l'environnement parent.
+
+
+# Vous pouvez extraire les arguments d'une fonction pour récupérer
+# rapidement les valeurs qui vous intéressent dans une structure de données
+# complexe:
+tail = ([head, ...rest]) -> rest
+tail [1, 2, 3] # => [2, 3]
+
+# Vous pouvez également transformer les arguments en utilisant les opérateurs
+# binaires et unaires. Définir des arguments par défaut est aussi possible.
+foo = (a = 1, b = 2) -> a + b
+foo! # => 3
+
+# You pouvez utiliser cela pour cloner un argument en particulier pour éviter
+# les effets secondaires. Par exemple:
+copy = (^^target, source) ->
+ for k,v of source => target[k] = v
+ target
+a = { a: 1 }
+copy a, { b: 2 } # => { a: 1, b: 2 }
+a # => { a: 1 }
+
+
+# Une fonction peut être curryfiée en utilisant une longue flèche à la place
+# d'une courte:
+add = (left, right) --> left + right
+add1 = add 1
+add1 2 # => 3
+
+# Les fonctions ont un argument `it` implicite si vous n'en déclarez pas:
+identity = -> it
+identity 1 # => 1
+
+# Les opérateurs ne sont pas des fonctions en LiveScript, mais vous pouvez
+# facilement les transformer en fonction:
+divide-by-two = (/ 2)
+[2, 4, 8, 16].map(divide-by-two).reduce (+)
+
+# Comme dans tout bon langage fonctionnel, vous pouvez créer des fonctions
+# composées d'autres fonctions:
+double-minus-one = (- 1) . (* 2)
+
+# En plus de la formule mathématique `f . g`, vous avez les opérateurs `>>`
+# et `<<`, qui décrivent l'ordre d'application des fonctions composées.
+double-minus-one = (* 2) >> (- 1)
+double-minus-one = (- 1) << (* 2)
+
+
+# Pour appliquer une valeur à une fonction, vous pouvez utiliser les opérateurs
+# `|>` et `<|`:
+map = (f, xs) --> xs.map f
+[1 2 3] |> map (* 2) # => [2 4 6]
+
+# La version sans pipe correspond à:
+((map (* 2)) [1, 2, 3])
+
+# You pouvez aussi choisir où vous voulez que la valeur soit placée, en
+# marquant la position avec un tiret bas (_):
+reduce = (f, xs, initial) --> xs.reduce f, initial
+[1 2 3] |> reduce (+), _, 0 # => 6
+
+
+# Le tiret bas est également utilisé pour l'application partielle,
+# que vous pouvez utiliser pour toute fonction:
+div = (left, right) -> left / right
+div-by-two = div _, 2
+div-by-two 4 # => 2
+
+
+# Pour conclure, LiveScript vous permet d'utiliser les fonctions de rappel.
+# (mais vous devriez essayer des approches plus fonctionnelles, comme
+# Promises).
+# Un fonction de rappel est une fonction qui est passée en argument à une autre
+# fonction:
+readFile = (name, f) -> f name
+a <- readFile 'foo'
+b <- readFile 'bar'
+console.log a + b
+
+# Equivalent à:
+readFile 'foo', (a) -> readFile 'bar', (b) -> console.log a + b
+
+
+########################################################################
+## 4. Conditionnalités
+########################################################################
+
+# Vous pouvez faire de la conditionnalité à l'aide de l'expression `if...else`:
+x = if n > 0 then \positive else \negative
+
+# A la place de `then`, vous pouvez utiliser `=>`
+x = if n > 0 => \positive
+ else \negative
+
+# Pour les conditions complexes, il vaut mieux utiliser l'expresssion `switch`:
+y = {}
+x = switch
+ | (typeof y) is \number => \number
+ | (typeof y) is \string => \string
+ | 'length' of y => \array
+ | otherwise => \object # `otherwise` et `_` correspondent.
+
+# Le corps des fonctions, les déclarations et les assignements disposent d'un
+# `switch` implicite, donc vous n'avez pas besoin de le réécrire:
+take = (n, [x, ...xs]) -->
+ | n == 0 => []
+ | _ => [x] ++ take (n - 1), xs
+
+
+########################################################################
+## 5. Compréhensions
+########################################################################
+
+# Comme en python, vous allez pouvoir utiliser les listes en compréhension,
+# ce qui permet de générer rapidement et de manière élégante une liste de
+# valeurs:
+oneToTwenty = [1 to 20]
+evens = [x for x in oneToTwenty when x % 2 == 0]
+
+# `when` et `unless` peuvent être utilisés comme des filtres.
+
+# Cette technique fonctionne sur les objets de la même manière. Vous allez
+# pouvoir générer l'ensemble de paires clé/valeur via la syntaxe suivante:
+copy = { [k, v] for k, v of source }
+
+
+########################################################################
+## 4. Programmation orientée objet
+########################################################################
+
+# Bien que LiveScript soit un langage fonctionnel, il dispose d'intéressants
+# outils pour la programmation objet. La syntaxe de déclaration d'une classe
+# est héritée de CoffeeScript:
+class Animal
+ (@name, kind) ->
+ @kind = kind
+ action: (what) -> "*#{@name} (a #{@kind}) #{what}*"
+
+class Cat extends Animal
+ (@name) -> super @name, 'cat'
+ purr: -> @action 'purrs'
+
+kitten = new Cat 'Mei'
+kitten.purr! # => "*Mei (a cat) purrs*"
+
+# En plus de l'héritage classique, vous pouvez utiliser autant de mixins
+# que vous voulez pour votre classe. Les mixins sont juste des objets:
+Huggable =
+ hug: -> @action 'is hugged'
+
+class SnugglyCat extends Cat implements Huggable
+
+kitten = new SnugglyCat 'Purr'
+kitten.hug! # => "*Mei (a cat) is hugged*"
+```
+
+## Lectures complémentaires
+
+Il y a beaucoup plus de choses à dire sur LiveScript, mais ce guide devrait
+suffire pour démarrer l'écriture de petites fonctionnalités.
+Le [site officiel](http://livescript.net/) dispose de beaucoup d'information,
+ainsi que d'un compilateur en ligne vous permettant de tester le langage!
+
+Jetez également un coup d'oeil à [prelude.ls](http://gkz.github.io/prelude-ls/),
+et consultez le channel `#livescript` sur le réseau Freenode.
diff --git a/fr-fr/lua-fr.html.markdown b/fr-fr/lua-fr.html.markdown
index b4e2a161..1f592320 100644
--- a/fr-fr/lua-fr.html.markdown
+++ b/fr-fr/lua-fr.html.markdown
@@ -434,9 +434,9 @@ les librairies standard:
Autres références complémentaires:
-* <a href="http://nova-fusion.com/2012/08/27/lua-for-programmers-part-1/">Lua for programmers</a>
-* <a href="lua-users.org/files/wiki_insecure/users/thomasl/luarefv51.pdf">Courte de référence de Lua</a>
-* <a href="http://www.lua.org/pil/contents.html">Programming In Lua</a>
+* <a href="http://nova-fusion.com/2012/08/27/lua-for-programmers-part-1/">Lua pour programmeurs</a>
+* <a href="lua-users.org/files/wiki_insecure/users/thomasl/luarefv51.pdf">Référence condensée de Lua</a>
+* <a href="http://www.lua.org/pil/contents.html">Programmer en Lua</a>
* <a href="http://www.lua.org/manual/">Les manuels de référence Lua</a>
A propos, ce fichier est exécutable. Sauvegardez-le sous le nom *learn.lua* et
@@ -446,4 +446,4 @@ Ce tutoriel a été originalement écrit pour <a href="tylerneylon.com">tylerney
disponible en tant que <a href="https://gist.github.com/tylerneylon/5853042">gist</a>.
Il a été traduit en français par Roland Yonaba (voir son <a href="http://github.com/Yonaba">github</a>).
-Amusez-vous bien avec Lua! \ No newline at end of file
+Amusez-vous bien avec Lua!
diff --git a/fr-fr/markdown.html.markdown b/fr-fr/markdown.html.markdown
index 29c0d65d..e5e7c73a 100644
--- a/fr-fr/markdown.html.markdown
+++ b/fr-fr/markdown.html.markdown
@@ -177,7 +177,7 @@ des syntaxes spécifiques -->
\`\`\`ruby
<!-- mais enlevez les backslashes quand vous faites ça,
-gardez juste ```ruby ( ou nom de la synatxe correspondant à votre code )-->
+gardez juste ```ruby ( ou nom de la syntaxe correspondant à votre code )-->
def foobar
puts "Hello world!"
end
diff --git a/git.html.markdown b/git.html.markdown
index 4bbc58e7..bf8fce0c 100644
--- a/git.html.markdown
+++ b/git.html.markdown
@@ -462,6 +462,8 @@ $ git rm /pather/to/the/file/HelloWorld.c
* [tryGit - A fun interactive way to learn Git.](http://try.github.io/levels/1/challenges/1)
+* [Udemy Git Tutorial: A Comprehensive Guide](https://blog.udemy.com/git-tutorial-a-comprehensive-guide/)
+
* [git-scm - Video Tutorials](http://git-scm.com/videos)
* [git-scm - Documentation](http://git-scm.com/docs)
diff --git a/id-id/json-id.html.markdown b/id-id/json-id.html.markdown
new file mode 100644
index 00000000..52e61449
--- /dev/null
+++ b/id-id/json-id.html.markdown
@@ -0,0 +1,60 @@
+---
+language: json
+filename: learnjson.json
+contributors:
+ - ["Anna Harren", "https://github.com/iirelu"]
+ - ["Marco Scannadinari", "https://github.com/marcoms"]
+translators
+ - ["Rizky Luthfianto", "https://github.com/rilut"]
+---
+
+JSON adalah format pertukaran data yang sangat simpel, kemungkinan besar,
+ini adalah "Learn X in Y Minutes" yang paling singkat.
+
+Murninya, JSON tidak mempunyai fitur komentar, tapi kebanyakan parser akan
+menerima komentar bergaya bahasa C (`//`, `/* */`). Namun, pada halaman ini,
+hanya dicontohkan JSON yang 100% valid.
+
+```json
+{
+ "kunci": "nilai",
+
+ "kunci": "harus selalu diapit tanda kutip",
+ "angka": 0,
+ "strings": "Halø, dunia. Semua karaktor unicode diperbolehkan, terumasuk \"escaping\".",
+ "punya tipe data boolean?": true,
+ "nilai kosong": null,
+
+ "angka besar": 1.2e+100,
+
+ "obyek": {
+ "komentar": "Most of your structure will come from objects.",
+
+ "array": [0, 1, 2, 3, "Array bisa berisi apapun.", 5],
+
+ "obyek lainnya": {
+ "komentar": "Obyek-obyek JSON dapat dibuat bersarang, sangat berguna."
+ }
+ },
+
+ "iseng-iseng": [
+ {
+ "sumber potassium": ["pisang"]
+ },
+ [
+ [1, 0, 0, 0],
+ [0, 1, 0, 0],
+ [0, 0, 1, "neo"],
+ [0, 0, 0, 1]
+ ]
+ ],
+
+ "gaya alternatif": {
+ "komentar": "lihat ini!"
+ , "posisi tanda koma": "tak masalah. selama sebelum nilai berikutnya, valid-valid saja"
+ , "komentar lainnya": "betapa asyiknya"
+ },
+
+ "singkat": "Dan Anda selesai! Sekarang Anda tahu apa saja yang disediakan oleh JSON."
+}
+```
diff --git a/id-id/xml-id.html.markdown b/id-id/xml-id.html.markdown
new file mode 100644
index 00000000..8e8cdf4e
--- /dev/null
+++ b/id-id/xml-id.html.markdown
@@ -0,0 +1,129 @@
+---
+language: xml
+filename: learnxml.xml
+contributors:
+ - ["João Farias", "https://github.com/JoaoGFarias"]
+translators:
+ - ["Rizky Luthfianto", "https://github.com/rilut"]
+---
+
+XML adalah bahasa markup yang dirancang untuk menyimpan dan mengirim data.
+
+Tidak seperti HTML, XML tidak menentukan bagaimana menampilkan atau format data, hanya membawanya.
+
+* Sintaks XML
+
+```xml
+<!-- Komentar di XML seperti ini -->
+
+<?xml version="1.0" encoding="UTF-8"?>
+<tokobuku>
+ <buku category="MEMASAK">
+ <judul lang="en">Everyday Italian</judul>
+ <pengarang>Giada De Laurentiis</pengarang>
+ <tahun>2005</tahun>
+ <harga>30.00</harga>
+ </buku>
+ <buku category="ANAK">
+ <judul lang="en">Harry Potter</judul>
+ <pengarang>J K. Rowling</pengarang>
+ <tahun>2005</tahun>
+ <harga>29.99</harga>
+ </buku>
+ <buku category="WEB">
+ <judul lang="en">Learning XML</judul>
+ <pengarang>Erik T. Ray</pengarang>
+ <tahun>2003</tahun>
+ <harga>39.95</harga>
+ </buku>
+</tokobuku>
+
+<!-- Di atas adalah contoh file XML biasa.
+   Dimulai dengan deklarasi, menginformasikan beberapa metadata (opsional).
+  
+   XML menggunakan struktur pohon. Di atas, simpul akar adalah 'tokobuku',
+ yang memiliki tiga node anak, para 'buku'. Node-node tersebut dapat memiliki
+ node-node anak, dan seterusnya ...
+  
+   Node dibuat menggunakan tag buka/tutup, dan node-node anak hanya
+ berada di antara tag buka dan tutup .-->
+
+
+<!-- XML membawa dua jenis data:
+   1 - Atribut -> Itu metadata tentang sebuah node.
+       Biasanya, parser XML menggunakan informasi ini untuk menyimpan data dengan
+ benar. Hal ini ditandai dengan muncul dengan format nama = "nilai" dalam pembukaan tag.
+   2 - Elemen -> Itu data yang murni.
+       Itulah yang parser akan mengambil dari file XML.
+       Elemen muncul antara tag membuka dan menutup.-->
+
+
+<!-- Di bawah ini, unsur dengan dua atribut-->
+<file type="gif" id="4293">komputer.gif</file>
+
+
+```
+
+* Dokumen yang well-formated & Validasi
+
+Sebuah dokumen XML disebut well-formated jika sintaksisnya benar.
+Namun, juga mungkin untuk mendefinisikan lebih banyak batasan dalam dokumen,
+menggunakan definisi dokumen, seperti DTD dan XML Schema.
+
+Sebuah dokumen XML yang mengikuti definisi dokumen disebut valid,
+jika sesuai dokumen itu.
+
+Dengan alat ini, Anda dapat memeriksa data XML di luar logika aplikasi.
+
+```xml
+
+<!-- Di bawah, Anda dapat melihat versi sederhana dari dokumen tokobuku,
+  dengan penambahan definisi DTD .-->
+
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE catatan SYSTEM "tokobuku.dtd">
+<tokobuku>
+ <buku category="MEMASAK">
+ <judul >Everyday Italian</judul>
+ <harga>30.00</harga>
+ </buku>
+</tokobuku>
+
+<!-- This DTD could be something like:-->
+
+<!DOCTYPE catatan
+[
+<!ELEMENT tokobuku (buku+)>
+<!ELEMENT buku (judul,harga)>
+<!ATTLIST buku category CDATA "Sastra">
+<!ELEMENT judul (#PCDATA)>
+<!ELEMENT harga (#PCDATA)>
+]>
+
+
+<!-- DTD dimulai dengan deklarasi.
+  Berikut, node akar dinyatakan, membutuhkan 1 atau lebih anak node 'buku'.
+  Setiap 'buku' harus berisi tepat satu 'judul' dan 'harga' dan atribut
+  disebut 'kategori', dengan "Sastra" sebagai nilai default.
+  Node yang 'judul' dan 'harga' mengandung karakter data diurai .-->
+
+<!-- DTD dapat dideklarasikan di dalam file XML itu sendiri .-->
+
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!DOCTYPE catatan
+[
+<!ELEMENT tokobuku (buku+)>
+<!ELEMENT buku (judul,harga)>
+<!ATTLIST buku category CDATA "Sastra">
+<!ELEMENT judul (#PCDATA)>
+<!ELEMENT harga (#PCDATA)>
+]>
+
+<tokobuku>
+ <buku category="MEMASAK">
+ <judul >Everyday Italian</judul>
+ <harga>30.00</harga>
+ </buku>
+</tokobuku>
+```
diff --git a/it-it/coffeescript-it.html.markdown b/it-it/coffeescript-it.html.markdown
new file mode 100644
index 00000000..16eb9bd4
--- /dev/null
+++ b/it-it/coffeescript-it.html.markdown
@@ -0,0 +1,107 @@
+---
+language: coffeescript
+contributors:
+ - ["Luca 'Kino' Maroni", "http://github.com/kino90"]
+ - ["Tenor Biel", "http://github.com/L8D"]
+ - ["Xavier Yao", "http://github.com/xavieryao"]
+filename: coffeescript-it.coffee
+lang: it-it
+---
+
+CoffeeScript è un piccolo linguaggio che compila direttamente nell'equivalente
+JavaScript, non c'è nessuna interpretazione a runtime. Come possibile
+successore di Javascript, CoffeeScript fa il suo meglio per restituire
+un codice leggibile, ben stampato e performante in ogni ambiente JavaScript.
+
+Guarda anche [il sito di CoffeeScript](http://coffeescript.org/), che ha una
+guida completa a CoffeeScript.
+
+```coffeescript
+# CoffeeScript è un linguaggio hipster.
+# Segue le mode di alcuni linguaggi moderni.
+# Quindi i commenti sono come quelli di Ruby e Python, usano il cancelletto.
+
+###
+I blocchi di commenti sono definiti con tre cancelletti, che vengono tradotti
+direttamente in `/*` e `*/` nel codice JavaScript risultante.
+
+Prima di continuare devi conoscere la maggior parte
+delle semantiche JavaScript.
+###
+
+# Assegnamento:
+numero = 42 #=> var numero = 42;
+contrario = true #=> var contrario = true;
+
+# Condizioni:
+numero = -42 if contrario #=> if(contrario) { numero = -42; }
+
+# Funzioni:
+quadrato = (x) -> x * x #=> var quadrato = function(x) { return x * x; }
+
+riempi = (contenitore, liquido = "caffè") ->
+ "Sto riempiendo #{contenitore} con #{liquido}..."
+#=>var riempi;
+#
+#riempi = function(contenitore, liquido) {
+# if (liquido == null) {
+# liquido = "caffè";
+# }
+# return "Sto riempiendo " + contenitore + " con " + liquido + "...";
+#};
+
+# Intervalli:
+lista = [1..5] #=> var lista = [1, 2, 3, 4, 5];
+
+# Oggetti:
+matematica =
+ radice: Math.sqrt
+ quadrato: quadrato
+ cubo: (x) -> x * quadrato x
+#=> var matematica = {
+# "radice": Math.sqrt,
+# "quadrato": quadrato,
+# "cubo": function(x) { return x * quadrato(x); }
+#}
+
+# Splats:
+gara = (vincitore, partecipanti...) ->
+ print vincitore, partecipanti
+#=>gara = function() {
+# var partecipanti, vincitore;
+# vincitore = arguments[0], partecipanti = 2 <= arguments.length ? __slice.call(arguments, 1) : [];
+# return print(vincitore, partecipanti);
+#};
+
+# Esistenza:
+alert "Lo sapevo!" if elvis?
+#=> if(typeof elvis !== "undefined" && elvis !== null) { alert("Lo sapevo!"); }
+
+# Comprensione degli Array:
+cubi = (matematica.cubo num for num in lista)
+#=>cubi = (function() {
+# var _i, _len, _results;
+# _results = [];
+# for (_i = 0, _len = lista.length; _i < _len; _i++) {
+# num = lista[_i];
+# _results.push(matematica.cubo(num));
+# }
+# return _results;
+# })();
+
+cibi = ['broccoli', 'spinaci', 'cioccolato']
+mangia cibo for cibo in cibi when cibo isnt 'cioccolato'
+#=>cibi = ['broccoli', 'spinaci', 'cioccolato'];
+#
+#for (_k = 0, _len2 = cibi.length; _k < _len2; _k++) {
+# cibo = cibi[_k];
+# if (cibo !== 'cioccolato') {
+# mangia(cibo);
+# }
+#}
+```
+
+## Altre risorse
+
+- [Smooth CoffeeScript](http://autotelicum.github.io/Smooth-CoffeeScript/)
+- [CoffeeScript Ristretto](https://leanpub.com/coffeescript-ristretto/read)
diff --git a/it-it/elixir-it.html.markdown b/it-it/elixir-it.html.markdown
new file mode 100644
index 00000000..f5d0c172
--- /dev/null
+++ b/it-it/elixir-it.html.markdown
@@ -0,0 +1,418 @@
+---
+language: elixir
+contributors:
+ - ["Luca 'Kino' Maroni", "https://github.com/kino90"]
+ - ["Joao Marques", "http://github.com/mrshankly"]
+ - ["Dzianis Dashkevich", "https://github.com/dskecse"]
+filename: learnelixir-it.ex
+lang: it-it
+---
+
+Elixir è un linguaggio funzionale moderno, costruito sulla VM Erlang.
+È totalmente compatibile con Erlang, ma con una sintassi più standard
+e molte altre funzionalità.
+
+```elixir
+
+# I commenti su una riga iniziano con un cancelletto.
+
+# Non esistono commenti multilinea,
+# ma puoi concatenare più commenti.
+
+# Per usare la shell di elixir usa il comando `iex`.
+# Compila i tuoi moduli con il comando `elixirc`.
+
+# Entrambi i comandi dovrebbero già essere nel tuo PATH se hai installato
+# elixir correttamente.
+
+## ---------------------------
+## -- Tipi di base
+## ---------------------------
+
+# Numeri
+3 # intero (Integer)
+0x1F # intero
+3.0 # decimale (Float)
+
+# Atomi, che sono literals, una costante con un nome. Iniziano con `:`.
+:ciao # atomo (Atom)
+
+# Tuple che sono salvate in celle di memoria contigue.
+{1,2,3} # tupla (Tuple)
+
+# Possiamo accedere ad un elemento di una tupla con la funzione `elem`:
+elem({1, 2, 3}, 0) #=> 1
+
+# Liste, che sono implementate come liste concatenate (o linked list).
+[1,2,3] # lista (List)
+
+# Possiamo accedere alla testa (head) e alla coda (tail) delle liste così:
+[testa | coda] = [1,2,3]
+testa #=> 1
+coda #=> [2,3]
+
+# In Elixir, proprio come in Erlang, il simbolo `=` denota pattern matching e
+# non un assegnamento.
+#
+# Questo significa che la parte sinistra (pattern) viene confrontata alla
+# parte destra.
+#
+# Questo spiega il funzionamento dell'esempio dell'accesso alla lista di prima.
+
+# Un pattern match darà errore quando le parti non combaciano, ad esempio se
+# le tuple hanno dimensione differente.
+# {a, b, c} = {1, 2} #=> ** (MatchError) no match of right hand side value: {1,2}
+
+# Ci sono anche i binari
+<<1,2,3>> # binari (Binary)
+
+# Stringhe e liste di caratteri
+"ciao" # stringa (String)
+'ciao' # lista di caratteri (List)
+
+# Stringhe multilinea
+"""
+Sono una stringa
+multi-linea.
+"""
+#=> "Sono una stringa\nmulti-linea.\n"
+
+# Le stringhe sono tutte codificate in UTF-8:
+"cìaò"
+#=> "cìaò"
+
+# le stringhe in realtà sono dei binari, e le liste di caratteri sono liste.
+<<?a, ?b, ?c>> #=> "abc"
+[?a, ?b, ?c] #=> 'abc'
+
+# `?a` in elixir restituisce il valore ASCII della lettera `a`
+?a #=> 97
+
+# Per concatenare liste si usa `++`, per binari si usa `<>`
+[1,2,3] ++ [4,5] #=> [1,2,3,4,5]
+'ciao ' ++ 'mondo' #=> 'ciao mondo'
+
+<<1,2,3>> <> <<4,5>> #=> <<1,2,3,4,5>>
+"ciao " <> "mondo" #=> "ciao mondo"
+
+# Gli intervalli sono rappresentati come `inizio..fine` (estremi inclusi)
+1..10 #=> 1..10 (Range)
+minore..maggiore = 1..10 # Puoi fare pattern matching anche sugli intervalli
+[minore, maggiore] #=> [1, 10]
+
+## ---------------------------
+## -- Operatori
+## ---------------------------
+
+# Un po' di matematica
+1 + 1 #=> 2
+10 - 5 #=> 5
+5 * 2 #=> 10
+10 / 2 #=> 5.0
+
+# In elixir l'operatore `/` restituisce sempre un decimale.
+
+# Per fare una divisione intera si usa `div`
+div(10, 2) #=> 5
+
+# Per ottenere il resto di una divisione si usa `rem`
+rem(10, 3) #=> 1
+
+# Ci sono anche gli operatori booleani: `or`, `and` e `not`.
+# Questi operatori si aspettano un booleano come primo argomento.
+true and true #=> true
+false or true #=> true
+# 1 and true #=> ** (ArgumentError) argument error
+
+# Elixir fornisce anche `||`, `&&` e `!` che accettano argomenti
+# di qualsiasi tipo.
+# Tutti i valori tranne `false` e `nil` saranno valutati come true.
+1 || true #=> 1
+false && 1 #=> false
+nil && 20 #=> nil
+!true #=> false
+
+# Per i confronti abbiamo: `==`, `!=`, `===`, `!==`, `<=`, `>=`, `<` e `>`
+1 == 1 #=> true
+1 != 1 #=> false
+1 < 2 #=> true
+
+# `===` e `!==` sono più rigidi quando si confrontano interi e decimali:
+1 == 1.0 #=> true
+1 === 1.0 #=> false
+
+# Possiamo anche confrontare tipi di dato diversi:
+1 < :ciao #=> true
+
+# L'ordine generale è definito sotto:
+# numeri < atomi < riferimenti < funzioni < porte < pid < tuple < liste
+# < stringhe di bit
+
+# Per citare Joe Armstrong su questo: "L'ordine non è importante,
+# ma è importante che sia definito un ordine."
+
+## ---------------------------
+## -- Controllo di flusso
+## ---------------------------
+
+# espressione `se` (`if`)
+if false do
+ "Questo non si vedrà mai"
+else
+ "Questo sì"
+end
+
+# c'è anche un `se non` (`unless`)
+unless true do
+ "Questo non si vedrà mai"
+else
+ "Questo sì"
+end
+
+# Ti ricordi il pattern matching?
+# Moltre strutture di controllo di flusso in elixir si basano su di esso.
+
+# `case` ci permette di confrontare un valore a diversi pattern:
+case {:uno, :due} do
+ {:quattro, :cinque} ->
+ "Questo non farà match"
+ {:uno, x} ->
+ "Questo farà match e binderà `x` a `:due`"
+ _ ->
+ "Questo farà match con qualsiasi valore"
+end
+
+# Solitamente si usa `_` se non si ha bisogno di utilizzare un valore.
+# Ad esempio, se ci serve solo la testa di una lista:
+[testa | _] = [1,2,3]
+testa #=> 1
+
+# Per aumentare la leggibilità possiamo usarlo in questo modo:
+[testa | _coda] = [:a, :b, :c]
+testa #=> :a
+
+# `cond` ci permette di verificare più condizioni allo stesso momento.
+# Usa `cond` invece di innestare più espressioni `if`.
+cond do
+ 1 + 1 == 3 ->
+ "Questa stringa non si vedrà mai"
+ 2 * 5 == 12 ->
+ "Nemmeno questa"
+ 1 + 2 == 3 ->
+ "Questa sì!"
+end
+
+# È pratica comune mettere l'ultima condizione a `true`, che farà sempre match
+cond do
+ 1 + 1 == 3 ->
+ "Questa stringa non si vedrà mai"
+ 2 * 5 == 12 ->
+ "Nemmeno questa"
+ true ->
+ "Questa sì! (essenzialmente funziona come un else)"
+end
+
+# `try/catch` si usa per gestire i valori lanciati (throw),
+# Supporta anche una clausola `after` che è invocata in ogni caso.
+try do
+ throw(:ciao)
+catch
+ message -> "Ho ricevuto #{message}."
+after
+ IO.puts("Io sono la clausola 'after'.")
+end
+#=> Io sono la clausola 'after'
+# "Ho ricevuto :ciao"
+
+## ---------------------------
+## -- Moduli e Funzioni
+## ---------------------------
+
+# Funzioni anonime (notare il punto)
+quadrato = fn(x) -> x * x end
+quadrato.(5) #=> 25
+
+# Accettano anche guardie e condizioni multiple.
+# le guardie ti permettono di perfezionare il tuo pattern matching,
+# sono indicate dalla parola chiave `when`:
+f = fn
+ x, y when x > 0 -> x + y
+ x, y -> x * y
+end
+
+f.(1, 3) #=> 4
+f.(-1, 3) #=> -3
+
+# Elixir fornisce anche molte funzioni, disponibili nello scope corrente.
+is_number(10) #=> true
+is_list("ciao") #=> false
+elem({1,2,3}, 0) #=> 1
+
+# Puoi raggruppare delle funzioni all'interno di un modulo.
+# All'interno di un modulo usa `def` per definire le tue funzioni.
+defmodule Matematica do
+ def somma(a, b) do
+ a + b
+ end
+
+ def quadrato(x) do
+ x * x
+ end
+end
+
+Matematica.somma(1, 2) #=> 3
+Matematica.quadrato(3) #=> 9
+
+# Per compilare il modulo 'Matematica' salvalo come `matematica.ex` e usa
+# `elixirc`.
+# nel tuo terminale: elixirc matematica.ex
+
+# All'interno di un modulo possiamo definire le funzioni con `def` e funzioni
+# private con `defp`.
+# Una funzione definita con `def` è disponibile per essere invocata anche da
+# altri moduli, una funziona privata può essere invocata solo localmente.
+defmodule MatematicaPrivata do
+ def somma(a, b) do
+ esegui_somma(a, b)
+ end
+
+ defp esegui_somma(a, b) do
+ a + b
+ end
+end
+
+MatematicaPrivata.somma(1, 2) #=> 3
+# MatematicaPrivata.esegui_somma(1, 2) #=> ** (UndefinedFunctionError)
+
+# Anche le dichiarazioni di funzione supportano guardie e condizioni multiple:
+defmodule Geometria do
+ def area({:rettangolo, w, h}) do
+ w * h
+ end
+
+ def area({:cerchio, r}) when is_number(r) do
+ 3.14 * r * r
+ end
+end
+
+Geometria.area({:rettangolo, 2, 3}) #=> 6
+Geometria.area({:cerchio, 3}) #=> 28.25999999999999801048
+# Geometria.area({:cerchio, "non_un_numero"})
+#=> ** (FunctionClauseError) no function clause matching in Geometria.area/1
+
+# A causa dell'immutabilità dei dati, la ricorsione è molto frequente in elixir
+defmodule Ricorsione do
+ def somma_lista([testa | coda], accumulatore) do
+ somma_lista(coda, accumulatore + testa)
+ end
+
+ def somma_lista([], accumulatore) do
+ accumulatore
+ end
+end
+
+Ricorsione.somma_lista([1,2,3], 0) #=> 6
+
+# I moduli di Elixir supportano attributi. Ci sono degli attributi incorporati
+# e puoi anche aggiungerne di personalizzati.
+defmodule Modulo do
+ @moduledoc """
+ Questo è un attributo incorporato in un modulo di esempio.
+ """
+
+ @miei_dati 100 # Questo è un attributo personalizzato .
+ IO.inspect(@miei_dati) #=> 100
+end
+
+## ---------------------------
+## -- Strutture ed Eccezioni
+## ---------------------------
+
+
+# Le Strutture (Structs) sono estensioni alle mappe che portano
+# valori di default, garanzia alla compilazione e polimorfismo in Elixir.
+defmodule Persona do
+ defstruct nome: nil, eta: 0, altezza: 0
+end
+
+luca = %Persona{ nome: "Luca", eta: 24, altezza: 185 }
+#=> %Persona{eta: 24, altezza: 185, nome: "Luca"}
+
+# Legge al valore di 'nome'
+luca.nome #=> "Luca"
+
+# Modifica il valore di eta
+luca_invecchiato = %{ luca | eta: 25 }
+#=> %Persona{eta: 25, altezza: 185, nome: "Luca"}
+
+# Il blocco `try` con la parola chiave `rescue` è usato per gestire le eccezioni
+try do
+ raise "un errore"
+rescue
+ RuntimeError -> "Salvato un errore di Runtime"
+ _error -> "Questo salverà da qualsiasi errore"
+end
+
+# Tutte le eccezioni hanno un messaggio
+try do
+ raise "un errore"
+rescue
+ x in [RuntimeError] ->
+ x.message
+end
+
+## ---------------------------
+## -- Concorrenza
+## ---------------------------
+
+# Elixir si basa sul modello degli attori per la concorrenza.
+# Tutto ciò di cui abbiamo bisogno per scrivere programmi concorrenti in elixir
+# sono tre primitive: creare processi, inviare messaggi e ricevere messaggi.
+
+# Per creare un nuovo processo si usa la funzione `spawn`, che riceve una
+# funzione come argomento.
+f = fn -> 2 * 2 end #=> #Function<erl_eval.20.80484245>
+spawn(f) #=> #PID<0.40.0>
+
+# `spawn` restituisce un pid (identificatore di processo). Puoi usare questo
+# pid per inviare messaggi al processo.
+# Per passare messaggi si usa l'operatore `send`.
+# Perché tutto questo sia utile dobbiamo essere capaci di ricevere messaggi,
+# oltre ad inviarli. Questo è realizzabile con `receive`:
+defmodule Geometria do
+ def calcolo_area do
+ receive do
+ {:rettangolo, w, h} ->
+ IO.puts("Area = #{w * h}")
+ calcolo_area()
+ {:cerchio, r} ->
+ IO.puts("Area = #{3.14 * r * r}")
+ calcolo_area()
+ end
+ end
+end
+
+# Compila il modulo e crea un processo che esegue `calcolo_area` nella shell
+pid = spawn(fn -> Geometria.calcolo_area() end) #=> #PID<0.40.0>
+
+# Invia un messaggio a `pid` che farà match su un pattern nel blocco in receive
+send pid, {:rettangolo, 2, 3}
+#=> Area = 6
+# {:rettangolo,2,3}
+
+send pid, {:cerchio, 2}
+#=> Area = 12.56000000000000049738
+# {:cerchio,2}
+
+# Anche la shell è un processo. Puoi usare `self` per ottenere il pid corrente
+self() #=> #PID<0.27.0>
+```
+
+## Referenze
+
+* [Getting started guide](http://elixir-lang.org/getting_started/1.html) dalla [pagina web ufficiale di elixir](http://elixir-lang.org)
+* [Documentazione Elixir](http://elixir-lang.org/docs/master/)
+* ["Programming Elixir"](https://pragprog.com/book/elixir/programming-elixir) di Dave Thomas
+* [Elixir Cheat Sheet](http://media.pragprog.com/titles/elixir/ElixirCheat.pdf)
+* ["Learn You Some Erlang for Great Good!"](http://learnyousomeerlang.com/) di Fred Hebert
+* ["Programming Erlang: Software for a Concurrent World"](https://pragprog.com/book/jaerlang2/programming-erlang) di Joe Armstrong
diff --git a/javascript.html.markdown b/javascript.html.markdown
index 588ea86d..ba2e8ce4 100644
--- a/javascript.html.markdown
+++ b/javascript.html.markdown
@@ -475,9 +475,6 @@ myNumber === myNumberObj; // = false
if (0){
// This code won't execute, because 0 is falsy.
}
-if (Number(0)){
- // This code *will* execute, because Number(0) is truthy.
-}
// However, the wrapper objects and the regular builtins share a prototype, so
// you can actually add functionality to a string, for instance.
diff --git a/make.html.markdown b/make.html.markdown
new file mode 100644
index 00000000..75543dcd
--- /dev/null
+++ b/make.html.markdown
@@ -0,0 +1,243 @@
+---
+language: make
+contributors:
+ - ["Robert Steed", "https://github.com/robochat"]
+filename: Makefile
+---
+
+A Makefile defines a graph of rules for creating a target (or targets).
+Its purpose is to do the minimum amount of work needed to update a
+target to the most recent version of the source. Famously written over a
+weekend by Stuart Feldman in 1976, it is still widely used (particularly
+on Unix) despite many competitors and criticisms.
+
+There are many varieties of make in existance, this article assumes that
+we are using GNU make which is the standard on Linux.
+
+```make
+
+# Comments can be written like this.
+
+# Files should be named Makefile and then be can run as `make <target>`.
+# Otherwise we use `make -f "filename" <target>`.
+
+# Warning - only use TABS to indent in Makefiles, never spaces!
+
+#-----------------------------------------------------------------------
+# Basics
+#-----------------------------------------------------------------------
+
+# A rule - this rule will only run if file0.txt doesn't exist.
+file0.txt:
+ echo "foo" > file0.txt
+ # Even comments in these 'recipe' sections get passed to the shell.
+ # Try `make file0.txt` or simply `make` - first rule is the default.
+
+
+# This rule will only run if file0.txt is newer than file1.txt.
+file1.txt: file0.txt
+ cat file0.txt > file1.txt
+ # use the same quoting rules as in the shell.
+ @cat file0.txt >> file1.txt
+ # @ stops the command from being echoed to stdout.
+ -@echo 'hello'
+ # - means that make will keep going in the case of an error.
+ # Try `make file1.txt` on the commandline.
+
+# A rule can have multiple targets and multiple prerequisites
+file2.txt file3.txt: file0.txt file1.txt
+ touch file2.txt
+ touch file3.txt
+
+# Make will complain about multiple recipes for the same rule. Empty
+# recipes don't count though and can be used to add new dependencies.
+
+#-----------------------------------------------------------------------
+# Phony Targets
+#-----------------------------------------------------------------------
+
+# A phony target. Any target that isn't a file.
+# It will never be up to date so make will always try to run it.
+all: maker process
+
+# We can declare things out of order.
+maker:
+ touch ex0.txt ex1.txt
+
+# Can avoid phony rules breaking when a real file has the same name by
+.PHONY: all maker process
+# This is a special target. There are several others.
+
+# A rule with a dependency on a phony target will always run
+ex0.txt ex1.txt: maker
+
+# Common phony targets are: all make clean install ...
+
+#-----------------------------------------------------------------------
+# Automatic Variables & Wildcards
+#-----------------------------------------------------------------------
+
+process: file*.txt #using a wildcard to match filenames
+ @echo $^ # $^ is a variable containing the list of prerequisites
+ @echo $@ # prints the target name
+ #(for multiple target rules, $@ is whichever caused the rule to run)
+ @echo $< # the first prerequisite listed
+ @echo $? # only the dependencies that are out of date
+ @echo $+ # all dependencies including duplicates (unlike normal)
+ #@echo $| # all of the 'order only' prerequisites
+
+# Even if we split up the rule dependency definitions, $^ will find them
+process: ex1.txt file0.txt
+# ex1.txt will be found but file0.txt will be deduplicated.
+
+#-----------------------------------------------------------------------
+# Patterns
+#-----------------------------------------------------------------------
+
+# Can teach make how to convert certain files into other files.
+
+%.png: %.svg
+ inkscape --export-png $^
+
+# Pattern rules will only do anything if make decides to create the \
+target.
+
+# Directory paths are normally ignored when matching pattern rules. But
+# make will try to use the most appropriate rule available.
+small/%.png: %.svg
+ inkscape --export-png --export-dpi 30 $^
+
+# make will use the last version for a pattern rule that it finds.
+%.png: %.svg
+ @echo this rule is chosen
+
+# However make will use the first pattern rule that can make the target
+%.png: %.ps
+ @echo this rule is not chosen if *.svg and *.ps are both present
+
+# make already has some pattern rules built-in. For instance, it knows
+# how to turn *.c files into *.o files.
+
+# Older makefiles might use suffix rules instead of pattern rules
+.png.ps:
+ @echo this rule is similar to a pattern rule.
+
+# Tell make about the suffix rule
+.SUFFIXES: .png
+
+#-----------------------------------------------------------------------
+# Variables
+#-----------------------------------------------------------------------
+# aka. macros
+
+# Variables are basically all string types
+
+name = Ted
+name2="Sarah"
+
+echo:
+ @echo $(name)
+ @echo ${name2}
+ @echo $name # This won't work, treated as $(n)ame.
+ @echo $(name3) # Unknown variables are treated as empty strings.
+
+# There are 4 places to set variables.
+# In order of priority from highest to lowest:
+# 1: commandline arguments
+# 2: Makefile
+# 3: shell enviroment variables - make imports these automatically.
+# 4: make has some predefined variables
+
+name4 ?= Jean
+# Only set the variable if enviroment variable is not already defined.
+
+override name5 = David
+# Stops commandline arguments from changing this variable.
+
+name4 +=grey
+# Append values to variable (includes a space).
+
+# Pattern-specific variable values (GNU extension).
+echo: name2 = Sara # True within the matching rule
+ # and also within its remade recursive dependencies
+ # (except it can break when your graph gets too complicated!)
+
+# Some variables defined automatically by make.
+echo_inbuilt:
+ echo $(CC)
+ echo ${CXX)}
+ echo $(FC)
+ echo ${CFLAGS)}
+ echo $(CPPFLAGS)
+ echo ${CXXFLAGS}
+ echo $(LDFLAGS)
+ echo ${LDLIBS}
+
+#-----------------------------------------------------------------------
+# Variables 2
+#-----------------------------------------------------------------------
+
+# The first type of variables are evaluated each time they are used.
+# This can be expensive, so a second type of variable exists which is
+# only evaluated once. (This is a GNU make extension)
+
+var := hello
+var2 ::= $(var) hello
+#:= and ::= are equivalent.
+
+# These variables are evaluated procedurely (in the order that they
+# appear), thus breaking with the rest of the language !
+
+# This doesn't work
+var3 ::= $(var4) and good luck
+var4 ::= good night
+
+#-----------------------------------------------------------------------
+# Functions
+#-----------------------------------------------------------------------
+
+# make has lots of functions available.
+
+sourcefiles = $(wildcard *.c */*.c)
+objectfiles = $(patsubst %.c,%.o,$(sourcefiles))
+
+# Format is $(func arg0,arg1,arg2...)
+
+# Some examples
+ls: * src/*
+ @echo $(filter %.txt, $^)
+ @echo $(notdir $^)
+ @echo $(join $(dir $^),$(notdir $^))
+
+#-----------------------------------------------------------------------
+# Directives
+#-----------------------------------------------------------------------
+
+# Include other makefiles, useful for platform specific code
+include foo.mk
+
+sport = tennis
+# Conditional compilation
+report:
+ifeq ($(sport),tennis)
+ @echo 'game, set, match'
+else
+ @echo "They think it's all over; it is now"
+endif
+
+# There are also ifneq, ifdef, ifndef
+
+foo = true
+
+ifdef $(foo)
+bar = 'hello'
+endif
+```
+
+
+### More Resources
+
++ [gnu make documentation](https://www.gnu.org/software/make/manual/)
++ [software carpentry tutorial](http://swcarpentry.github.io/make-novice/)
++ learn C the hard way [ex2](http://c.learncodethehardway.org/book/ex2.html) [ex28](http://c.learncodethehardway.org/book/ex28.html)
+
diff --git a/markdown.html.markdown b/markdown.html.markdown
index 7541f904..6d19710f 100644
--- a/markdown.html.markdown
+++ b/markdown.html.markdown
@@ -232,6 +232,12 @@ can be anything so long as they are unique. -->
I want to type *this text surrounded by asterisks* but I don't want it to be
in italics, so I do this: \*this text surrounded by asterisks\*.
+<!-- Keyboard keys -->
+<!-- In Github Flavored Markdown, you can use a <kbd> tag to represent keyboard keys -->
+
+Your computer crashed? Try sending a
+<kbd>Ctrl</kbd>+<kbd>Alt</kbd>+<kbd>Del</kbd>
+
<!-- Tables -->
<!-- Tables are only available in Github Flavored Markdown and are slightly
cumbersome, but if you really want it: -->
diff --git a/no-nb/bash-no.html.markdown b/no-nb/bash-no.html.markdown
new file mode 100644
index 00000000..ab0c064f
--- /dev/null
+++ b/no-nb/bash-no.html.markdown
@@ -0,0 +1,270 @@
+---
+category: tool
+tool: bash
+contributors:
+ - ["Max Yankov", "https://github.com/golergka"]
+ - ["Darren Lin", "https://github.com/CogBear"]
+ - ["Alexandre Medeiros", "http://alemedeiros.sdf.org"]
+ - ["Denis Arh", "https://github.com/darh"]
+ - ["akirahirose", "https://twitter.com/akirahirose"]
+ - ["Anton Strömkvist", "http://lutic.org/"]
+ - ["Rahil Momin", "https://github.com/iamrahil"]
+ - ["Gregrory Kielian", "https://github.com/gskielian"]
+filename: LearnBash-no.sh
+translators:
+ - ["Andreas Lindahl Flåten", "https://github.com/anlif"]
+lang: no-nb
+---
+Bash er navnet på unix skallet, som også var distribuert som skallet for GNU
+operativsystemet og som standard skall på de fleste Linux distribusjoner og
+Mac OS X.
+
+[Les mer her.](http://www.gnu.org/software/bash/manual/bashref.html)
+
+```bash
+#!/bin/bash
+# Den første linjen i et bash skript starter med '#!' (shebang)
+# etterfulgt av stien til bash http://en.wikipedia.org/wiki/Shebang_(Unix)
+# Kommentarer starter med #.
+
+# Enkelt hello world eksempel:
+echo Hello world!
+
+# Hver kommando starter på en ny linje, eller etter et semikolon:
+echo 'Dette er den første linjen'; echo 'Dette er en andre linjen'
+
+# Deklarering av en variabel ser slik ut:
+VARIABLE="En tekststreng"
+
+# Men ikke slik:
+VARIABLE = "En tekststreng"
+# Bash vil tolke dette som at VARIABLE er en kommando den skal kjøre
+# og gi en feilmelding dersom kommandoen ikke finnes
+
+# Bruk av den nydeklarerte variabelen:
+echo $VARIABLE
+echo "$VARIABLE"
+echo '$VARIABLE'
+# Når du bruker variabelen, for eksempel setter verdien eller eksporterer den,
+# skriver du navnet dens uten $. Hvis du vil bruke variabelens verdi,
+# skriver du $ før variabelnavnet.
+
+# Strenginnhold i en variabel kan erstattes på følgende måte:
+echo ${VARIABLE/tull/ball}
+# Dette vil erstatte første forekomst av 'tull' med 'ball'
+
+# Substreng av en variabel:
+echo ${VARIABLE:0:7}
+# Dette vil returnere de første 7 tegnene i en strengvariabel
+
+# Å angi en standardverdi dersom en variabel er udeklarert gjøres slik:
+echo ${FOO:-"StandardVerdiDersomFOOErTom"}
+# Dette fungerer for null (FOO=), tom streng (FOO="") og tallet null (FOO=0)
+
+# Det finnes en rekke hendige innebygde variable, eksempel:
+echo "Siste programs returnerte verdi: $?"
+echo "Skript's PID: $$"
+echo "Antall argumenter: $#"
+echo "Alle argumenter til skriptet: $@"
+echo "Argumenter til skriptet i egne variable: $1 $2..."
+
+# Lesing av input:
+echo "Hva heter du?"
+read NAME # variabelen NAME blir automatisk deklarert av 'read' kommandoen
+echo Hei, $NAME!
+
+# if setninger ser slik ut:
+# se 'man test' for mer informasjon om betingelser
+if [ $NAME -ne $USER ]
+then
+ echo "Your name isn't your username"
+else
+ echo "Your name is your username"
+fi
+
+# Det finnes også betinget eksekvering
+echo "Kjøres alltid" || echo "Kjøres kun dersom første kommando feilet"
+echo "Kjøres alltid" && echo "Kjøres kun dersom første kommando IKKE feilet"
+
+# For å bruke && (logisk OG) og || (logisk ELLER) sammen med if setninger,
+# trenger man par av firkantklammer [] på hver side av et logisk uttrykk:
+if [ $NAME == "Steve" ] && [ $AGE -eq 15 ]
+then
+ echo "Dette kjører dersom $NAME er Steve OG $AGE er lik 15."
+fi
+
+if [ $NAME == "Daniya" ] || [ $NAME == "Zach" ]
+then
+ echo "Dette kjører dersom $NAME er Daniya ELLER Zach."
+fi
+
+# Matematiske uttrykk skrives slik:
+echo $(( 10 + 5 ))
+
+# Ulikt de fleste programmeringsspråk, så er bash et skall - det medfører at en
+# kommando i et skript kjører i en bestemt mappe i filsystemet. Du kan skrive
+# ut innholdet i nåværende mappe med ls kommandoen:
+ls
+
+# Kommandoen har parametre som kontrollerer hvordan kommandoen utføres:
+ls -l # Skriv hver fil og mappe på sin egen linje
+
+# Resultatet av forrige kommando kan bli sendt til neste kommando som input.
+# grep kommandoen filtrerer input ved hjelp av et regulært uttrykk.
+# Ved å bruke grep kan vi skrive ut kun .txt filer på følgende måte:
+ls -l | grep "\.txt" # lær mer om grep ved å skrive 'man grep'
+
+# Input og output fra filer kan dirigeres (stdin, stdout og stderr).
+# 'cat' kommandoen uten argumenter skriver fra stdin til stdout.
+# I det følgende eksempelet overskrives filen hello.py med linjene mellom EOF.
+cat > hello.py << EOF
+#!/usr/bin/env python
+from __future__ import print_function
+import sys
+print("#stdout", file=sys.stdout)
+print("#stderr", file=sys.stderr)
+for line in sys.stdin:
+ print(line, file=sys.stdout)
+EOF
+
+# Kjør hello.py (et python skript)
+# med ulike stdin, stdout, and stderr omdirigeringer:
+python hello.py < "input.in"
+python hello.py > "output.out"
+python hello.py 2> "error.err"
+python hello.py > "output-and-error.log" 2>&1
+python hello.py > /dev/null 2>&1
+# '>' operatoren overskriver filen dersom den finnes.
+# Hvis du heller vil legge til på slutten av en eksisterende fil, bruk '>>'
+python hello.py >> "output.out" 2>> "error.err"
+
+# Overskriv output.txt, legg til error.err, og tell antall linjer med 'wc':
+info bash 'Basic Shell Features' 'Redirections' > output.out 2>> error.err
+wc -l output.out error.err
+
+# Run a command and print its file descriptor (e.g. /dev/fd/123)
+# Kjør en kommando og print tilhørende 'file descriptor'
+# se 'man fd'
+echo <(echo "#helloworld")
+
+# Ulike måter å overskrive output.out med '#helloworld':
+cat > output.out <(echo "#helloworld")
+echo "#helloworld" > output.out
+echo "#helloworld" | cat > output.out
+echo "#helloworld" | tee output.out >/dev/null
+
+# Slett noen filer med økt verbositet '-v', legg til '-i' for interaktiv modus
+rm -v output.out error.err output-and-error.log
+
+# Kommandoer kan kjøres i deklarasjonen av andre kommandoer ved å bruke $( ):
+# Følgende kommando skriver antall filer og mapper i nåværende mappe
+echo "There are $(ls | wc -l) items here."
+
+# Det samme kan gjøres med backticks `` men de kan ikke være nøstede,
+# det anbefales å bruke $( ) slik som i forrige eksempel.
+echo "There are `ls | wc -l` items here."
+
+# Bash har en 'case' setning som fungerer omtrent som en 'switch' i Java/C:
+case "$VARIABLE" in
+ # Skriv ønskede match med tilhørende kommandoer
+ 0) echo "There is a zero.";;
+ 1) echo "There is a one.";;
+ *) echo "It is not null.";;
+esac
+
+# for løkker kan iterere over en mengde argumenter:
+for VARIABLE in {1..3}
+do
+ echo "$VARIABLE"
+done
+
+# Eller vi kan skrive en for løkke omtrent slik det kan gjøres i Java/C:
+for ((a=1; a <= 3; a++))
+do
+ echo $a
+done
+
+# Man kan også iterere over resultatet av en annen kommando.
+for OUTPUT in $(ls)
+do
+ cat "$OUTPUT"
+done
+
+# while løkke, se if setninger:
+while [ true ]
+do
+ echo "loop body here..."
+ break
+done
+
+# Man kan også definere funksjoner.
+# Definisjon:
+function foo ()
+{
+ echo "Argumenter fungerer akkurat som skript argumenter: $@"
+ echo "Og: $1 $2..."
+ echo "Dette er en funksjon"
+ return 0
+}
+
+# eller bare:
+bar ()
+{
+ echo "En annen måte å deklarere en funksjon."
+ return 0
+}
+
+# Å kalle en funksjon:
+foo "Mitt navn er" $NAME
+
+# There are a lot of useful commands you should learn:
+# prints last 10 lines of file.txt
+# Det er mange nyttige kommandoer du bør lære deg:
+# "tail" skriver ut slutten av en fil, i dette tilfellet de siste 10 linjene
+tail -n 10 file.txt
+# skriv ut de første 10 linjene av file.txt
+head -n 10 file.txt
+# sorter linjene i file.txt ("man sort")
+sort file.txt
+# skriv ut eller fjern repeterte linjer, med -d skrives de ut
+uniq -d file.txt
+# skriver kun den første kolonnen før ',' tegnet
+cut -d ',' -f 1 file.txt
+# erstatter hvert tilfelle av 'bjarne' med 'alfa' i file.txt,
+# sed støtter regulære uttrykk ("man sed").
+sed -i 's/bjarne/alfa/g' file.txt
+# skriv til stdout alle linjer i file.txt som matches av et regulært uttrykk
+# eksempelet skriver ut alle linjer som begynner med "foo" og slutter med "bar"
+grep "^foo.*bar$" file.txt
+# skriv "-c" hvis du heller vil vite antall linjer som matcher
+grep -c "^foo.*bar$" file.txt
+# hvis du vil matche en bestemt streng, og ikke et regulært uttrykk
+# bruker du enten "fgrep" eller ekvivalenten "grep -f"
+fgrep "^foo.*bar$" file.txt
+
+
+# Les Bash sin egen dokumentasjon om innebygde konstruksjoner:
+help
+help help
+help for
+help return
+help source
+help .
+
+# Les Bash sin "manpage":
+apropos bash
+man 1 bash
+man bash
+
+# Les "info" dokumentasjon:
+apropos info | grep '^info.*('
+man info
+info info
+info 5 info
+
+# Les bash sin info dokumentasjon:
+info bash
+info bash 'Bash Features'
+info bash 6
+info --apropos bash
+```
diff --git a/objective-c.html.markdown b/objective-c.html.markdown
index 56640a87..91b84b47 100644
--- a/objective-c.html.markdown
+++ b/objective-c.html.markdown
@@ -415,7 +415,7 @@ distance = 18; // References "long distance" from MyClass implementation
+ (NSString *)classMethod
{
- return [[self alloc] init];
+ return @"Some string";
}
+ (MyClass *)myClassFromHeight:(NSNumber *)defaultHeight
diff --git a/perl6.html.markdown b/perl6.html.markdown
index de7d2f25..8d425f7d 100644
--- a/perl6.html.markdown
+++ b/perl6.html.markdown
@@ -213,7 +213,7 @@ say $x; #=> 52
# - `if`
# Before talking about `if`, we need to know which values are "Truthy"
# (represent True), and which are "Falsey" (or "Falsy") -- represent False.
-# Only these values are Falsey: (), 0, "", Nil, A type (like `Str` or `Int`),
+# Only these values are Falsey: 0, (), {}, "", Nil, A type (like `Str` or `Int`),
# and of course False itself.
# Every other value is Truthy.
if True {
diff --git a/php.html.markdown b/php.html.markdown
index 2d4565e0..3fcce264 100644
--- a/php.html.markdown
+++ b/php.html.markdown
@@ -487,7 +487,7 @@ class MyClass
* Declaring class properties or methods as static makes them accessible without
* needing an instantiation of the class. A property declared as static can not
* be accessed with an instantiated class object (though a static method can).
-*/
+ */
public static function myStaticMethod()
{
@@ -495,7 +495,9 @@ class MyClass
}
}
+// Class constants can always be accessed statically
echo MyClass::MY_CONST; // Outputs 'value';
+
echo MyClass::$staticVar; // Outputs 'static';
MyClass::myStaticMethod(); // Outputs 'I am static';
diff --git a/pl-pl/brainfuck-pl.html.markdown b/pl-pl/brainfuck-pl.html.markdown
new file mode 100644
index 00000000..69d814c4
--- /dev/null
+++ b/pl-pl/brainfuck-pl.html.markdown
@@ -0,0 +1,93 @@
+---
+language: brainfuck
+contributors:
+ - ["Prajit Ramachandran", "http://prajitr.github.io/"]
+ - ["Mathias Bynens", "http://mathiasbynens.be/"]
+translators:
+ - ["Jakub Młokosiewicz", "https://github.com/hckr"]
+lang: pl-pl
+---
+
+Brainfuck (pisane małymi literami, za wyjątkiem początku zdania) jest bardzo
+minimalistycznym, kompletnym w sensie Turinga, językiem programowania.
+Zawiera zaledwie 8 poleceń.
+
+Możesz przetesotwać brainfucka w swojej przeglądarce, korzystając z narzędzia
+[brainfuck-visualizer](http://fatiherikli.github.io/brainfuck-visualizer/).
+
+```
+Wszystkie znaki oprócz "><+-.,[]" (wyłączając znaki zapytania) są ignorowane.
+
+Pamięć w brainfucku jest reprezentowana przez tablicę 30.000 komórek
+zainicjalizowanych zerami, ze wskaźnikiem pokazującym na aktualną komórkę.
+
+Oto osiem poleceń brainfucka:
++ : inkrementuje (zwiększa o jeden) wartość aktualnie wskazywanej komórki
+- : dekrementuje (zmniejsza o jeden) wartość aktualnie wskazywanej komórki
+> : przesuwa wskaźnik na następną komórkę (w prawo)
+< : przesuwa wskaźnik na poprzednią komórkę (w lewo)
+. : wyświetla wartość bieżącej komórki (w formie znaku ASCII, np. 65 = 'A')
+, : wczytuje (jeden) znak z wejścia do bieżącej komórki
+ (konkretnie jego numer z tabeli ASCII)
+[ : jeśli wartość w bieżącej komórce jest rózna zero, przechodzi do
+ odpowiadającego ]; w przeciwnym wypdaku przechodzi do następnej instrukcji
+] : Jeśli wartość w bieżącej komórce jest rózna od zera, przechodzi do
+ następnej instrukcji; w przeciwnym wypdaku przechodzi do odpowiadającego [
+
+[ i ] oznaczają pętlę while. Oczywiście każda pętla rozpoczęta [
+musi być zakończona ].
+
+Zobaczmy kilka prostych programów w brainfucku.
+
+
+++++++ [ > ++++++++++ < - ] > +++++ .
+
+Ten program wypisuje literę 'A'. Najpierw zwiększa wartość komórki #1 do 6.
+Komórka #1 będzie wykorzystana w pętli. Następnie program wchodzi w pętlę ([)
+i przechodzi do komórki #2. Pętla wykonuje się sześć razy (komórka #1 jest
+dekrementowana sześć razy, nim osiągnie wartość zero, kiedy to program
+przechodzi do odpowiadającego ] i wykonuje kolejne instrukcje).
+
+W tym momencie wskaźnik pokazuje na komórkę #1, mającą wartość 0, podczas gdy
+komórka #2 ma wartość 60. Przesuwamy wskaźnik na komórkę #2, inkrementujemy ją
+pięć razy, uzyskując wartość 65. Następnie wyświetlamy wartość komórki #2.
+65 to 'A' w tabeli ASCII, więc właśnie ten znak jest wypisany na konsolę.
+
+
+, [ > + < - ] > .
+
+Ten program wczytuje znak z wejścia i umieszcza jego kod ASCII w komórce #1.
+Następnie zaczyna się pętla, w której znajdują się następujące instrukcje:
+przesunięcie wskaźnika na komórkę #2, inkrementacja wartości komóri #2,
+powrót do komórki #1 i dekrementacja wartości komórki #1. Instrukcje pętli
+wykonują się aż wartość komórki #1 osiągnie zero, a komórka #2 osiągnie
+poprednią wartość komórki #1. Ponieważ na końcu pętli wskaźnik pokazuje na
+komórkę #1, po pętli następuje instrukcja przejścia do komórki #2 i wysłanie
+jej wartości (w formie znaku ASCII) na wyjście.
+
+Zauważ, że odstępy służą wyłącznie poprawie czytelności.
+Równie dobrze można powyższy program zapisać tak:
+
+,[>+<-]>.
+
+
+Spróbuj odgadnąć, co robi poniższy program:
+
+,>,< [ > [ >+ >+ << -] >> [- << + >>] <<< -] >>
+
+Ten program pobiera z wejścia dwie liczby i je mnoży.
+
+Po wczytaniu dwóch wejść (do komórek #1 i #2) następuje pętla zewnętrzna,
+warunkowana wartością komórki #1. Następnie program przechodzi do komórki #2
+i rozpoczyna pętlę wewnętrzną z warunkiem zakończenia w komórce #2,
+inkrementującą komórkę #3. Tu jednak pojawia się problem: w chwili zakończenia
+wewnętrznej pętli komórka #2 ma wartość zero. W takim razie wewętrzna pętla
+nie wywoła się następny raz. Aby rozwiązać ten problem, inkrementujemy także
+wartość komórki #4, a następnie kopiujemy jej wartość do komórki #2.
+Ostatecznie wynik działania znajduje się w komórce #3.
+```
+
+I to właśnie jest brainfuck. Nie taki trudny, co? W ramach rozrywki możesz
+napisać własne programy w brainfucku. Możesz też napisać interpreter brainfucka
+w innym języku. Implementacja interpretera to dość proste zadanie. Jeśli
+jesteś masochistą, spróbuj napisać interpreter brainfucka w... brainfucku.
diff --git a/pt-br/c++-pt.html.markdown b/pt-br/c++-pt.html.markdown
index 61625ebe..61e267f5 100644
--- a/pt-br/c++-pt.html.markdown
+++ b/pt-br/c++-pt.html.markdown
@@ -304,7 +304,7 @@ void Dog::Dog()
}
// Objetos (como strings) devem ser passados por referência
-// se você está modificando-os ou referência const se você não é.
+// se você pretende modificá-los, ou com const caso contrário.
void Dog::setName(const std::string& dogsName)
{
name = dogsName;
diff --git a/pt-br/perl-pt.html.markdown b/pt-br/perl-pt.html.markdown
new file mode 100644
index 00000000..cc07a2ec
--- /dev/null
+++ b/pt-br/perl-pt.html.markdown
@@ -0,0 +1,166 @@
+---
+name: perl
+category: language
+language: perl
+filename: learnperl-pt.pl
+contributors:
+ - ["Korjavin Ivan", "http://github.com/korjavin"]
+translators:
+ - ["Miguel Araújo", "https://github.com/miguelarauj1o"]
+lang: pt-br
+---
+
+Perl 5 é, uma linguagem de programação altamente capaz, rica em recursos, com mais de 25 anos de desenvolvimento.
+
+Perl 5 roda em mais de 100 plataformas, de portáteis a mainframes e é adequada tanto para prototipagem rápida, quanto em projetos de desenvolvimento em grande escala.
+
+```perl
+# Comentários de uma linha começam com um sinal de número.
+
+#### Tipos de variáveis em Perl
+
+# Variáveis iniciam com um sigilo, que é um símbolo que mostra o tipo.
+# Um nome de variável válido começa com uma letra ou sublinhado,
+# seguido por qualquer número de letras, números ou sublinhados.
+
+### Perl has three main variable types: $scalar, @array, e %hash.
+
+## Scalars
+# Um scalar representa um valor único:
+my $animal = "camelo";
+my $resposta = 42;
+
+# Valores scalar podem ser strings, inteiros ou números ponto-flutuantes e
+# Perl vai automaticamente converter entre eles quando for preciso.
+
+## Arrays
+# Um array representa uma lista de valores:
+my @animais = ("camelo", "vaca", "boi");
+my @números = (23, 42, 69);
+my @misturado = ("camelo", 42, 1.23);
+
+## Hashes
+# Um hash representa um conjunto de pares chave/valor:
+
+my %fruta_cor = ("maçã", "vermelho", "banana", "amarelo");
+
+# Você pode usar o espaço em branco e o operador "=>" para colocá-los de
+# maneira mais agradável:
+
+my %fruta_cor = (
+ maçã => "vermelho",
+ banana => "amarelo",
+);
+
+# Scalars, arrays and hashes são documentados mais profundamentes em perldata.
+# (perldoc perldata).
+
+# Mais tipos de dados complexos podem ser construídas utilizando referências,
+# o que permite que você crie listas e hashes dentro de listas e hashes.
+
+#### Condicionais e construtores de iteração
+
+# Perl possui a maioria das construções condicionais e de iteração habituais.
+
+if ($var) {
+ ...
+} elsif ($var eq 'bar') {
+ ...
+} else {
+ ...
+}
+
+unless (condição) {
+ ...
+}
+# Isto é fornecido como uma versão mais legível de "if (!condition)"
+
+# A forma Perlish pós-condição
+print "Yow!" if $zippy;
+print "Nós não temos nenhuma banana" unless $bananas;
+
+# while
+while (condição) {
+ ...
+}
+
+# for
+for (my $i = 0; $i < $max; $i++) {
+ print "valor é $i";
+}
+
+for (my $i = 0; $i < @elements; $i++) {
+ print "Elemento atual é " . $elements[$i];
+}
+
+for my $element (@elements) {
+ print $element;
+}
+
+# implícito
+
+for (@elements) {
+ print;
+}
+
+#### Expressões regulares
+
+# O suporte a expressões regulares do Perl é ao mesmo tempo amplo e profundo,
+# e é objeto de longa documentação em perlrequick, perlretut, e em outros
+# lugares. No entanto, em suma:
+
+# Casamento simples
+if (/foo/) { ... } # verdade se $_ contém "foo"
+if ($a =~ /foo/) { ... } # verdade se $a contém "foo"
+
+# Substituição simples
+
+$a =~ s/foo/bar/; # substitui foo com bar em $a
+$a =~ s/foo/bar/g; # substitui TODAS AS INSTÂNCIAS de foo com bar em $a
+
+#### Arquivos e I/O
+
+# Você pode abrir um arquivo para entrada ou saída usando a função "open()".
+
+open(my $in, "<", "input.txt") ou desistir "Não pode abrir input.txt: $!";
+open(my $out, ">", "output.txt") ou desistir "Não pode abrir output.txt: $!";
+open(my $log, ">>", "my.log") ou desistir "Não pode abrir my.log: $!";
+
+# Você pode ler de um arquivo aberto usando o operador "<>". No contexto
+# scalar, ele lê uma única linha do arquivo, e em contexto de lista lê o
+# arquivo inteiro, atribuindo cada linha a um elemento da lista:
+
+my $linha = <$in>;
+my @linhas = <$in>;
+
+#### Escrevendo subrotinas
+
+# Escrever subrotinas é fácil:
+
+sub logger {
+ my $mensagem = shift;
+
+ open my $arquivo, ">>", "my.log" or die "Não poderia abrir my.log: $!";
+
+ print $arquivo $ensagem;
+}
+
+# Agora nós podemos usar a subrotina como qualquer outra função construída:
+
+logger("Nós temos uma subrotina de log!");
+```
+
+#### Usando módulos Perl
+
+Módulos Perl provê uma lista de recursos para lhe ajudar a evitar redesenhar
+a roda, e tudo isso pode ser baixado do CPAN (http://www.cpan.org/). Um número
+de módulos populares podem ser incluídos com a própria distribuição do Perl.
+
+perlfaq contém questões e respostas relacionadas a muitas tarefas comuns, e frequentemente provê sugestões para um bom números de módulos CPAN.
+
+#### Leitura Adicional
+
+ - [perl-tutorial](http://perl-tutorial.org/)
+ - [Learn at www.perl.com](http://www.perl.org/learn.html)
+ - [perldoc](http://perldoc.perl.org/)
+ - and perl built-in : `perldoc perlintro`
diff --git a/pt-br/xml-pt.html.markdown b/pt-br/xml-pt.html.markdown
index 40ddbc3a..f347f8ef 100644
--- a/pt-br/xml-pt.html.markdown
+++ b/pt-br/xml-pt.html.markdown
@@ -1,8 +1,8 @@
---
language: xml
-filename: learnxml.xml
+filename: learnxml-pt.xml
contributors:
- - ["João Farias", "https://github.com/JoaoGFarias"]
+ - ["João Farias", "https://github.com/JoaoGFarias"]
translators:
- ["Miguel Araújo", "https://github.com/miguelarauj1o"]
lang: pt-br
@@ -130,4 +130,4 @@ com a adição de definição DTD.-->
<preco>30.00</preco>
</livro>
</livraria>
-``` \ No newline at end of file
+```
diff --git a/python.html.markdown b/python.html.markdown
index 88e0deb1..352f7349 100644
--- a/python.html.markdown
+++ b/python.html.markdown
@@ -379,7 +379,13 @@ except (TypeError, NameError):
pass # Multiple exceptions can be handled together, if required.
else: # Optional clause to the try/except block. Must follow all except blocks
print "All good!" # Runs only if the code in try raises no exceptions
+finally: # Execute under all circumstances
+ print "We can clean up resources here"
+# Instead of try/finally to cleanup resources you can use a with statement
+with open("myfile.txt") as f:
+ for line in f:
+ print line
####################################################
## 4. Functions
@@ -406,7 +412,7 @@ varargs(1, 2, 3) # => (1, 2, 3)
# You can define functions that take a variable number of
-# keyword args, as well, which will be interpreted as a map if you do not use **
+# keyword args, as well, which will be interpreted as a dict if you do not use **
def keyword_args(**kwargs):
return kwargs
diff --git a/python3.html.markdown b/python3.html.markdown
index 9d965fb1..b3acb122 100644
--- a/python3.html.markdown
+++ b/python3.html.markdown
@@ -374,6 +374,13 @@ except (TypeError, NameError):
pass # Multiple exceptions can be handled together, if required.
else: # Optional clause to the try/except block. Must follow all except blocks
print("All good!") # Runs only if the code in try raises no exceptions
+finally: # Execute under all circumstances
+ print("We can clean up resources here")
+
+# Instead of try/finally to cleanup resources you can use a with statement
+with open("myfile.txt") as f:
+ for line in f:
+ print(line)
# Python offers a fundamental abstraction called the Iterable.
# An iterable is an object that can be treated as a sequence.
diff --git a/red.html.markdown b/red.html.markdown
index 73a13606..f33060c4 100644
--- a/red.html.markdown
+++ b/red.html.markdown
@@ -212,7 +212,9 @@ The source can be found on [github](https://github.com/red/red).
The Red/System language specification can be found [here](http://static.red-lang.org/red-system-specs-light.html).
-To learn more about Rebol and Red join the [chat on StackOverflow](http://chat.stackoverflow.com/rooms/291/rebol-and-red). You will need 20 points to chat but if you ask or answer questions about Red or Rebol we will help you get those points. And if that is not working for you drop a mail to us on the [Red mailing list](mailto: red-langNO_SPAM@googlegroups.com) (remove NO_SPAM).
+To learn more about Rebol and Red join the [chat on Gitter](https://gitter.im/red/red). And if that is not working for you drop a mail to us on the [Red mailing list](mailto: red-langNO_SPAM@googlegroups.com) (remove NO_SPAM).
+
+Browse or ask questions on [Stack Overflow](stackoverflow.com/questions/tagged/red).
Maybe you want to try Red right away? That is possible on the [try Rebol and Red site](http://tryrebol.esperconsultancy.nl).
diff --git a/ro-ro/clojure-ro.html.markdown b/ro-ro/clojure-ro.html.markdown
new file mode 100644
index 00000000..32ba9620
--- /dev/null
+++ b/ro-ro/clojure-ro.html.markdown
@@ -0,0 +1,386 @@
+---
+language: clojure
+contributors:
+ - ["Adam Bard", "http://adambard.com/"]
+translators:
+ - ["Bogdan Paun", "http://twitter.com/bgdnpn"]
+filename: learnclojure-ro.clj
+lang: ro-ro
+---
+
+Clojure este un limbaj din familia Lisp dezvoltat pentru Masina Virtuala Java
+(Java Virtual Machine - JVM). Pune un accent mult mai puternic pe
+[programarea funcionala](https://en.wikipedia.org/wiki/Functional_programming)
+pura decat Common Lisp, dar include utilitare [STM](https://en.wikipedia.org/wiki/Software_transactional_memory)
+pentru a gestiona starea, atunci cand aceasta apare.
+
+Combinatia aceasta ii permite sa gestioneze procese concurente foarte usor,
+de multe ori in mod automat.
+
+(Aveti nevoie deo versiune Clojure 1.2 sau mai noua)
+
+
+```clojure
+; Comentariile incep cu punct si virgula.
+
+; Clojure se scrie in "forme", care nu sunt decat
+; liste de lucruri in interiorul unor paranteze, separate prin spatii.
+;
+; Reader-ul Clojure presupune ca primul lucru este o
+; functie sau un macro de apelat, iar restul sunt argumente.
+
+; Prima apelare intr-un fisier ar trebui sa fie ns, pentru a configura namespace-ul
+(ns learnclojure)
+
+; Mai multe exemple de baza:
+
+; str va crea un string folosint toate argumentele sale
+(str "Hello" " " "World") ; => "Hello World"
+
+; Matematica este simpla
+(+ 1 1) ; => 2
+(- 2 1) ; => 1
+(* 1 2) ; => 2
+(/ 2 1) ; => 2
+
+; Egalitatea este =
+(= 1 1) ; => true
+(= 2 1) ; => false
+
+; Folosim si not pentru logica
+(not true) ; => false
+
+; Formele imbricate functioneaza asa
+(+ 1 (- 3 2)) ; = 1 + (3 - 2) => 2
+
+; Tipuri
+;;;;;;;;;;;;;
+
+; Clojure foloseste sistemul de obiecte Java pentru boolean, string si numere.
+; Folositi `class` pentru a le inspecta.
+(class 1) ; Numere intregi sunt jaba.lang.Long, in mod normal
+(class 1.); Numelere reale sunt java.lang.Double
+(class ""); Sirurile de caractere sunt mere intre apostrofuri duble, si sunt java.lang.String
+(class false) ; Booleanele sunt java.lang.Boolean
+(class nil); Valoarea "null" este numita nil
+
+; Daca doriti sa creati o lista de date literale, folositi ' pentru a preveni
+; evaluarea ei
+'(+ 1 2) ; => (+ 1 2)
+; (prescurtare pentru (quote (+ 1 2)))
+
+; Puteti evalua o lista cu apostrof
+(eval '(+ 1 2)) ; => 3
+
+; Colectii & Secvente
+;;;;;;;;;;;;;;;;;;;
+
+; Listele sunt structuri de date lista-inlantuita, spre deosebire de Vectori
+; Vectorii si Listele sunt si ele clase Java!
+(class [1 2 3]); => clojure.lang.PersistentVector
+(class '(1 2 3)); => clojure.lang.PersistentList
+
+; O liste ar putea fi scrisa direct ca (1 2 3), dar trebuie sa folosim apostrof
+; pentru a preveni reader-ul din a crede ca e o functie.
+; De asemenea, (list 1 2 3) este acelasi lucru cu '(1 2 3)
+
+; "Colectiile" sunt grupuri de date
+; Atat listele cat si vectorii sunt colectii:
+(coll? '(1 2 3)) ; => true
+(coll? [1 2 3]) ; => true
+
+; "Sequences" (seqs) are abstract descriptions of lists of data.
+; Only lists are seqs.
+(seq? '(1 2 3)) ; => true
+(seq? [1 2 3]) ; => false
+
+; O secventa necesita un punct de intrare doar cand este accesata.
+; Deci, secventele, care pot fi "lazy" -- pot defini serii infinite:
+(range 4) ; => (0 1 2 3)
+(range) ; => (0 1 2 3 4 ...) (o serie infinita)
+(take 4 (range)) ; (0 1 2 3)
+
+; Folositi cons pentru a adauga un element la inceputul unei liste sau unui vector
+(cons 4 [1 2 3]) ; => (4 1 2 3)
+(cons 4 '(1 2 3)) ; => (4 1 2 3)
+
+; Conj va adauga un element unei colectii in modul cel mai eficient.
+; Pentru liste, aceastea sunt inserate la inceput. Pentru vectori, sunt inserate la final.
+(conj [1 2 3] 4) ; => [1 2 3 4]
+(conj '(1 2 3) 4) ; => (4 1 2 3)
+
+; Folositi concat pentru a uni liste sau vectori
+(concat [1 2] '(3 4)) ; => (1 2 3 4)
+
+; Folositi filter, map pentru a interactiona cu colectiile
+(map inc [1 2 3]) ; => (2 3 4)
+(filter even? [1 2 3]) ; => (2)
+
+; Folositi reduce pentru a le reduce
+(reduce + [1 2 3 4])
+; = (+ (+ (+ 1 2) 3) 4)
+; => 10
+
+; Reduce poate lua un argument valoare-initiala
+(reduce conj [] '(3 2 1))
+; = (conj (conj (conj [] 3) 2) 1)
+; => [3 2 1]
+
+; Functii
+;;;;;;;;;;;;;;;;;;;;;
+
+; Folositi fn pentru a crea functii noi. O functie returneaza intotdeauna
+; ultima sa instructiune.
+(fn [] "Hello World") ; => fn
+
+; (Necesita paranteze suplimentare pentru a fi apelata)
+((fn [] "Hello World")) ; => "Hello World"
+
+; Puteti crea o variabila folosind def
+(def x 1)
+x ; => 1
+
+; Atribuiti o functie unei variabile
+(def hello-world (fn [] "Hello World"))
+(hello-world) ; => "Hello World"
+
+; Puteti scurta acest proces folosind defn
+(defn hello-world [] "Hello World")
+
+; Elementul [] este lista de argumente a functiei.
+(defn hello [name]
+ (str "Hello " name))
+(hello "Steve") ; => "Hello Steve"
+
+; Puteti, de asemenea, folosi aceasta prescurtare pentru a crea functii:
+(def hello2 #(str "Hello " %1))
+(hello2 "Fanny") ; => "Hello Fanny"
+
+; Puteti avea si functii cu mai multe variabile
+(defn hello3
+ ([] "Hello World")
+ ([name] (str "Hello " name)))
+(hello3 "Jake") ; => "Hello Jake"
+(hello3) ; => "Hello World"
+
+; Functiile pot primi mai mult argumente dintr-o secventa
+(defn count-args [& args]
+ (str "Ati specificat " (count args) " argumente: " args))
+(count-args 1 2 3) ; => "Ati specificat 3 argumente: (1 2 3)"
+
+; Puteti interschimba argumente normale si argumente-secventa
+(defn hello-count [name & args]
+ (str "Salut " name ", ati specificat " (count args) " argumente extra"))
+(hello-count "Finn" 1 2 3)
+; => "Salut Finn, ai specificat 3 argumente extra"
+
+
+; Maps (Dictionare)
+;;;;;;;;;;
+
+; Hash maps si Array maps impart o interfata. Hash maps au cautari mai rapide
+; dar nu retin ordinea cheilor.
+(class {:a 1 :b 2 :c 3}) ; => clojure.lang.PersistentArrayMap
+(class (hash-map :a 1 :b 2 :c 3)) ; => clojure.lang.PersistentHashMap
+
+; Arraymaps de vin automat hashmaps prin majoritatea operatiilor
+; daca sunt suficient de mari, asa ca nu trebuie sa va preocupe acest aspect.
+
+; Dictionarele pot folosi orice tip hashable ca si cheie, dar cuvintele cheie
+; (keywords) sunt, de obicei, cele mai indicate. Cuvintele cheie sunt ca niste
+; siruri de caractere cu un plus de eficienta
+(class :a) ; => clojure.lang.Keyword
+
+(def stringmap {"a" 1, "b" 2, "c" 3})
+stringmap ; => {"a" 1, "b" 2, "c" 3}
+
+(def keymap {:a 1, :b 2, :c 3})
+keymap ; => {:a 1, :c 3, :b 2}
+
+; Apropo, virgulele sunt intotdeauna considerate echivalente cu spatiile.
+
+; Apelati un dictionar (map) ca pe o functie pentru a primi o valoare anume
+(stringmap "a") ; => 1
+(keymap :a) ; => 1
+
+; Cuvintele cheie pot fi folosite si ele pentru a "cere" dictionarului valorile lor!
+(:b keymap) ; => 2
+
+; Nu incercati asta cu siruri de caractere.
+;("a" stringmap)
+; => Exception: java.lang.String cannot be cast to clojure.lang.IFn
+
+; Recuperarea unei chei inexistente returneaza nil
+(stringmap "d") ; => nil
+
+; Folositi assoc pentru a adauga nou chei unui ductionar
+(def newkeymap (assoc keymap :d 4))
+newkeymap ; => {:a 1, :b 2, :c 3, :d 4}
+
+; Dar retineti ca tipurile sunt imuabile in clojure
+keymap ; => {:a 1, :b 2, :c 3}
+
+; Folositi dissoc pentru a elimina chei
+(dissoc keymap :a :b) ; => {:c 3}
+
+; Seturi (multimi)
+;;;;;;
+
+(class #{1 2 3}) ; => clojure.lang.PersistentHashSet
+(set [1 2 3 1 2 3 3 2 1 3 2 1]) ; => #{1 2 3}
+
+; Adaugati un membru cu conj
+(conj #{1 2 3} 4) ; => #{1 2 3 4}
+
+; Eliminati unul cu disj
+(disj #{1 2 3} 1) ; => #{2 3}
+
+; Testati existenta unuia folosing setul ca o functie:
+(#{1 2 3} 1) ; => 1
+(#{1 2 3} 4) ; => nil
+
+; Exista mai multe functii in namespace-ul clojure.sets.
+
+; Forme utile
+;;;;;;;;;;;;;;;;;
+
+; In Clojure constructiile logice sunt macro-uri, si arata ca
+; oricare alta forma
+(if false "a" "b") ; => "b"
+(if false "a") ; => nil
+
+; Folositi let pentru a crea atribuiri temporare
+(let [a 1 b 2]
+ (> a b)) ; => false
+
+; Grupati instructiuni impreuna folosind do
+(do
+ (print "Hello")
+ "World") ; => "World" (prints "Hello")
+
+; Functiile contin un do implicit
+(defn print-and-say-hello [name]
+ (print "Saying hello to " name)
+ (str "Hello " name))
+(print-and-say-hello "Jeff") ;=> "Hello Jeff" (prints "Saying hello to Jeff")
+
+; Asemanator pentru let
+(let [name "Urkel"]
+ (print "Saying hello to " name)
+ (str "Hello " name)) ; => "Hello Urkel" (prints "Saying hello to Urkel")
+
+; Module
+;;;;;;;;;;;;;;;
+
+; Folositi "use" pentru a recupera toate functiile dintr-un modul
+(use 'clojure.set)
+
+; Acum putem folosi operatiuni pe seturi
+(intersection #{1 2 3} #{2 3 4}) ; => #{2 3}
+(difference #{1 2 3} #{2 3 4}) ; => #{1}
+
+; Puteri de asemenea alege un subset al functiilor de importat
+(use '[clojure.set :only [intersection]])
+
+; Folositi require pentru a importa un modul
+(require 'clojure.string)
+
+; Folositi / pentru a apela functii dintr-un modul
+; In acest caz, modulul este clojure.string, iar functia este blank?
+(clojure.string/blank? "") ; => true
+
+; Puteti atribui un nume mai scurt unui modul in momentul importului
+(require '[clojure.string :as str])
+(str/replace "Acesta este un test." #"[a-o]" str/upper-case) ; => "ACEstA EstE un tEst."
+; (#"" denota o expresie regulata)
+
+; Puteti folsi require (sau use, contraindicat) dintr-un namespace folosind :require.
+; Nu trebuie sa folositi apostrof pentru module daca procedati astfel.
+(ns test
+ (:require
+ [clojure.string :as str]
+ [clojure.set :as set]))
+
+; Java
+;;;;;;;;;;;;;;;;;
+
+; Java are o biblioteca standard imensa si folositoare, deci
+; ar fi util sa stiti cum sa o folositi.
+
+; Folositi import pentru a incarca un modul Java
+(import java.util.Date)
+
+; Puteti importa si dintr-un namesopace.
+(ns test
+ (:import java.util.Date
+ java.util.Calendar))
+
+; Folositi numele clasei cu "." la final pentru a crea o noua instanta
+(Date.) ; <a date object>
+
+; Folositi . pentru a apela metode. Pe scurt, folositi ".method"
+(. (Date.) getTime) ; <a timestamp>
+(.getTime (Date.)) ; exact acelasi lucru.
+
+; Folositi / pentru a apela metode statice
+(System/currentTimeMillis) ; <a timestamp> (System este prezent intotdeauna)
+
+; Folositi doto pentru a gestiona clase (mutable) mai usor
+(import java.util.Calendar)
+(doto (Calendar/getInstance)
+ (.set 2000 1 1 0 0 0)
+ .getTime) ; => A Date. set to 2000-01-01 00:00:00
+
+; STM
+;;;;;;;;;;;;;;;;;
+
+; Software Transactional Memory este un mecanism folost de Clojure pentru
+; a gestiona stari persistente. Sunt putine instante in care este folosit.
+
+; Un atom este cel mai simplu exemplu. Dati-i o valoare initiala
+(def my-atom (atom {}))
+
+; Modificati-l cu swap!.
+; swap! primeste o functie si o apeleaza cu valoarea actuala a atomului
+; ca prim argument si orice argumente suplimentare ca al doilea
+(swap! my-atom assoc :a 1) ; Atomul ia valoarea rezultata din (assoc {} :a 1)
+(swap! my-atom assoc :b 2) ; Atomul ia valoarea rezultata din (assoc {:a 1} :b 2)
+
+; Folositi '@' pentru a dereferentia atomul si a-i recupera valoarea
+my-atom ;=> Atom<#...> (Returmeaza obiectul Atom)
+@my-atom ; => {:a 1 :b 2}
+
+; Aici avem un contor simplu care foloseste un atom
+(def counter (atom 0))
+(defn inc-counter []
+ (swap! counter inc))
+
+(inc-counter)
+(inc-counter)
+(inc-counter)
+(inc-counter)
+(inc-counter)
+
+@counter ; => 5
+
+; Alte utilizari ale STM sunt referintele (refs) si agentii (agents).
+; Refs: http://clojure.org/refs
+; Agents: http://clojure.org/agents
+```
+
+### Lectura suplimentara
+
+Lista nu este in niciun caz exhaustiva, dar speram ca este suficienta pentru
+a va oferi un inceput bun in Clojure.
+
+Clojure.org contine multe articole:
+[http://clojure.org/](http://clojure.org/)
+
+Clojuredocs.org contine documentatie cu exemple pentru majoritatea functiilor de baza:
+[http://clojuredocs.org/quickref/Clojure%20Core](http://clojuredocs.org/quickref/Clojure%20Core)
+
+4Clojure este o metoda excelenta pentru a exersa Clojure/FP (Programarea Functionala):
+[http://www.4clojure.com/](http://www.4clojure.com/)
+
+Clojure-doc.org are un numar de article pentru incepatori:
+[http://clojure-doc.org/](http://clojure-doc.org/)
diff --git a/ru-ru/brainfuck-ru.html.markdown b/ru-ru/brainfuck-ru.html.markdown
index 500ac010..fcee185f 100644
--- a/ru-ru/brainfuck-ru.html.markdown
+++ b/ru-ru/brainfuck-ru.html.markdown
@@ -11,6 +11,8 @@ lang: ru-ru
Brainfuck (пишется маленькими буквами, кроме начала предложения) - это очень
маленький Тьюринг-полный язык программирования лишь с 8 командами.
+Вы можете испытать brainfuck в вашем браузере с помощью [brainfuck-визуализатора](http://fatiherikli.github.io/brainfuck-visualizer/).
+
```
Любой символ, кроме "><+-.,[]", игнорируется, за исключением кавычек.
diff --git a/ru-ru/objective-c-ru.html.markdown b/ru-ru/objective-c-ru.html.markdown
index 3246de82..ddff2e5c 100644
--- a/ru-ru/objective-c-ru.html.markdown
+++ b/ru-ru/objective-c-ru.html.markdown
@@ -1,106 +1,171 @@
---
language: Objective-C
-filename: LearnObjectiveC.m
+filename: LearnObjectiveC-ru.m
contributors:
- ["Eugene Yagrushkin", "www.about.me/yagrushkin"]
- ["Yannick Loriot", "https://github.com/YannickL"]
+ - ["Levi Bostian", "https://github.com/levibostian"]
translators:
- ["Evlogy Sutormin", "http://evlogii.com"]
+ - ["Dmitry Bessonov", "https://github.com/TheDmitry"]
lang: ru-ru
---
-Objective-C — компилируемый объектно-ориентированный язык программирования, используемый корпорацией Apple,
-построенный на основе языка Си и парадигм Smalltalk.
-В частности, объектная модель построена в стиле Smalltalk — то есть объектам посылаются сообщения.
+Objective-C — основной язык программирования, используемый корпорацией Apple
+для операционных систем OS X и iOS и их соответствующих фреймворках Cocoa и
+Cocoa Touch.
+Он является объектно-ориентированным языком программирования общего назначения,
+который добавляет обмен сообщениями в Smalltalk-стиле к языку программирования C.
```objective_c
-// Однострочный комментарий
+// Однострочные комментарии начинаются с //
/*
-Многострочный
-комментарий
+Так выглядят многострочные комментарии
*/
-// Импорт файлов фреймворка Foundation с помощью #import
+// Импорт заголовочных файлов фреймворка Foundation с помощью #import
+// Используйте <>, чтобы импортировать глобальные файлы (обычно фреймворки)
+// Используйте "", чтобы импортировать локальные файлы (из проекта)
#import <Foundation/Foundation.h>
#import "MyClass.h"
-// Точка входа в программу это функция main,
-// которая возвращает целый тип integer
+// Если вы включили модули для iOS >= 7.0 или OS X >= 10.9 проектов в
+// Xcode 5, вы можете импортировать фреймворки подобным образом:
+@import Foundation;
+
+// Точка входа в программу - это функция main,
+// которая возвращает целый тип
int main (int argc, const char * argv[])
{
- // Создание autorelease pool для управления памятью
+ // Создание autorelease pool для управления памятью в программе
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
-
+ // В место этого воспользуйтесь @autoreleasepool, если вы используете
+ // автоматический подсчет ссылок (ARC)
+ @autoreleasepool {
+
// Используйте NSLog для печати в консоль
- NSLog(@"Hello World!"); // Напечатает строку "Hello World!"
+ NSLog(@"Привет Мир!"); // Напечатает строку "Привет Мир!"
///////////////////////////////////////
// Типы и переменные
///////////////////////////////////////
- // Простое объявление
+ // Объявление простых типов
int myPrimitive1 = 1;
long myPrimitive2 = 234554664565;
+ // Объявление объектов
// Помещайте * в начало названия объекта для строго типизированного объявления
MyClass *myObject1 = nil; // Строгая типизация
id myObject2 = nil; // Слабая типизация
-
- NSLog(@"%@ and %@", myObject1, [myObject2 description]); // напечатает "(null) and (null)"
// %@ – это объект
- // 'description' это общий для всех объектов метод вывода данных
+ // 'description' - это общий для всех объектов метод вывода данных
+ NSLog(@"%@ and %@", myObject1, [myObject2 description]); // напечатает "(null) and (null)"
// Строка
- NSString *worldString = @"World";
- NSLog(@"Hello %@!", worldString); // напечатает "Hello World!"
+ NSString *worldString = @"Мир";
+ NSLog(@"Привет %@!", worldString); // напечатает "Привет Мир!"
+ // NSMutableString - это изменяемая версия NSString-объекта
+ NSMutableString *mutableString = [NSMutableString stringWithString:@"Привет"];
+ [mutableString appendString:@" Мир!"];
+ NSLog(@"%@", mutableString); // напечатает => "Привет Мир!"
// Символьные литералы
NSNumber *theLetterZNumber = @'Z';
- char theLetterZ = [theLetterZNumber charValue];
+ char theLetterZ = [theLetterZNumber charValue]; // или 'Z'
NSLog(@"%c", theLetterZ);
- // Целочисленный литералы
+ // Целочисленные литералы
NSNumber *fortyTwoNumber = @42;
- int fortyTwo = [fortyTwoNumber intValue];
+ int fortyTwo = [fortyTwoNumber intValue]; // или '42'
NSLog(@"%i", fortyTwo);
// Беззнаковый целочисленный литерал
NSNumber *fortyTwoUnsignedNumber = @42U;
- unsigned int fortyTwoUnsigned = [fortyTwoUnsignedNumber unsignedIntValue];
+ unsigned int fortyTwoUnsigned = [fortyTwoUnsignedNumber unsignedIntValue]; // или 42
NSLog(@"%u", fortyTwoUnsigned);
NSNumber *fortyTwoShortNumber = [NSNumber numberWithShort:42];
- short fortyTwoShort = [fortyTwoShortNumber shortValue];
+ short fortyTwoShort = [fortyTwoShortNumber shortValue]; // или 42
NSLog(@"%hi", fortyTwoShort);
+ NSNumber *fortyOneShortNumber = [NSNumber numberWithShort:41];
+ unsigned short fortyOneUnsigned = [fortyOneShortNumber unsignedShortValue]; // или 41
+ NSLog(@"%u", fortyOneUnsigned);
+
NSNumber *fortyTwoLongNumber = @42L;
- long fortyTwoLong = [fortyTwoLongNumber longValue];
+ long fortyTwoLong = [fortyTwoLongNumber longValue]; // или 42
NSLog(@"%li", fortyTwoLong);
+
+ NSNumber *fiftyThreeLongNumber = @53L;
+ unsigned long fiftyThreeUnsigned = [fiftyThreeLongNumber unsignedLongValue]; // или 53
+ NSLog(@"%lu", fiftyThreeUnsigned);
// Вещественный литерал
NSNumber *piFloatNumber = @3.141592654F;
- float piFloat = [piFloatNumber floatValue];
- NSLog(@"%f", piFloat);
+ float piFloat = [piFloatNumber floatValue]; // или 3.141592654f
+ NSLog(@"%f", piFloat); // напечатает 3.141592654
+ NSLog(@"%5.2f", piFloat); // напечатает " 3.14"
NSNumber *piDoubleNumber = @3.1415926535;
- double piDouble = [piDoubleNumber doubleValue];
+ double piDouble = [piDoubleNumber doubleValue]; // или 3.1415926535
NSLog(@"%f", piDouble);
-
+ NSLog(@"%4.2f", piDouble); // напечатает "3.14"
+
+ // NSDecimalNumber - это класс с фиксированной точкой, который является
+ // более точным, чем float или double
+ NSDecimalNumber *oneDecNum = [NSDecimalNumber decimalNumberWithString:@"10.99"];
+ NSDecimalNumber *twoDecNum = [NSDecimalNumber decimalNumberWithString:@"5.002"];
+ // NSDecimalNumber не способен использовать стандартные +, -, *, / операторы,
+ // поэтому он предоставляет свои собственные:
+ [oneDecNum decimalNumberByAdding:twoDecNum];
+ [oneDecNum decimalNumberBySubtracting:twoDecNum];
+ [oneDecNum decimalNumberByMultiplyingBy:twoDecNum];
+ [oneDecNum decimalNumberByDividingBy:twoDecNum];
+ NSLog(@"%@", oneDecNum); // напечатает "10.99", т.к. NSDecimalNumber - изменяемый
+
// BOOL (булевый) литерал
NSNumber *yesNumber = @YES;
NSNumber *noNumber = @NO;
-
+ // или
+ BOOL yesBool = YES;
+ BOOL noBool = NO;
+ NSLog(@"%i", yesBool); // напечатает 1
+
// Массив
+ // Может содержать различные типы данных, но должен быть объектом Objective-C
NSArray *anArray = @[@1, @2, @3, @4];
NSNumber *thirdNumber = anArray[2];
- NSLog(@"Third number = %@", thirdNumber); // Print "Third number = 3"
+ NSLog(@"Третье число = %@", thirdNumber); // Напечатает "Третье число = 3"
+ // NSMutableArray - это изменяемая версия NSArray, допускающая вам изменять
+ // элементы в массиве и расширять или сокращать массив.
+ // Удобный, но не эффективный как NSArray.
+ NSMutableArray *mutableArray = [NSMutableArray arrayWithCapacity:2];
+ [mutableArray addObject:@"Привет"];
+ [mutableArray addObject:@"Мир"];
+ [mutableArray removeObjectAtIndex:0];
+ NSLog(@"%@", [mutableArray objectAtIndex:0]); // напечатает "Мир"
// Словарь
- NSDictionary *aDictionary = @{ @"key1" : @"value1", @"key2" : @"value2" };
- NSObject *valueObject = aDictionary[@"A Key"];
- NSLog(@"Object = %@", valueObject); // Напечатает "Object = (null)"
-
+ NSDictionary *aDictionary = @{ @"ключ1" : @"значение1", @"ключ2" : @"значение2" };
+ NSObject *valueObject = aDictionary[@"Ключ"];
+ NSLog(@"Объект = %@", valueObject); // Напечатает "Объект = (null)"
+ // NSMutableDictionary тоже доступен, как изменяемый словарь
+ NSMutableDictionary *mutableDictionary = [NSMutableDictionary dictionaryWithCapacity:2];
+ [mutableDictionary setObject:@"значение1" forKey:@"ключ1"];
+ [mutableDictionary setObject:@"значение2" forKey:@"ключ2"];
+ [mutableDictionary removeObjectForKey:@"ключ1"];
+
+ // Множество
+ NSSet *set = [NSSet setWithObjects:@"Привет", @"Привет", @"Мир", nil];
+ NSLog(@"%@", set); // напечатает {(Hello, World)} (порядок может отличаться)
+ // NSMutableSet тоже доступен, как изменяемое множество
+ NSMutableSet *mutableSet = [NSMutableSet setWithCapacity:2];
+ [mutableSet addObject:@"Привет"];
+ [mutableSet addObject:@"Привет"];
+ NSLog(@"%@", mutableSet); // напечатает => {(Привет)}
+
///////////////////////////////////////
// Операторы
///////////////////////////////////////
@@ -124,13 +189,13 @@ int main (int argc, const char * argv[])
// Условный оператор
if (NO)
{
- NSLog(@"I am never run");
+ NSLog(@"Я никогда не выполнюсь");
} else if (0)
{
- NSLog(@"I am also never run");
+ NSLog(@"Я тоже никогда не выполнюсь");
} else
{
- NSLog(@"I print");
+ NSLog(@"Я напечатаюсь");
}
// Ветвление с множественным выбором
@@ -138,15 +203,15 @@ int main (int argc, const char * argv[])
{
case 0:
{
- NSLog(@"I am never run");
+ NSLog(@"Я никогда не выполнюсь");
} break;
case 1:
{
- NSLog(@"I am also never run");
+ NSLog(@"Я тоже никогда не выполнюсь");
} break;
default:
{
- NSLog(@"I print");
+ NSLog(@"Я напечатаюсь");
} break;
}
@@ -170,7 +235,7 @@ int main (int argc, const char * argv[])
// "2,"
// "3,"
- // // Цикл просмотра
+ // Цикл просмотра
NSArray *values = @[@0, @1, @2, @3];
for (NSNumber *value in values)
{
@@ -180,20 +245,32 @@ int main (int argc, const char * argv[])
// "2,"
// "3,"
+ // Цикл for для объектов. Может использоваться с любым объектом Objective-C
+ for (id item in values) {
+ NSLog(@"%@,", item);
+ } // напечатает => "0,"
+ // "1,"
+ // "2,"
+ // "3,"
+
// Обработка исключений
@try
{
// Ваше исключение здесь
@throw [NSException exceptionWithName:@"FileNotFoundException"
- reason:@"File Not Found on System" userInfo:nil];
+ reason:@"Файл не найден в системе" userInfo:nil];
} @catch (NSException * e)
{
- NSLog(@"Exception: %@", e);
+ NSLog(@"Исключение: %@", e);
} @finally
{
- NSLog(@"Finally");
- } // => напечатает "Exception: File Not Found on System"
- // "Finally"
+ NSLog(@"В конце отводится время для очистки.");
+ } // => напечатает "Исключение: Файл не найден в системе"
+ // "В конце отводится время для очистки."
+
+ // NSError - это полезные объекты для аргументов функции, чтобы заполнить их
+ // пользовательскими ошибками.
+ NSError *error = [NSError errorWithDomain:@"Неправильный эл. адрес." code:4 userInfo:nil];
///////////////////////////////////////
// Объекты
@@ -203,13 +280,16 @@ int main (int argc, const char * argv[])
// Объект не является полнофункциональным пока обе части не выполнятся.
MyClass *myObject = [[MyClass alloc] init];
- // В Objective-C можель ООП базируется на передаче сообщений.
+ // В Objective-C модель ООП базируется на передаче сообщений.
// В Objective-C Вы не просто вызваете метод; вы посылаете сообщение.
- [myObject instanceMethodWithParameter:@"Steve Jobs"];
+ [myObject instanceMethodWithParameter:@"Стив Джобс"];
// Очищайте память, перед завершением работы программы.
[pool drain];
+ // Конец @autoreleasepool
+ }
+
// Конец программы.
return 0;
}
@@ -222,63 +302,144 @@ int main (int argc, const char * argv[])
// Синтаксис объявления:
// @interface ИмяКласса : ИмяКлассаРодителя <ИмплементируемыеПротоколы>
// {
-// Объявление переменных;
+// тип имя; <= Объявление переменных;
// }
+// @property тип имя; <= объявление свойств
// -/+ (тип) Объявление метода(ов).
// @end
-
-
-@interface MyClass : NSObject <MyProtocol>
+@interface MyClass : NSObject <MyProtocol> // NSObject - это базовый класс в Objective-C.
{
- int count;
- id data;
+ // Объявления экземпляров переменных (может существовать в файлах интерфейса или реализвации)
+ int count; // По умолчанию защищенный доступ.
+ @private id data; // Приватный доступ (Намного удобнее объявлять в файле реализации)
NSString *name;
}
-// При объявлении свойств сразу генерируются геттер и сеттер
-@property int count;
-@property (copy) NSString *name; // Скопировать объект в ходе присвоения.
-@property (readonly) id data; // Генерация только геттера
+// Удобное обозначение для переменных с открытым (public) доступом
+// автоматически генерируется сеттер-метод
+// По умолчанию название сеттер-метода начинается с 'set' с последующим именем
+// переменной из @property
+@property int propInt; // Имя сеттер-метода = 'setPropInt'
+@property (copy) id copyId; // (copy) => Скопировать объект в ходе присвоения.
+// (readonly) => Не позволяет установить значение вне @interface
+@property (readonly) NSString *roString; // Используйте @synthesize
+ // в @implementation, чтобы создать аксессор
+// Вы можете настроить геттер и сеттер имена вместо используемого 'set'-имени по умолчанию:
+@property (getter=lengthGet, setter=lengthSet:) int length;
// Методы
-+/- (return type)methodSignature:(Parameter Type *)parameterName;
++/- (возвращаемый тип)сигнатураМетода:(Параметр типа *)имяПараметра;
// + для методов класса
+ (NSString *)classMethod;
++ (MyClass *)myClassFromHeight:(NSNumber *)defaultHeight;
-// - для метода объекта
+// - для методов объекта
- (NSString *)instanceMethodWithParameter:(NSString *)string;
- (NSNumber *)methodAParameterAsString:(NSString*)string andAParameterAsNumber:(NSNumber *)number;
-@end
+// Методы-конструктор с аргументом:
+- (id)initWithDistance:(int)defaultDistance;
+// В Objective-C имена методов очень описательные. Всегда имена методов соответствуют своим аргументам
+
+@end // Устанавливает конец интерфейса (interface)
+
+
+// Чтобы обратиться к открытым (public) переменным из файла реализации, @property генерирует сеттер-метод
+// автоматически. Название метода - это 'set' с последующим именем переменной из @property:
+MyClass *myClass = [[MyClass alloc] init]; // создает экземпляр объекта класса MyClass
+[myClass setCount:10];
+NSLog(@"%d", [myClass count]); // напечатает => 10
+// Или используйте свой геттер и сеттер методы, которые определены в @interface:
+[myClass lengthSet:32];
+NSLog(@"%i", [myClass lengthGet]); // напечатает => 32
+// Для удобства вы можете использовать точечную нотацию,
+// чтобы установить и получить доступ к переменным объекта:
+myClass.count = 45;
+NSLog(@"%i", myClass.count); // напечатает => 45
+
+// Вызов методов класса:
+NSString *classMethodString = [MyClass classMethod];
+MyClass *classFromName = [MyClass myClassFromName:@"Привет"];
+
+// Вызов методов экземпляра:
+MyClass *myClass = [[MyClass alloc] init]; // Создает экземпляр объекта MyClass
+NSString *stringFromInstanceMethod = [myClass instanceMethodWithParameter:@"Привет"];
+
+// Селекторы
+// Это способ динамически представить методы. Используйте для вызова методов класса, передайте методы
+// через функции, чтобы сказать другим классам, что они должны вызвать их и сохранить методы
+// как переменные
+// SEL - это тип данных. @selector() вернет селектор из предоставленного имени метода
+// methodAParameterAsString:andAParameterAsNumber: - это название метода в MyClass
+SEL selectorVar = @selector(methodAParameterAsString:andAParameterAsNumber:);
+if ([myClass respondsToSelector:selectorVar]) { // Проверяет содержит ли класс метод
+ // Необходимо установить все аргументы метода в один объект, что отправить его в performSelector-функцию
+ NSArray *arguments = [NSArray arrayWithObjects:@"Привет", @4, nil];
+ [myClass performSelector:selectorVar withObject:arguments]; // Вызывает метод
+} else {
+ // NSStringFromSelector() вернет NSString название метода полученного селектором
+ NSLog(@"MyClass не содержит метод: %@", NSStringFromSelector(selectedVar));
+}
// Имплементируйте методы в файле МойКласс.m:
+@implementation MyClass {
+ long distance; // Переменная экземпляра с закрытым (private) доступом
+ NSNumber height;
+}
-@implementation MyClass
+// To access a public variable from the interface file, use '_' followed by variable name:
+_count = 5; // References "int count" from MyClass interface
+// Access variables defined in implementation file:
+distance = 18; // References "long distance" from MyClass implementation
+// To use @property variable in implementation, use @synthesize to create accessor variable:
+@synthesize roString = _roString; // _roString available now in @implementation
+
+// Called before calling any class methods or instantiating any objects
++ (void)initialize
+{
+ if (self == [MyClass class]) {
+ distance = 0;
+ }
+}
// Вызывается при высвобождении памяти под объектом
- (void)dealloc
{
+ [height release]; // Если не используется ARC, убедитесь в освобождении переменных объекта класса
+ [super dealloc]; // and call parent class dealloc
}
-// Конструкторы – это способ осздания объектов класса.
-// Это обычный конструктор вызываемый при создании объекта клсааа.
+// Конструкторы – это способ создания объектов класса.
+// Это конструктор по умолчанию, который вызывается, когда объект инициализируется.
- (id)init
{
- if ((self = [super init]))
+ if ((self = [super init])) // 'super' используется для того, чтобы обратиться к методам родительского класса
{
- self.count = 1;
+ self.count = 1; // 'self' используется для вызова самого себя
}
return self;
}
+// Можно создать конструкторы, которые содержат аргументы:
+- (id)initWithDistance:(int)defaultDistance
+{
+ distance = defaultDistance;
+ return self;
+}
+ (NSString *)classMethod
{
return [[self alloc] init];
}
++ (MyClass *)myClassFromHeight:(NSNumber *)defaultHeight
+{
+ height = defaultHeight;
+ return [[self alloc] init];
+}
+
- (NSString *)instanceMethodWithParameter:(NSString *)string
{
- return @"New string";
+ return @"Новая строка";
}
- (NSNumber *)methodAParameterAsString:(NSString*)string andAParameterAsNumber:(NSNumber *)number
@@ -286,23 +447,364 @@ int main (int argc, const char * argv[])
return @42;
}
+// Objective-C не содержит объявление приватных методов, но вы можете имитировать их.
+// Чтобы сымитировать приватный метод, создайте метод в @implementation, но не в @interface.
+- (NSNumber *)secretPrivateMethod {
+ return @72;
+}
+[self secretPrivateMethod]; // Вызывает приватный метод
+
// Методы объявленные в МyProtocol (см. далее)
- (void)myProtocolMethod
{
- // имплементация
+ // операторы
}
+@end // Устанавливает конец реализации (implementation)
+
+///////////////////////////////////////
+// Категории
+///////////////////////////////////////
+// Категория - это группа методов предназначенные для того, чтобы расширить класс. Они позволяют вам добавить новые методы
+// к существующему классу для организационных целей. Это не стоит путать с подклассами.
+// Подклассы предназначены для ИЗМЕНЕНИЯ функциональности объекта пока как категории ДОБАВЛЯЮТ
+// функциональность в объект.
+// Категории позволяют вам:
+// -- Добавлять методы в существующий класс для организационных целей.
+// -- Допускает вам расширять объекты Objective-C классов (напр.: NSString) добавить ваши собственные методы.
+// -- Добавляет возможность создать защищенные и закрытые методы классов.
+// ПРИМЕЧАНИЕ: Не переопределяйте методы базового класса в категории даже если у вас есть возможность это сделать
+// to. Переопределение методов может привести к ошибкам компиляции позднее между различными категориями и это
+// нарушает цель категорий, чтобы добавлять только функциональность. Вместо этого подклассы переопределяют методы.
+
+// Здесь простой базовый класс Car.
+@interface Car : NSObject
+
+@property NSString *make;
+@property NSString *color;
+
+- (void)turnOn;
+- (void)accelerate;
+
@end
-/*
- * Протокол объявляет методы которые должны быть имплементированы
- * Протокол не является классом. Он просто определяет интерфейс,
- * который должен быть имплементирован.
- */
+// И реализация базового класса Car:
+#import "Car.h"
+
+@implementation Car
+
+@synthesize make = _make;
+@synthesize color = _color;
+
+- (void)turnOn {
+ NSLog(@"Машина заведена.");
+}
+- (void)accelerate {
+ NSLog(@"Ускорение.");
+}
-@protocol MyProtocol
- - (void)myProtocolMethod;
@end
+
+// Теперь, если мы хотели создать грузовой объект, мы должны вместо создания подкласса класса Car, как это будет
+// изменять функциональность Car чтобы вести себя подобно грузовику. Но давайте посмотрим, если мы хотим только добавить
+// функциональность в существующий Car. Хороший пример должен быть чистить автомобиль. Итак мы создадим
+// категорию для добавления его очистительных методов:
+// @interface ИмяФайла: Car+Clean.h (ИмяБазовогоКласса+ИмяКатегории.h)
+#import "Car.h" // Убедитесь в том, что базовый класс импортирован для расширения.
+
+@interface Car (Clean) // Имя категории внутри (), следующие после имени базового класса.
+
+- (void)washWindows; // Названия новых методов, которые мы добавляем в наш объект Car.
+- (void)wax;
+
+@end
+
+// @implementation имя файла: Car+Clean.m (ИмяБазовогоКласса+ИмяКатегории.m)
+#import "Car+Clean.h" // Импортируйте Очистку файл @interface категории.
+
+@implementation Car (Clean)
+
+- (void)washWindows {
+ NSLog(@"Окна промыли.");
+}
+- (void)wax {
+ NSLog(@"Воском натерли.");
+}
+
+@end
+
+// Любой экземпляр объекта Car имеет возможность воспользоваться категорией. Все, что нужно сделать, это импортировать ее:
+#import "Car+Clean.h" // Импортировать как множество различных категорий, как вы хотите использовать.
+#import "Car.h" // Кроме того, необходимо импортировать базовый класс для использования его оригинальные функциональные возможности.
+
+int main (int argc, const char * argv[]) {
+ @autoreleasepool {
+ Car *mustang = [[Car alloc] init];
+ mustang.color = @"Красный";
+ mustang.make = @"Форд";
+
+ [mustang turnOn]; // Используйте методы из базового класса Car.
+ [mustang washWindows]; // Используйте методы категории Clean из класса Car.
+ }
+ return 0;
+}
+
+// Objective-C не поддерживает объявление защищенных методов, но вы можете имитировать их.
+// Создайте категорию, содержащую все защищенные методы, затем импортируйте ее только в
+// @implementation-файле класса, относящегося к классу Car:
+@interface Car (Protected) // Наименование категории с помощью 'Protected'
+// дает знать, что методы защищенные.
+
+- (void)lockCar; // Здесь перечисляются методы, которые должны быть созданы
+// только с помощью объектов класса Car.
+
+@end
+// Чтобы воспользоваться защищенными методами, импортируйте категорию, затем реализуйте методы:
+#import "Car+Protected.h" // Запомните, делайте импорт только в файле с @implementation.
+
+@implementation Car
+
+- (void)lockCar {
+ NSLog(@"Машина закрыта."); // Экземпляры класса Car не могут использовать
+// метод lockCar, потому что он объявлен не в @interface.
+}
+
+@end
+
+///////////////////////////////////////
+// Расширения
+///////////////////////////////////////
+// Расширения позволяют вам переопределять атрибуты свойств и методов
+// с открытым доступом в @interface.
+// @interface имя файла: Shape.h
+@interface Shape : NSObject // Расширение базового класса Shape переопределяет
+ // свои поля ниже.
+
+@property (readonly) NSNumber *numOfSides;
+
+- (int)getNumOfSides;
+
+@end
+// Вы можете переопределить numOfSides-переменную или getNumOfSides-метод
+// Внесение изменений с помощью расширения делается следующим образом:
+// @implementation имя файла: Shape.m
+#import "Shape.h"
+// Расширения "живут" в том же файле, где и @implementation класса.
+@interface Shape () // После имени базового класса скобки () объявляют расширение.
+
+@property (copy) NSNumber *numOfSides; // Делает numOfSides-свойство
+ // копирующим (copy) вместо свойства только для чтения (readonly).
+-(NSNumber)getNumOfSides; // Изменяет метод getNumOfSides так,
+ // чтобы он возвращал объект NSNumber вместо типа int.
+-(void)privateMethod; // Вы также можете создать новый закрытый метод
+ // внутри расширения.
+
+@end
+// Главный @implementation:
+@implementation Shape
+
+@synthesize numOfSides = _numOfSides;
+
+-(NSNumber)getNumOfSides { // Все операторы внутри расширения
+ // должны быть в @implementation.
+ return _numOfSides;
+}
+-(void)privateMethod {
+ NSLog(@"Закрытый метод созданный с помощью расширения.");
+ NSLog(@"Экземпляр Shape не может вызвать этот метод.");
+}
+
+@end
+
+///////////////////////////////////////
+// Протоколы
+///////////////////////////////////////
+// Протокол объявляет методы, которые могут быть реализованы с помощью
+// любого класса. Протоколы сами по себе не являются классами. Они просто
+// определяют интерфейс, который должен быть реализован другими объектами.
+// @protocol имя файла: "CarUtilities.h"
+@protocol CarUtilities <NSObject> // <NSObject> => Имя другого протокола,
+// который включен в этот протокол.
+ @property BOOL engineOn; // Адаптирующий класс должен определить
+// все @synthesize для @property и
+ - (void)turnOnEngine; // определить все методы.
+@end
+// Ниже пример класса, реализующий протокол.
+#import "CarUtilities.h" // Импорт файла с @protocol.
+
+@interface Car : NSObject <CarUtilities> // Внутри <> имя протокола
+// Здесь вам не нужно указывать @property или имена методов для CarUtilities.
+// Они нужны только для @implementation.
+- (void)turnOnEngineWithUtilities:(id <CarUtilities>)car; // Вы также можете
+// указать тип протоколов.
+@end
+// В @implementation нужно реализовать все @property и методы для протокола.
+@implementation Car : NSObject <CarUtilities>
+
+@synthesize engineOn = _engineOn; // Создайте @synthesize-оператор
+// для "@property engineOn".
+
+- (void)turnOnEngine { // Реализуйте turnOnEngine как вам угодно. Протоколы
+// не определят,
+ _engineOn = YES; // как вам реализовать метод, он только требует,
+// чтобы вы реализовали его.
+}
+// Вы можете использовать протокол как данные, если вы знаете, что он реализует
+// методы и переменные.
+- (void)turnOnEngineWithCarUtilities:(id <CarUtilities>)objectOfSomeKind {
+ [objectOfSomeKind engineOn]; // У вас есть доступ к переменным объекта
+ [objectOfSomeKind turnOnEngine]; // и методам.
+ [objectOfSomeKind engineOn]; // Может или не может быть значение YES. Класс
+// реализует как нужно.
+}
+
+@end
+// Экземпляры класса Car сейчас имеют доступ к протоколу.
+Car *carInstance = [[Car alloc] init];
+[carInstance setEngineOn:NO];
+[carInstance turnOnEngine];
+if ([carInstance engineOn]) {
+ NSLog(@"Двигатель запущен."); // напечатает => "Двигатель запущен."
+}
+// Убедитись в том, что объект типа 'id' реализует протокол перед вызовом методов протокола:
+if ([myClass conformsToProtocol:@protocol(CarUtilities)]) {
+ NSLog(@"Не работает, т.к. класс MyClass не реализует протокол CarUtilities.");
+} else if ([carInstance conformsToProtocol:@protocol(CarUtilities)]) {
+ NSLog(@"Работает как класс Car, который реализует протокол CarUtilities.");
+}
+// Категории тоже могут реализовать протоколы:
+// @interface Car (CarCategory) <CarUtilities>
+// Вы можете реализовать много протоколов:
+// @interface Car : NSObject <CarUtilities, CarCleaning>
+// ЗАМЕЧАНИЕ: Если два или более протоколов полагаются друг на друга,
+// убедитесь, что они ранее объявлены:
+#import "Brother.h"
+
+@protocol Brother; // Оператор раннего объявления. Без него компилятор
+// выдаст ошибку.
+
+@protocol Sister <NSObject>
+
+- (void)beNiceToBrother:(id <Brother>)brother;
+
+@end
+
+// Рассмотрите проблему, где протокол Sister полагается на протокол Brother,
+// а Brother полагается на Sister.
+#import "Sister.h"
+
+@protocol Sister; // Эти строки предотвращают рекурсию, решая этим проблему.
+
+@protocol Brother <NSObject>
+
+- (void)beNiceToSister:(id <Sister>)sister;
+
+@end
+
+
+///////////////////////////////////////
+// Блоки
+///////////////////////////////////////
+// Блоки - это операторы кода, наподобие функции, которую возможно использовать
+// как данные.
+// Ниже простой блок с целочисленным аргументом, и возвращает аргумент плюс 4.
+int (^addUp)(int n); // Объявите переменную, чтобы сохранить блок.
+void (^noParameterBlockVar)(void); // Пример объявления блока-переменной
+// без аргументов.
+// Блоки имею доступ к переменным в той же области видимости. Но переменные
+// будут только для чтения, и значения переданных в блок станут значением
+// переменной, когда блок создастся.
+int outsideVar = 17; // Если мы редактируем outsideVar после объявления addUp,
+// outsideVar остается равным 17.
+__block long mutableVar = 3; // __block делают переменные перезаписываемыми
+// в блоках, в отличие от outsideVar.
+addUp = ^(int n) { // Удалите (int n) в блоке, чтобы не принимать
+// какие-либо параметры.
+ NSLog(@"Вы можете иметь столько строк в блоке, сколько вы хотели.");
+ NSSet *blockSet; // Также вы можете объявить локальные переменные.
+ mutableVar = 32; // Присвоить новое значение к __block-переменной.
+ return n + outsideVar; // Необязательный оператор возврата.
+}
+int addUp = add(10 + 16); // Вызывает блок кода с аргументами.
+// Блоки часто используются как аргументы функции, чтобы позже их вызвать, или
+// как функции обратного вызова (callbacks).
+@implementation BlockExample : NSObject
+
+- (void)runBlock:(void (^)(NSString))block {
+ NSLog(@"В аргументе блок ничего не возвращает и принимает NSString-объект.");
+ block(@"Аргумент передан блоку на исполнение."); // Вызов блока.
+}
+
+@end
+
+
+///////////////////////////////////////
+// Управление памятью
+///////////////////////////////////////
+/*
+Для каждого объекта, используемого в приложении, должна быть выделена память
+для таких объектов. Когда приложение прекращает использование объекта, память
+должна быть освобождена, чтобы гарантировать эффективность приложения.
+Objective-C не использует сборщик мусора, а вместо этого применяет подсчет ссылок.
+Пока существует по крайней мере одна ссылка на объект (также называется
+"владение" объектом), то объект будет доступен к использованию (еще известно
+как "право владения").
+
+Когда экземпляр владеет объектом, его ссылка увеличивается на один. Когда
+объекта освобождается, счетчик ссылки уменьшается на один. Когда счетчик ссылки
+равен нулю, объект удаляется из памяти.
+
+Над всеми объектами взаимодействуют, следуя паттерну:
+(1) создание объекта, (2) использование объекта, (3) затем освобождение объекта из памяти.
+*/
+
+MyClass *classVar = [MyClass alloc]; // 'alloc' устанавливает счетчик ссылки
+// объекта classVar на 1 и возвращает указатель на объект.
+[classVar release]; // Уменьшает счетчик ссылки объекта classVar
+// 'retain' заявляет право собственности на существующий экземпляр объекта
+// и увеличивает счетчик ссылки. Затем вернет указатель на объект.
+MyClass *newVar = [classVar retain]; // Если classVar освободится, объект
+// останется в памяти, потому что newVar - владелец
+[classVar autorelease]; // Удалит право на владение объектом
+// в конце @autoreleasepool блока. Вернет указатель на объект.
+
+// @property может использовать 'retain' и 'assign' тоже для маленького
+// удобного определения
+@property (retain) MyClass *instance; // Освободит старое значение и сохранит
+// одно новое (строгая ссылка)
+@property (assign) NSSet *set; // Укажет на новое значение
+// без сохранения/освобождения старого значения (слабая ссылка)
+
+// Автоматический подсчет ссылок (ARC)
+// Управление памятью может быть трудным, поэтому в Xcode 4.2 и iOS 4 введен
+// автоматический подсчет ссылок (ARC).
+// ARC - это особенность компилятора, который помещает "retain", "release"
+// и "autorelease" автоматически за вас тогда, когда используется ARC,
+// вам не нужно больше обращаться к "retain", "relase" или "autorelease"
+MyClass *arcMyClass = [[MyClass alloc] init];
+// ... код, использующий объект arcMyClass
+// Без ARC, вам нужно было бы вызвать: [arcMyClass release] после того, как вы
+// завершите работу с объектом arcMyClass. Но с ARC,
+// теперь этого не нужно делать. Он будет помещать release-вызов за вас
+
+// Что касается 'assign' и 'retain' @property атрибутов, в ARC вы должны
+// использовать 'weak' и 'strong'
+@property (weak) MyClass *weakVar; // 'weak' не принимает право на владение
+// объектом. Если исходный счетчик ссылки экземпляра обнуляется,
+// weakVar-свойство автоматически примет значение nil,
+// во избежание падения приложения
+@property (strong) MyClass *strongVar; // 'strong' принимает право на владение
+// объектом. Гарантирует, что объект останится в памяти для использования
+
+// Для обычных переменных (не объявленных с помощью @property), используйте
+// следующий способ:
+__strong NSString *strongString; // По умолчанию. Переменная сохраняется в памяти,
+// пока она не покинет область видимости
+__weak NSSet *weakSet; // Слабая ссылка на существующий объект. Когда существующий
+// объект освобождается, weakSet принимает nil
+__unsafe_unretained NSArray *unsafeArray; // Похож на __weak, но unsafeArray
+// не принимает nil, когда существующий объект освобождается
+
```
## На почитать
diff --git a/ruby-ecosystem.html.markdown b/ruby-ecosystem.html.markdown
index 8b292edd..d8a02d36 100644
--- a/ruby-ecosystem.html.markdown
+++ b/ruby-ecosystem.html.markdown
@@ -54,7 +54,7 @@ the community has moved to at least 1.9.2 or 1.9.3.
## Ruby Implementations
The Ruby ecosystem enjoys many different implementations of Ruby, each with
-unique strengths and states of compatability. To be clear, the different
+unique strengths and states of compatibility. To be clear, the different
implementations are written in different languages, but *they are all Ruby*.
Each implementation has special hooks and extra features, but they all run
normal Ruby files well. For instance, JRuby is written in Java, but you do
diff --git a/ruby.html.markdown b/ruby.html.markdown
index 66a0774d..7bd28d86 100644
--- a/ruby.html.markdown
+++ b/ruby.html.markdown
@@ -173,6 +173,8 @@ array[1..3] #=> [2, 3, 4]
# Add to an array like this
array << 6 #=> [1, 2, 3, 4, 5, 6]
+# Or like this
+array.push(6) #=> [1, 2, 3, 4, 5, 6]
# Check if an item exists in an array
array.include?(1) #=> true
diff --git a/rust.html.markdown b/rust.html.markdown
index dd03acdd..4fbd6144 100644
--- a/rust.html.markdown
+++ b/rust.html.markdown
@@ -281,7 +281,7 @@ fn main() {
println!("{}", var); // Unlike `box`, `var` can still be used
println!("{}", *ref_var);
// var = 5; // this would not compile because `var` is borrowed
- // *ref_var = 6; // this would too, because `ref_var` is an immutable reference
+ // *ref_var = 6; // this would not too, because `ref_var` is an immutable reference
// Mutable reference
// While a value is mutably borrowed, it cannot be accessed at all.
diff --git a/tcl.html.markdown b/tcl.html.markdown
index 198f675e..af2911c9 100755..100644
--- a/tcl.html.markdown
+++ b/tcl.html.markdown
@@ -121,7 +121,8 @@ puts lots\nof\n\n\n\n\n\nnewlines
# A word enclosed in braces is not subject to any special interpretation or
-# substitutions, except that a backslash before a brace is not counted when look#ing for the closing brace
+# substitutions, except that a backslash before a brace is not counted when
+# looking for the closing brace
set somevar {
This is a literal $ sign, and this \} escaped
brace remains uninterpreted
@@ -148,6 +149,9 @@ set greeting "Hello, [set {first name}]"
# To promote the words within a word to individual words of the current
# command, use the expansion operator, "{*}".
+```
+
+```tcl
set {*}{name Neo}
# is equivalent to
@@ -163,7 +167,7 @@ set greeting "Hello, $person(name)"
# A namespace holds commands and variables
namespace eval people {
namespace eval person1 {
- set name Neo
+ variable name Neo
}
}
@@ -189,7 +193,10 @@ set greeting "Hello $people::person1::name"
namespace delete ::
-# Because of name resolution behaviour, it's safer to use the "variable" command to declare or to assign a value to a namespace.
+# Because of name resolution behaviour, it's safer to use the "variable" command to
+# declare or to assign a value to a namespace. If a variable called "name" already
+# exists in the global namespace, using "set" here will assign a value to the global variable
+# instead of creating a new variable in the local namespace.
namespace eval people {
namespace eval person1 {
variable name Neo
@@ -256,7 +263,7 @@ proc greet greeting\ name return\ \"Hello,\ \$name!
proc fold {cmd args} {
set res 0
foreach arg $args {
- set res [cmd $res $arg]
+ set res [$cmd $res $arg]
}
}
fold ::tcl::mathop::* 5 3 3 ;# -> 45
diff --git a/tr-tr/swift-tr.html.markdown b/tr-tr/swift-tr.html.markdown
new file mode 100644
index 00000000..90f3fcd5
--- /dev/null
+++ b/tr-tr/swift-tr.html.markdown
@@ -0,0 +1,591 @@
+---
+language: swift
+contributors:
+ - ["Özgür Şahin", "https://github.com/ozgurshn/"]
+filename: learnswift.swift
+lang: tr-tr
+---
+
+Swift iOS ve OSX platformlarında geliştirme yapmak için Apple tarafından oluşturulan yeni bir programlama dilidir. Objective - C ile beraber kullanılabilecek ve de hatalı kodlara karşı daha esnek bir yapı sunacak bir şekilde tasarlanmıştır. Swift 2014 yılında Apple'ın geliştirici konferansı WWDC de tanıtıldı. Xcode 6+'a dahil edilen LLVM derleyici ile geliştirildi.
+
+The official [Swift Programming Language](https://itunes.apple.com/us/book/swift-programming-language/id881256329) book from Apple is now available via iBooks.
+
+Apple'ın resmi [Swift Programlama Dili](https://itunes.apple.com/us/book/swift-programming-language/id881256329) kitabı iBooks'ta yerini aldı.
+
+See also Apple's [getting started guide](https://developer.apple.com/library/prerelease/ios/referencelibrary/GettingStarted/RoadMapiOS/index.html), which has a complete tutorial on Swift.
+
+Ayrıca Swift ile gelen tüm özellikleri görmek için Apple'ın [başlangıç kılavuzu](https://developer.apple.com/library/prerelease/ios/referencelibrary/GettingStarted/RoadMapiOS/index.html)na bakmanızda yarar var.
+
+
+
+```swift
+// modülü import etme
+import UIKit
+
+//
+// MARK: Temeller
+//
+
+
+//XCode işaretlemelerle kodunuzu bölümlere ayırmanızı ve sağ üstteki metot
+ listesinde gruplama yapmanıza olanak sağlıyor
+// MARK: Bölüm işareti
+// TODO: Daha sonra yapılacak
+// FIXME: Bu kodu düzelt
+
+
+//Swift 2 de, println ve print metotları print komutunda birleştirildi. Print
+ otomatik olarak yeni satır ekliyor.
+print("Merhaba dünya") // println print olarak kullanılıyor.
+print("Merhaba dünya", appendNewLine: false) // yeni bir satır eklemeden yazar.
+
+// variables (var) değer atandıktan sonra değiştirilebilir.
+// constants (let) değer atndıktan sonra değiştirilemez.
+
+var degiskenim = 42
+let øπΩ = "deger" // unicode degişken adları
+let π = 3.1415926
+let convenience = "keyword" // bağlamsal değişken adı
+let isim = "ahmet"; let soyad = "un" // farklı ifadeler noktalı virgül
+kullanılarak ayrılabilir.
+let `class` = "keyword" // rezerve edilmiş keywordler tek tırnak içerisine
+alınarak değişken adı olarak kullanılabilir
+let doubleOlduguBelli: Double = 70
+let intDegisken = 0007 // 7
+let largeIntDegisken = 77_000 // 77000
+let etiket = "birseyler " + String(degiskenim) // Cast etme
+let piYazi = "Pi = \(π), Pi 2 = \(π * 2)" // String içerisine değiken yazdırma
+
+
+// Builde özel değişkenler
+// -D build ayarını kullanır.
+#if false
+ print("yazılmadı")
+ let buildDegiskeni= 3
+#else
+ let buildDegiskeni = 7
+#endif
+print("Build degiskeni: \(buildDegiskeni)") // Build degeri: 7
+
+/*
+ Optionals Swift dilinde bazı değerleri veya yokluğu (None) bir değişkende
+ tutmanıza olanak sağlar.
+
+ Swift'te her bir degişkeninin bir değeri olması gerektiğinden, nil değeri
+ bile Optional değer olarak saklanır.
+
+ Optional<T> bir enum'dır.
+*/
+var baziOptionalString: String? = "optional" // nil olabilir.
+// yukarıdakiyle aynı ama ? bir postfix (sona eklenir) operatördür. (kolay
+okunabilir)
+var someOptionalString2: Optional<String> = "optional"
+
+
+if baziOptionalString != nil {
+ // ben nil değilim
+ if baziOptionalString!.hasPrefix("opt") {
+ print("ön eki var")
+ }
+
+ let bos = baziOptionalString?.isEmpty
+}
+baziOptionalString = nil
+
+// belirgin olarak acilan(unwrap) opsiyonel (optional) değer
+var acilanString: String! = "Değer bekleniliyor"
+//yukarıdakiyle aynı ama ! bir postfix operatördür (kolay okunabilir)
+var acilanString2: ImplicitlyUnwrappedOptional<String> = "Değer bekleniliyor."
+
+if let baziOpsiyonelSabitString = baziOptionalString {
+ // eğer bir değeri varsa, nil değilse
+ if ! baziOpsiyonelSabitString("tamam") {
+ // ön eke sahip değil
+ }
+}
+
+// Swift değişkenlerde herhangi bir tip saklanabilir.
+// AnyObject == id
+// Objective-C deki `id` den farklı olarak, AnyObject tüm değişkenlerle
+ çalışabilir (Class, Int, struct, etc)
+var herhangiBirObject: AnyObject = 7
+herhangiBirObject = "Değer string olarak değişti, iyi bir yöntem değil ama mümkün"
+
+/*
+ Yorumlar buraya
+
+ /*
+ İç içe yorum yazılması da mümkün
+ */
+*/
+
+//
+// MARK: Koleksiyonlar
+//
+
+/*
+ Array ve Dictionary tipleri aslında structdırlar. Bu yüzden `let` ve `var`
+ ayrıca bu tipleri tanımlarken değişebilir(var) veya değişemez(let)
+ olduğunu belirtir.
+
+*/
+
+// Diziler
+var liste = ["balik", "su", "limon"]
+liste[1] = "şişe su"
+let bosDizi = [String]() // let == değiştirilemez
+let bosDizi2 = Array<String>() // yukarıdakiyle aynı
+var bosDegistirilebilirDizi = [String]() // var == değişebilir
+
+
+// Dictionary
+var meslekler = [
+ "Kamil": "Kaptan",
+ "Ayse": "Analist"
+]
+meslekler["Cansu"] = "Halkla İlişkiler"
+let bosDictionary = [String: Float]() // let == değiştirilemez
+let bosDictionary2 = Dictionary<String, Float>() // yukarıdakiyle aynı
+var bosDegistirilebirDictionary = [String: Float]() // var == değiştirilebilir
+
+
+//
+// MARK: Kontroller
+//
+
+// for döngüsü (dizi)
+let dizi = [1, 1, 2, 3, 5]
+for deger in dizi {
+ if deger == 1 {
+ print("Bir!")
+ } else {
+ print("Bir degil!")
+ }
+}
+
+// for döngüsü (dictionary)
+var dict = ["one": 1, "two": 2]
+for (key, value) in dict {
+ print("\(key): \(value)")
+}
+
+// for döngüsü (aralık)
+for i in -1...liste.count {
+ print(i)
+}
+liste[1...2] = ["et", "yogurt"]
+// ..< kullanarak son elemanı çıkartabilirsiniz
+
+// while döngüsü
+var i = 1
+while i < 1000 {
+ i *= 2
+}
+
+// do-while döngüsü
+do {
+ print("merhaba")
+} while 1 == 2
+
+// Switch
+// Çok güçlü, `if` ifadesenin daha kolay okunabilir hali olarak düşünün
+// String, object örnekleri, ve primitif tipleri (Int, Double, vs) destekler.
+let sebze = "kırmızı biber"
+switch sebze {
+case "sogan":
+ let sebzeYorumu = "Biraz da domates ekle"
+case "domates", "salata":
+ let sebzeYorumu = "İyi bir sandviç olur"
+case let lokalScopeDegeri where lokalScopeDegeri.hasSuffix("biber"):
+ let sebzeYorumu = "Acı bir \(lokalScopeDegeri)?"
+default: // zorunludur (tüm olasılıkları yakalamak icin)
+ let sebzeYorumu = "Corbadaki herseyin tadı güzel"
+}
+
+
+//
+// MARK: Fonksiyonlar
+//
+
+// Fonksiyonlar first-class tiplerdir, yani başka fonksiyon içine konabilir
+// ve parametre olarak geçirilebilirler.
+
+// Swift dökümanlarıylaa birlikte Fonksiyonlar (format as reStructedText)
+
+/**
+ selamlama işlemi
+
+ :param: isim e isim
+ :param: gun e A gun
+ :returns: isim ve gunu iceren bir String
+*/
+func selam(isim: String, gun: String) -> String {
+ return "Merhaba \(isim), bugün \(gun)."
+}
+selam("Can", "Salı")
+
+// fonksiyon parametre davranışı hariç yukarıdakine benzer
+func selam2(#gerekliIsim: String, disParametreIsmi lokalParamtreIsmi: String) -> String {
+ return "Merhaba \(gerekliIsim), bugün \(lokalParamtreIsmi)"
+}
+selam2(gerekliIsim:"Can", disParametreIsmi: "Salı")
+
+// Bir tuple ile birden fazla deger dönen fonksiyon
+func fiyatlariGetir() -> (Double, Double, Double) {
+ return (3.59, 3.69, 3.79)
+}
+let fiyatTuple = fiyatlariGetir()
+let fiyat = fiyatTuple.2 // 3.79
+// _ (alt çizgi) kullanımı Tuple degerlerini veya diğer değerleri görmezden
+gelir
+let (_, fiyat1, _) = fiyatTuple // fiyat1 == 3.69
+print(fiyat1 == fiyatTuple.1) // true
+print("Benzin fiyatı: \(fiyat)")
+
+// Çeşitli Argümanlar
+func ayarla(sayilar: Int...) {
+ // its an array
+ let sayi = sayilar[0]
+ let argumanSAyisi = sayilar.count
+}
+
+// fonksiyonu parametre olarak geçirme veya döndürme
+func arttirmaIslemi() -> (Int -> Int) {
+ func birEkle(sayi: Int) -> Int {
+ return 1 + sayi
+ }
+ return birEkle
+}
+var arttir = arttirmaIslemi()
+arttir(7)
+
+// referans geçirme
+func yerDegistir(inout a: Int, inout b: Int) {
+ let tempA = a
+ a = b
+ b = tempA
+}
+var someIntA = 7
+var someIntB = 3
+yerDegistir(&someIntA, &someIntB)
+print(someIntB) // 7
+
+
+//
+// MARK: Closurelar
+//
+var sayilar = [1, 2, 6]
+
+// Fonksiyonlar özelleştirilmiş closurelardır. ({})
+
+// Closure örneği.
+// `->` parametrelerle dönüş tipini birbirinden ayırır
+// `in` closure başlığını closure bodysinden ayırır.
+sayilar.map({
+ (sayi: Int) -> Int in
+ let sonuc = 3 * sayi
+ return sonuc
+})
+
+// eger tip biliniyorsa, yukarıdaki gibi, şöyle yapabiliriz
+sayilar = sayilar.map({ sayi in 3 * sayi })
+// Hatta bunu
+//sayilar = sayilar.map({ $0 * 3 })
+
+print(sayilar) // [3, 6, 18]
+
+// Trailing closure
+sayilar = sorted(sayilar) { $0 > $1 }
+
+print(sayilar) // [18, 6, 3]
+
+// Super kısa hali ise, < operatörü tipleri çıkartabildiği için
+
+sayilar = sorted(sayilar, < )
+
+print(sayilar) // [3, 6, 18]
+
+//
+// MARK: Yapılar
+//
+
+// Structurelar ve sınıflar birçok aynı özelliğe sahiptir.
+struct IsimTablosu {
+ let isimler = [String]()
+
+ // Özelleştirilmiş dizi erişimi
+ subscript(index: Int) -> String {
+ return isimler[index]
+ }
+}
+
+// Structurelar otomatik oluşturulmuş kurucu metoda sahiptir.
+let isimTablosu = IsimTablosu(isimler: ["Ben", "Onlar"])
+let isim = isimTablosu[1]
+print("İsim \(name)") // İsim Onlar
+
+//
+// MARK: Sınıflar
+//
+
+// Sınıflar, structurelar ve üyeleri 3 seviye erişime sahiptir.
+// Bunlar: internal (default), public, private
+
+public class Sekil {
+ public func alaniGetir() -> Int {
+ return 0;
+ }
+}
+
+// Sınıfın tüm değişkenleri ve metotları publictir.
+// Eğer sadece veriyi yapılandırılmış bir objede
+// saklamak istiyorsanız, `struct` kullanmalısınız.
+
+internal class Rect: Sekil {
+ var yanUzunluk: Int = 1
+
+ // Özelleştirilmiş getter ve setter propertyleri
+ private var cevre: Int {
+ get {
+ return 4 * yanUzunluk
+ }
+ set {
+ // `newValue ` setterlarda yeni değere erişimi sağlar
+ yanUzunluk = newValue / 4
+ }
+ }
+
+ // Bir değişkene geç atama(lazy load) yapmak
+ // altSekil getter cağrılana dek nil (oluşturulmamış) olarak kalır
+ lazy var altSekil = Rect(yanUzunluk: 4)
+
+ // Eğer özelleştirilmiş getter ve setter a ihtiyacınız yoksa,
+ // ama bir değişkene get veya set yapıldıktan sonra bir işlem yapmak
+ // istiyorsanız, `willSet` ve `didSet` metotlarını kullanabilirsiniz
+ var identifier: String = "defaultID" {
+ // `willSet` argümanı yeni değer için değişkenin adı olacaktır.
+ willSet(someIdentifier) {
+ print(someIdentifier)
+ }
+ }
+
+ init(yanUzunluk: Int) {
+ self. yanUzunluk = yanUzunluk
+ // super.init i her zaman özelleştirilmiş değerleri oluşturduktan sonra
+ çağırın
+ super.init()
+ }
+
+ func kisalt() {
+ if yanUzunluk > 0 {
+ --yanUzunluk
+ }
+ }
+
+ override func alaniGetir() -> Int {
+ return yanUzunluk * yanUzunluk
+ }
+}
+
+// Basit `Kare` sınıfI `Rect` sınıfını extend ediyor.
+class Kare: Rect {
+ convenience init() {
+ self.init(yanUzunluk: 5)
+ }
+}
+
+var benimKarem = Kare()
+print(m benimKarem.alaniGetir()) // 25
+benimKarem.kisalt()
+print(benimKarem.yanUzunluk) // 4
+
+// sınıf örneğini cast etme
+let birSekil = benimKarem as Sekil
+
+// örnekleri karşılaştır, objeleri karşılaştıran == (equal to) ile aynı değil
+if benimKarem === benimKarem {
+ print("Evet, bu benimKarem")
+}
+
+// Opsiyonel init
+class Daire: Sekil {
+ var yaricap: Int
+ override func alaniGetir() -> Int {
+ return 3 * yaricap * yaricap
+ }
+
+ // Eğer init opsiyonelse (nil dönebilir) `init` den sonra soru işareti
+ // son eki ekle.
+ init?(yaricap: Int) {
+ self.yaricap = yaricap
+ super.init()
+
+ if yaricap <= 0 {
+ return nil
+ }
+ }
+}
+
+var benimDairem = Daire(radius: 1)
+print(benimDairem?.alaniGetir()) // Optional(3)
+print(benimDairem!. alaniGetir()) // 3
+var benimBosDairem = Daire(yaricap: -1)
+print(benimBosDairem?. alaniGetir()) // "nil"
+if let daire = benimBosDairem {
+ // benimBosDairem nil olduğu için çalışmayacak
+ print("circle is not nil")
+}
+
+
+//
+// MARK: Enumlar
+//
+
+// Enumlar opsiyonel olarak özel bir tip veya kendi tiplerinde olabilirler.
+// Sınıflar gibi metotlar içerebilirler.
+
+enum Kart {
+ case Kupa, Maca, Sinek, Karo
+ func getIcon() -> String {
+ switch self {
+ case .Maca: return "♤"
+ case .Kupa: return "♡"
+ case .Karo: return "♢"
+ case .Sinek: return "♧"
+ }
+ }
+}
+
+// Enum değerleri kısayol syntaxa izin verir. Eğer değişken tipi açık olarak belirtildiyse enum tipini yazmaya gerek kalmaz.
+var kartTipi: Kart = .Kupa
+
+// Integer olmayan enumlar direk değer (rawValue) atama gerektirir.
+enum KitapAdi: String {
+ case John = "John"
+ case Luke = "Luke"
+}
+print("Name: \(KitapAdi.John.rawValue)")
+
+// Değerlerle ilişkilendirilmiş Enum
+enum Mobilya {
+ // Int ile ilişkilendirilmiş
+ case Masa(yukseklik: Int)
+ // String ve Int ile ilişkilendirilmiş
+ case Sandalye(String, Int)
+
+ func aciklama() -> String {
+ switch self {
+ case .Masa(let yukseklik):
+ return "Masa boyu \(yukseklik) cm"
+ case .Sandalye(let marka, let yukseklik):
+ return "\(brand) marka sandalyenin boyu \(yukseklik) cm"
+ }
+ }
+}
+
+var masa: Mobilya = .Masa(yukseklik: 80)
+print(masa.aciklama()) // "Masa boyu 80 cm"
+var sandalye = Mobilya.Sandalye("Foo", 40)
+print(sandalye.aciklama()) // "Foo marka sandalyenin boyu 40 cm"
+
+
+//
+// MARK: Protokoller
+//
+
+// `protocol` onu kullanan tiplerin bazı özel değişkenleri, metotları,
+// tip metotlarını,opertörleri ve alt indisleri (subscripts) içermesini
+// zorunlu hale getirebilir.
+
+protocol SekilUretici {
+ var aktif: Bool { get set }
+ func sekilOlustur() -> Sekil
+}
+
+// @objc ile tanımlanan protokoller, uygunluğu kontrol edebilmenizi sağlayacak
+// şekilde opsiyonel fonksiyonlara izin verir
+@objc protocol SekliDondur {
+ optional func sekillendirilmis()
+ optional func sekillendirilebilir() -> Bool
+}
+
+class BenimSeklim: Rect {
+ var delegate: SekliDondur?
+
+ func buyut() {
+ yanUzlunluk += 2
+
+ // Bir çalışma zamanı hatası("optional chaining") fırlatmak yerine nil
+ //değeri görmezden gelerek nil dönmek için opsiyonel değişken, metot veya
+ // altindisten sonra soru işareti koyabilirsiniz.
+ if let izinVeriyormu = self.delegate?.sekillendirilebilir?() {
+ // önce delegate i sonra metodu test edin
+ self.delegate?.sekillendirilmis?()
+ }
+ }
+}
+
+
+//
+// MARK: Diğerleri
+//
+
+// `extension`lar: Var olan tiplere ekstra özellikler ekleyin
+
+// Kare artık `Printable` protokolüne uyuyor.
+extension Kare: Printable {
+ var description: String {
+ return "Alan: \(alaniGetir()) - ID: \(self.identifier)"
+ }
+}
+
+print("Kare: \(benimKarem)")
+
+// Dahili tipleri de yeni özellikler ekleyebilirsiniz
+extension Int {
+ var customProperty: String {
+ return "Bu sayı \(self)"
+ }
+
+ func carp(num: Int) -> Int {
+ return num * self
+ }
+}
+
+print(7.customProperty) // "Bu sayı 7"
+print(14.carp(3)) // 42
+
+// Genericler: Java ve C#'a benzer şekilde. `where` anahtar kelimesini
+// kullanarak genericlerin özelliklerini belirleyin
+
+func indexiBul<T: Equatable>(dizi: [T], bulunacakDeger: T) -> Int? {
+ for (index, deger) in enumerate(dizi) {
+ if deger == bulunacakDeger {
+ return index
+ }
+ }
+ return nil
+}
+let bulunanIndex = indexiBul([1, 2, 3, 4], 3)
+print(bulunanIndex == 2) // true
+
+// Operatorler:
+// Özel operatorler şu karakterlerle başlayabilir:
+// / = - + * % < > ! & | ^ . ~
+// veya
+// Unicode math, symbol, arrow, dingbat, ve line/box karakterleri.
+prefix operator !!! {}
+
+// Yan uzunluğu 3 katına çıkartan prefix operatörü
+prefix func !!! (inout sekil: Kare) -> Kare {
+ sekil.YanUzunluk *= 3
+ return sekil
+}
+
+// güncel deger
+print(benimKarem.YanUzunluk) // 4
+
+// yan uzunluğu !!! operatorü kullanarak 3 katına çıkar
+!!!benimKarem
+print(benimKarem.YanUzunluk) // 12
+```
diff --git a/xml.html.markdown b/xml.html.markdown
index fce1a3a4..059ea132 100644
--- a/xml.html.markdown
+++ b/xml.html.markdown
@@ -49,10 +49,11 @@ Unlike HTML, XML does not specify how to display or to format data, just carry i
<!-- XML carries two kind of data:
1 - Attributes -> That's metadata about a node.
Usually, the XML parser uses this information to store the data properly.
- It is characterized by appearing in parenthesis within the opening tag
+ It is characterized by appearing with the format name="value" within the opening
+ tag.
2 - Elements -> That's pure data.
That's what the parser will retrieve from the XML file.
- Elements appear between the open and close tags, without parenthesis. -->
+ Elements appear between the open and close tags. -->
<!-- Below, an element with two attributes -->
diff --git a/zh-cn/bash-cn.html.markdown b/zh-cn/bash-cn.html.markdown
index 558d9110..d85e5b8f 100644
--- a/zh-cn/bash-cn.html.markdown
+++ b/zh-cn/bash-cn.html.markdown
@@ -258,7 +258,7 @@ help return
help source
help .
-# 用 mam 指令阅读相关的 Bash 手册
+# 用 man 指令阅读相关的 Bash 手册
apropos bash
man 1 bash
man bash
diff --git a/zh-cn/go-cn.html.markdown b/zh-cn/go-cn.html.markdown
index 9f6a8c15..49224085 100644
--- a/zh-cn/go-cn.html.markdown
+++ b/zh-cn/go-cn.html.markdown
@@ -239,7 +239,7 @@ func learnConcurrency() {
go inc(0, c) // go is a statement that starts a new goroutine.
go inc(10, c)
go inc(-805, c)
- // 从channel中独处结果并打印。
+ // 从channel中读取结果并打印。
// 打印出什么东西是不可预知的。
fmt.Println(<-c, <-c, <-c) // channel在右边的时候,<-是读操作。
@@ -283,4 +283,4 @@ Go的根源在[Go官方网站](http://golang.org/)。
强烈推荐阅读语言定义部分,很简单而且很简洁!(as language definitions go these days.)
-学习Go还要阅读Go标准库的源代码,全部文档化了,可读性非常好,可以学到go,go style和go idioms。在文档中点击函数名,源代码就出来了!
+学习Go还要阅读Go[标准库的源代码](http://golang.org/src/),全部文档化了,可读性非常好,可以学到go,go style和go idioms。在[文档](http://golang.org/pkg/)中点击函数名,源代码就出来了!
diff --git a/zh-cn/java-cn.html.markdown b/zh-cn/java-cn.html.markdown
index f08d3507..12afa59a 100644
--- a/zh-cn/java-cn.html.markdown
+++ b/zh-cn/java-cn.html.markdown
@@ -149,7 +149,7 @@ public class LearnJava {
// 位运算操作符
/*
- ~ 补
+ ~ 取反,求反码
<< 带符号左移
>> 带符号右移
>>> 无符号右移
diff --git a/zh-cn/javascript-cn.html.markdown b/zh-cn/javascript-cn.html.markdown
index b450ab84..dfeb2012 100644
--- a/zh-cn/javascript-cn.html.markdown
+++ b/zh-cn/javascript-cn.html.markdown
@@ -402,7 +402,7 @@ myObj.meaningOfLife; // = 42
// 函数也可以工作。
myObj.myFunc() // = "hello world!"
-// 当然,如果你要访问的成员在原型当中也没有定义的话,解释器就会去找原型的原型,以此类堆。
+// 当然,如果你要访问的成员在原型当中也没有定义的话,解释器就会去找原型的原型,以此类推。
myPrototype.__proto__ = {
myBoolean: true
};
diff --git a/zh-cn/markdown-cn.html.markdown b/zh-cn/markdown-cn.html.markdown
index b1143dac..b633714d 100644
--- a/zh-cn/markdown-cn.html.markdown
+++ b/zh-cn/markdown-cn.html.markdown
@@ -69,7 +69,7 @@ __此文本也是__
<!-- 如果你插入一个 HTML中的<br />标签,你可以在段末加入两个以上的空格,
然后另起一段。-->
-此段落结尾有两个空格(选中以显示)。
+此段落结尾有两个空格(选中以显示)。
上文有一个 <br /> !
diff --git a/zh-cn/ruby-cn.html.markdown b/zh-cn/ruby-cn.html.markdown
index 99250b43..14d38137 100644
--- a/zh-cn/ruby-cn.html.markdown
+++ b/zh-cn/ruby-cn.html.markdown
@@ -7,6 +7,7 @@ contributors:
- ["Joel Walden", "http://joelwalden.net"]
- ["Luke Holder", "http://twitter.com/lukeholder"]
- ["lidashuang", "https://github.com/lidashuang"]
+ - ["ftwbzhao", "https://github.com/ftwbzhao"]
translators:
- ["Lin Xiangyu", "https://github.com/oa414"]
---
@@ -120,11 +121,11 @@ status == :approved #=> false
# 数组
# 这是一个数组
-[1, 2, 3, 4, 5] #=> [1, 2, 3, 4, 5]
+array = [1, 2, 3, 4, 5] #=> [1, 2, 3, 4, 5]
# 数组可以包含不同类型的元素
-array = [1, "hello", false] #=> => [1, "hello", false]
+[1, "hello", false] #=> [1, "hello", false]
# 数组可以被索引
# 从前面开始
@@ -140,8 +141,8 @@ array.[] 12 #=> nil
# 从尾部开始
array[-1] #=> 5
-# 同时指定开始的位置和结束的位置
-array[2, 4] #=> [3, 4, 5]
+# 同时指定开始的位置和长度
+array[2, 3] #=> [3, 4, 5]
# 或者指定一个范围
array[1..3] #=> [2, 3, 4]