summaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--README.markdown5
-rw-r--r--c.html.markdown2
-rw-r--r--es-es/c-es.html.markdown425
-rw-r--r--es-es/elisp-es.html.markdown378
-rw-r--r--es-es/java-es.html.markdown410
-rw-r--r--es-es/python-es.html.markdown490
-rw-r--r--es-es/ruby-es.html.markdown377
-rw-r--r--git.html.markdown5
-rw-r--r--haskell.html.markdown2
-rw-r--r--javascript.html.markdown4
-rw-r--r--pt-br/python-pt.html.markdown509
-rw-r--r--python.html.markdown23
-rw-r--r--r.html.markdown333
-rw-r--r--ruby-ecosystem.html.markdown137
-rw-r--r--ruby.html.markdown106
-rw-r--r--scala.html.markdown4
-rw-r--r--zh-cn/dart-cn.html.markdown499
-rwxr-xr-xzh-cn/git-cn.html.markdown2
-rwxr-xr-xzh-cn/python-cn.html.markdown475
-rw-r--r--zh-cn/ruby-cn.html.markdown330
20 files changed, 4395 insertions, 121 deletions
diff --git a/README.markdown b/README.markdown
index 77e09abd..efc2fa07 100644
--- a/README.markdown
+++ b/README.markdown
@@ -16,8 +16,9 @@ properly!
The most requested languages are:
-* Scala
-* Javascript
+* Go
+* ~~Scala~~
+* ~~Javascript~~
... but there are many more requests to do "every language", so don't let that stop you.
diff --git a/c.html.markdown b/c.html.markdown
index b5286f70..d243b19d 100644
--- a/c.html.markdown
+++ b/c.html.markdown
@@ -70,7 +70,7 @@ double x_double = 0.0;
// Integral types may be unsigned. This means they can't be negative, but
// the maximum value of an unsigned variable is greater than the maximum
-// value of the same size.
+// signed value of the same size.
unsigned char ux_char;
unsigned short ux_short;
unsigned int ux_int;
diff --git a/es-es/c-es.html.markdown b/es-es/c-es.html.markdown
new file mode 100644
index 00000000..0624f4be
--- /dev/null
+++ b/es-es/c-es.html.markdown
@@ -0,0 +1,425 @@
+---
+language: c
+filename: learnc.c
+contributors:
+ - ["Adam Bard", "http://adambard.com/"]
+translators:
+ - ["Francisco García", "http://flaskbreaker.tumblr.com/"]
+lang: es-es
+---
+
+¡Ah!, C. Aun hoy en día sigue siendo el lenguaje por excelencia de la
+computación moderna de alto rendimiento.
+
+C es el lenguaje de más bajo nivel que la mayoría de los programadores
+llegarán a usar, pero lo compensa de sobra con pura velocidad. Solo
+ten en cuenta el manejo manual de memoria y te llevará tan lejos como
+necesites.
+
+```c
+// Los comentarios de una sola línea comienzan con //
+
+/*
+Los comentarios multilínea tienen este aspecto.
+*/
+
+// Importa cabeceras con #include
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+
+// Declara por adelantado las armaduras de las funciones en un archivo .h,
+// o al principio de tu archivo .c .
+void function_1();
+void function_2();
+
+// El punto de entrada de tu programa es una función llamada main con
+// retorno de tipo entero (integer).
+int main() {
+
+// Muestra la salida usando printf, para el "formato print"
+// %d es un entero, \n es una nueva línea
+printf("%d\n", 0); // => Muestra 0
+// Todas las sentencias deben terminar con un punto y coma.
+
+///////////////////////////////////////
+// Tipos
+///////////////////////////////////////
+
+// Tienes que declarar una variable antes de usarla. La declaración de una
+// variable necesites que especifiques su tipo; el tipo de una variable
+// determina su tamaño en bytes.
+
+// 'ints' (enteros) son normalmente de 4 bytes
+int x_int = 0;
+
+// 'shorts' son normalmente de 2 bytes
+short x_short = 0;
+
+// 'chars' son fijo de 1 byte
+char x_char = 0;
+char y_char = 'y'; // Los caracteres literales se entrecomillan con ''
+
+// 'longs' son a menudo de 4 a 8 bytes; 'long longs' son fijo de por lo
+// menos 64 bits
+long x_long = 0;
+long long x_long_long = 0;
+
+// 'floats' son normalmente números de coma flotante de 32 bits
+float x_float = 0.0;
+
+// 'doubles' son normalmente números de coma flotante de 64 bits
+double x_double = 0.0;
+
+// Todos los tipos enteros pueden ser 'unsigned'. Esto significa que no
+// pueden ser negativos, pero el valor máximo de una variable 'unsigned'
+// es mayor que el de una no 'unsigned' del mismo tamaño.
+unsigned char ux_char;
+unsigned short ux_short;
+unsigned int ux_int;
+unsigned long long ux_long_long;
+
+// Todos menos 'char', que es siempre de 1 byte, varían el tamaño
+// dependiendo de tu máquina. sizeof(T) te dice el tamaño de una variable
+// de tipo T en bytes por lo que podemos expresar el tamaño de estos tipos
+// portatilmente.
+// Por ejemplo,
+printf("%lu\n", sizeof(int)); // => 4 (en máquinas con 'words' de 4 bytes)
+
+// Los arrays deben ser inicializados con un tamaño concreto.
+char my_char_array[20]; // Este array ocupa 1 * 20 = 20 bytes
+int my_int_array[20]; // Este array ocupa 4 * 20 = 80 bytes
+ // (suponiendo que tenemos 'words' de 4-byte)
+
+
+// Puedes inicializar un array a 0 así:
+char my_array[20] = {0};
+
+// Indexar un array es como en otros lenguajes -o, más bien, otros
+// lenguajes son como C-
+my_array[0]; // => 0
+
+// Los arrays varían; ¡son sólo memoria!
+my_array[1] = 2;
+printf("%d\n", my_array[1]); // => 2
+
+// Las cadenas (strings) son sólo arrays de 'chars' (caracteres)
+// terminados en un byte NUL (0x00), representado en las cadenas como el
+// carácter especial '\0'.
+// (No tenemos porqué añadir el byte nulo en cadenas literales; el
+// compilador lo añade al final por nosotros.)
+char a_string[20] = "Esto es una cadena";
+printf("%s\n", a_string); // %s se sutituye por una cadena.
+
+/*
+Te habrás dado cuenta de que a_string es solo de 18 caracteres.
+El 'char' #19 es el byte nulo.
+El 'char' #20 es de valor indefinido.
+*/
+
+printf("%d\n", a_string[18]); // => 0
+
+///////////////////////////////////////
+// Operadores
+///////////////////////////////////////
+
+int i1 = 1, i2 = 2; // Forma corta de declaración múltiple
+float f1 = 1.0, f2 = 2.0;
+
+// La aritmética es sencilla
+i1 + i2; // => 3
+i2 - i1; // => 1
+i2 * i1; // => 2
+i1 / i2; // => 0 (0.5, pero es truncado tras el 0)
+
+f1 / f2; // => 0.5, más o menos épsilon
+// Módulo está también
+11 % 3; // => 2
+
+// Los operadores de comparación te resultaran familiares, pero no hay
+// booleanos en C. Usamos enteros (ints) en su lugar. 0 es falso,
+// cualquier otra cosa es verdadero. (Los operadores de comparación
+// siempre devuelven 0 o 1)
+3 == 2; // => 0 (Falso)
+3 != 2; // => 1 (Verdadero)
+3 > 2; // => 1
+3 < 2; // => 0
+2 <= 2; // => 1
+2 >= 2; // => 1
+
+// La lógica funiona en enteros
+!3; // => 0 (not lógico)
+!0; // => 1
+1 && 1; // => 1 (and lógico)
+0 && 1; // => 0
+0 || 1; // => 1 (or lógico)
+0 || 0; // => 0
+
+// ¡Operadores de bits!
+~0x0F; // => 0xF0 (Negación)
+0x0F & 0xF0; // => 0x00 (AND)
+0x0F | 0xF0; // => 0xFF (OR)
+0x04 ^ 0x0F; // => 0x0B (XOR)
+0x01 << 1; // => 0x02 (desplazar hacia la izquierda (por 1))
+0x02 >> 1; // => 0x01 (desplazar hacia la derecha (por 1))
+
+///////////////////////////////////////
+// Estructuras de Control
+///////////////////////////////////////
+
+if (0) {
+ printf("Yo nunca ocurro\n");
+} else if (0) {
+ printf("Yo tampoco ocurro nunca\n");
+} else {
+ printf("Yo me muestro\n");
+}
+
+// Mientras el bucle exista
+int ii = 0;
+while (ii < 10) {
+ printf("%d, ", ii++); // ii++ incrementa ii en uno, después de usar su valor.
+} // => muestra "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
+
+printf("\n");
+
+int kk = 0;
+do {
+ printf("%d, ", kk);
+} while (++kk < 10); // ++kk incrementa kk en uno, antes de usar su valor.
+// => muestra "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
+
+printf("\n");
+
+// Bucles 'for' también
+int jj;
+for (jj=0; jj < 10; jj++) {
+ printf("%d, ", jj);
+} // => muestra "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
+
+printf("\n");
+
+///////////////////////////////////////
+// Cambios de Tipo
+///////////////////////////////////////
+
+// Cada valor en C tiene un tipo, pero tu puedes ingresar un valor en
+// otro tipo si quieres.
+
+int x_hex = 0x01; // Puedes asignar hexadecimales a variables
+
+// El cambio de tipos intentará mantener sus valores numéricos
+printf("%d\n", x_hex); // => Muestra 1
+printf("%d\n", (short) x_hex); // => Muestra 1
+printf("%d\n", (char) x_hex); // => Muestra 1
+
+// Los tipos se desbordan sin aviso
+printf("%d\n", (char) 257); // => 1 (El valor máximo de un 'char' es 255)
+
+// Los tipos enteros puden cambiarse a tipos de coma flotante, y viceversa
+printf("%f\n", (float)100); // %f se sustituye por un 'float'
+printf("%lf\n", (double)100); // %lf se sustituye por un 'double'
+printf("%d\n", (char)100.0);
+
+///////////////////////////////////////
+// Punteros
+///////////////////////////////////////
+
+// Un puntero es una variable declarada para almacenar una dirección de
+// memoria. Su declaración además nos dirá el tipo de dato al que apunta.
+// Puedes obtener la dirección de memoria de tus variables, y después
+// enlazarlas con ellos.
+
+int x = 0;
+printf("%p\n", &x); // Usa & para obtener la dirección de una variable.
+// (%p se sustituye por un puntero)
+// => Muestra alguna dirección de memoria;
+
+// Los tipos de puntero terminan con * en su declaración
+int* px; // px es un puntero a un 'int'
+px = &x; // Almacena la dirección de x en px
+printf("%p\n", px); // => Muestra alguna dirección de memoria
+
+// Para obtener el valor de la dirección a la que apunta un puntero, pon
+// * delante para desreferenciarle.
+printf("%d\n", *px); // => Muestra 0, el valor de x y de la dirección a la
+ // que apunta px
+
+// También puedes cambiar el valor al que está apuntando el puntero.
+// Tenemos que meter la desreferencia entre paréntesis porque ++ tiene
+// prioridad frente a *.
+(*px)++; // Incrementa el valor al que apunta px en 1
+printf("%d\n", *px); // => Muestra 1
+printf("%d\n", x); // => Muestra 1
+
+int x_array[20]; // Los arrays son una buena manera de distribuir bloques
+int xx; // continuos de memoria.
+for (xx=0; xx<20; xx++) {
+ x_array[xx] = 20 - xx;
+} // Inicializa x_array a 20, 19, 18,... 2, 1
+
+// Declara un puntero de tipo 'int' y lo inicializa para apuntar a x_array
+int* x_ptr = x_array;
+// x_ptr ahira apunta al primer elemento del 'array' (el entero 20).
+// Esto funciona porque las 'arrays' actualmente son solo punteros a su
+// primer elemento.
+
+// Los 'arrays' son punteros a su primer elemento.
+printf("%d\n", *(x_ptr)); // => Muestra 20
+printf("%d\n", x_array[0]); // => Muestra 20
+
+// Los punteros aumentan y disminuyen en función de su tipo.
+printf("%d\n", *(x_ptr + 1)); // => Muestra 19
+printf("%d\n", x_array[1]); // => Muestra 19
+
+// Puedes también asigner dinamicamente bloques contiguos de memoria con
+// la función malloc de la librería estándard, que toma un entero como
+// argumento representando el número de bytes a asignar de la pila.
+int* my_ptr = (int*) malloc(sizeof(int) * 20);
+for (xx=0; xx<20; xx++) {
+ *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx funcionaría también aquí
+} // Inicializa la memoria a 20, 19, 18, 17... 2, 1 (como 'ints')
+
+// Desreferenciando la memoria que no has asignado te dará resultados
+// impredecibles
+printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what?
+
+// Cuando hallas acabado con el bloque de memoría malloc, necesitas
+// liberarlo o sino nadie más podrá usarlo hasta que tu programa se cierre
+free(my_ptr);
+
+// Las cadenas pueden ser 'arrays' de chars, pero normalmente se
+// representan con punteros 'char':
+char* my_str = "This is my very own string";
+
+printf("%c\n", *my_str); // => 'T'
+
+function_1();
+} // fin de la función main
+
+///////////////////////////////////////
+// Funciones
+///////////////////////////////////////
+
+// Sintexis de la declaración de funciones:
+// <tipo de retorno> <nombre>(<argumentos>)
+
+int add_two_ints(int x1, int x2){
+ return x1 + x2; // Usa 'return' para dar una salida
+}
+
+/*
+Las funciones son de paso por valor, pero puedes hacer tus propias
+referencias con punteros de manera que las funciones puedan cambiar sus
+valores.
+
+Ejemplo: invertidor de cadenas in-situ
+*/
+
+// Una función 'void' no retorna valor
+void str_reverse(char* str_in){
+ char tmp;
+ int ii=0, len = strlen(str_in); // Strlen es parte de la librería
+ for(ii=0; ii<len/2; ii++){ // estándard
+ tmp = str_in[ii];
+ str_in[ii] = str_in[len - ii - 1]; // ii-th último 'char'
+ str_in[len - ii - 1] = tmp;
+ }
+}
+
+/*
+char c[] = "Esto es una prueba.";
+str_reverse(c);
+printf("%s\n", c); // => ".abeurp anu se otsE"
+*/
+
+///////////////////////////////////////
+// Definición de tipos y estructuras
+///////////////////////////////////////
+
+// Los 'Typedefs' pueden ser utilizados para crear alias de tipos.
+typedef int my_type;
+my_type my_type_var = 0;
+
+// Las estructuras son sólo grupos de datos.
+struct rectangle {
+ int width;
+ int height;
+};
+
+
+void function_1(){
+
+ struct rectangle my_rec;
+
+ // Utiliza los miembros de una estructura con .
+ my_rec.width = 10;
+ my_rec.height = 20;
+
+ // Puedes declarar punteros a estructuras
+ struct rectangle* my_rec_ptr = &my_rec;
+
+ // Usa la desreferencia para modificar sus miembros...
+ (*my_rec_ptr).width = 30;
+
+ // ... o usa la abreviatura ->
+ my_rec_ptr->height = 10; // Lo mismo que (*my_rec_ptr).height = 10;
+}
+
+// Puedes aplicar un 'typedef' a una estructura por conveniencía.
+typedef struct rectangle rect;
+
+int area(rect r){
+ return r.width * r.height;
+}
+
+///////////////////////////////////////
+// Punteros a Funciones
+///////////////////////////////////////
+/*
+En tiempo de ejecución, las funciones se localizan en unas direcciones de
+memoria concretas. Los punteros a funciones son como cualquier otro
+puntero (almacenan una dirección de memoria), pero pueden ser usados para
+utilizar funciones directamente, o para pasar 'handlers' (o funciones
+'callback') por todos lados.
+Sin embargo, la sintaxis de definición parecera confusa al principio.
+
+Ejemplo: usar str_reverse desde un puntero
+*/
+void str_reverse_through_pointer(char * str_in) {
+ // Define un puntero a una función, llamado f.
+ void (*f)(char *);
+ // La armadura debe coincidir exactamente con al función objetivo.
+
+ // Assigna la dirección de la función (determinado en tiempo de ejecuión)
+ f = &str_reverse;
+
+ // Llamando la función desde el puntero
+ (*f)(str_in);
+
+ // Esta es una alternativa para llamarla pero con una sintaxis igual de válida.
+ // f(str_in);
+}
+
+/*
+Tanto tiempo como las armaduras de las funciones coincidan, podrás asignar
+cualquier función al mismo puntero.
+Los punteros a funciones son normalmente envueltos en 'typedef' para
+simplificar su legibilidad, como sigue:
+*/
+
+typedef void (*my_fnp_type)(char *);
+
+// Es usado para declarar la variable puntero actual:
+// ...
+// my_fnp_type f;
+
+```
+
+## Otras lecturas
+
+Lo mejor que puedes en contrar es una copia de [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language)
+
+Otro buen recurso es [Learn C the hard way](http://c.learncodethehardway.org/book/)
+
+Aparte de eso, Google es tu amigo.
diff --git a/es-es/elisp-es.html.markdown b/es-es/elisp-es.html.markdown
new file mode 100644
index 00000000..431ea794
--- /dev/null
+++ b/es-es/elisp-es.html.markdown
@@ -0,0 +1,378 @@
+---
+language: elisp
+contributors:
+ - ["Bastien Guerry", "http://bzg.fr"]
+translators:
+ - ["Guillermo Vayá", "http://willyfrog.es"]
+lang: es-es
+filename: learn-emacs-lisp.el
+---
+
+```scheme
+;; Introduccion a Emacs Lisp en 15 minutos (v0.2d)
+;;
+;; Autor: Bastien / @bzg2 / http://bzg.fr
+;; Traducción: Guillermo Vayá / @Driadan / http://willyfrog.es
+;;
+;; Antes de nada, lee este texto de Peter Norvig:
+;; Traducido: http://loro.sourceforge.net/notes/21-dias.html
+;; Original: http://norvig.com/21-days.html
+;;
+;; Ahora instala GNU Emacs 24.3:
+;;
+;; Debian: apt-get install emacs
+;; (o sigue las instrucciones de tu distribución preferida)
+;; OSX: http://emacsformacosx.com/emacs-builds/Emacs-24.3-universal-10.6.8.dmg
+;; Windows: http://ftp.gnu.org/gnu/windows/emacs/emacs-24.3-bin-i386.zip
+;;
+;; Puedes encontrar información general sobre Emacs en:
+;; http://www.gnu.org/software/emacs/#Obtaining
+
+;; Aviso importante:
+;;
+;; Seguir este tutorial no provocará daños en tu ordenador a menos que
+;; te enfades tanto que que acabes tirándolo al suelo. En tal caso
+;; declino cualquier responsabilidad. ¡A divertirse!
+
+
+;; "N. del. T.": Algunos términos comunes de la informática se han dejado
+;; sin traducir ya que es mucho más probable que el lector los conozca en
+;; su forma en inglés, siendo la versión en español de muy raro uso.
+;; Además "sexps" se ha decidido traducir por sexpresión.
+;; Por último, añadir que no se han traducido los ejemplos de código ya que no
+;; es necesario entender qué dice el string para comprender el funcionamiento
+;; y podría llevar a error.
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;
+;; Inicia Emacs.
+;;
+;; Pulsa la tecla `q' para pasar el mensaje de bienvenida.
+;;
+;; Mira a la línea gris en la parte inferior de la ventana:
+;;
+;; "*scratch*" es el nombre del espacio editable donde estás.
+;; A este espacio editable se le llama "buffer".
+;;
+;; Scratch es el buffer por defecto cuando abres Emacs.
+;; En Emacs nunca editas ficheros, sino que editas buffers que
+;; posteriormente pueden grabarse a un fichero.
+;; can save to a file.
+;;
+;; "Lisp interaction" indica el conjunto de ordenes disponibles.
+;;
+;; Emacs dispone de un set de comandos disponibles en cualquier buffer
+;; ("built-ins") y aparte varios conjuntos de ordenes disponibles
+;; según el modo específico que esté activo. En nuestro caso
+;; estamos usando `lisp-interaction-mode', el cual incluye las
+;; ordenes necesarias para evaluar y navegar código Elisp.
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;
+;; Un punto y coma comienza un comentario. Pueden ponerse en cualquier
+;; posicion de la linea.
+;;
+;; Los programas en Elisp se componen de expresiones simbólicas
+;; tambien llamadas "sexps":
+(+ 2 2)
+
+;; Esta expresión simbólica se lee tal que "Suma 2 y 2"
+
+;; Las sexpresiones se rodean por paréntesis, y pueden anidarse:
+(+ 2 (+ 1 1))
+
+;; Una expresion simbólica está formada bien por átomos o bien por otras
+;; expresiones simbólicas. En el ejemplo de arriba, 1 y 2 son átomos,
+;; mientras que (+ 2 (+ 1 1)) y (+ 1 1) son expresiones simbólicas.
+
+;; Gracias a `lisp-interaction-mode' puedes evaluar las sexpresiones.
+;; Coloca el cursor justo despues del paréntesis de cierre y
+;; mantén pulsada la tecla Control y la j (para abreviar usaremos "C-j").
+
+(+ 3 (+ 1 2))
+;; ^ pon aquí el cursor
+;; `C-j' => 6
+
+;; `C-j' añade el resultado de la evaluación al buffer.
+
+;; `C-xC-e' muestra el mismo resultado pero en la linea inferior
+;; la cual se llama "minibuffer". Este será el metodo que usaremos
+;; normalmente para no llenar el buffer con texto inútil.
+
+;; `setq' guarda un valor en una variable:
+(setq my-name "Bastien")
+;; `C-xC-e' => "Bastien" (aparece en el mini-buffer)
+
+;; `insert' añade "Hello!" en el punto donde esté tu cursor:
+(insert "Hello!")
+;; `C-xC-e' => "Hello!"
+
+;; Aunque hemos usado `insert' con solo un parámetro "Hello!", se
+;; pueden pasar más. Por ejemplo, en esta otra sexpresión usamos dos:
+
+(insert "Hello" " world!")
+;; `C-xC-e' => "Hello world!"
+
+;; Se pueden usar variables en lugar de strings:
+(insert "Hello, I am " my-name)
+;; `C-xC-e' => "Hello, I am Bastien"
+
+;; Puedes combinar sexpresiones en funciones:
+(defun hello () (insert "Hello, I am " my-name))
+;; `C-xC-e' => hello
+
+;; Evaluemos la funcion:
+(hello)
+;; `C-xC-e' => Hello, I am Bastien
+
+;; Los parentesis vacios en la definicion de una funcion indican
+;; que no acepta parámetros. En cualquier caso, usar `my-name' siempre
+;; es aburrido, asi que vamos a hacer que la función accepte un parámetro
+;; (en este caso el parametro se llama "name"):
+(defun hello (name) (insert "Hello " name))
+;; `C-xC-e' => hello
+
+;; Ahora vamos a llamar a la funcion con el string "you" como valor para
+;; el único parámetro que posee.
+(hello "you")
+;; `C-xC-e' => "Hello you"
+
+;; ¡Genial!
+
+;; Descansa un poco y respira.
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;
+;; Ahora cambiaremos al nuevo buffer, llamado "*test*", en una nueva ventana.
+
+(switch-to-buffer-other-window "*test*")
+;; `C-xC-e'
+;; => [La pantalla ahora tiene dos ventanas y el cursor está en el buffer *test*]
+
+;; Mueve el ratón sobre la ventana superior y pulsa el boton izdo. para volver.
+;; Otra forma es usando `C-xo' (pulsa simultaneamente control y x y luego la o)
+;; para ir a la otra ventana.
+
+;; Se pueden combinar varias sexpresiones mediante `progn':
+(progn
+ (switch-to-buffer-other-window "*test*")
+ (hello "you"))
+;; `C-xC-e'
+;; => [De las dos ventanas de la pantalla, el cursor está en la marcada como *test*]
+
+;; A partir de ahora, si no te importa, dejaremos de decir que pulses `C-xC-e':
+;; tendrás que hacerlo para ejecutar cada sexpresión que siga.
+
+;; También tendrás que volver al buffer *scratch* bien con el ratón o con `C-xo'.
+
+;; En ocasiones será util limpiar el buffer:
+(progn
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ (hello "there"))
+
+;; O volver a la ventana anterior:
+(progn
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ (hello "you")
+ (other-window 1))
+
+;; Puedes enlazar un valor a una variable local con `let':
+(let ((local-name "you"))
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ (hello local-name)
+ (other-window 1))
+
+;; En este caso, no hace falta añadir `progn' ya que `let' permite combinar
+;; varias sexpresiones.
+
+;; Vamos a darle formato a un string:
+(format "Hello %s!\n" "visitor")
+
+;; Cada %s indica la posicion donde irá un string, el cual será reemplazado
+;; por "visitor". "\n" es el caracter de nueva línea.
+
+;; Mejoremos nuestra funcion usando `format':
+(defun hello (name)
+ (insert (format "Hello %s!\n" name)))
+
+(hello "you")
+
+;; Creemos una nueva funcion que utililce `let':
+(defun greeting (name)
+ (let ((your-name "Bastien"))
+ (insert (format "Hello %s!\n\nI am %s."
+ name ; the argument of the function
+ your-name ; the let-bound variable "Bastien"
+ ))))
+
+;; Y ahora la evaluamos:
+(greeting "you")
+
+;; Algunas funciones son interactivas:
+(read-from-minibuffer "Enter your name: ")
+
+;; Al evaluar esta función, ésta devuelve lo que hayas introducido.
+
+;; Ahora hagamos nuestra función `greeting' preguntar por tu nombre:
+(defun greeting (from-name)
+ (let ((your-name (read-from-minibuffer "Enter your name: ")))
+ (insert (format "Hello!\n\nI am %s and you are %s."
+ from-name ; the argument of the function
+ your-name ; the let-bound var, entered at prompt
+ ))))
+
+(greeting "Bastien")
+
+;; Y ahora la completamos mostrando el resultado en la otra ventana:
+(defun greeting (from-name)
+ (let ((your-name (read-from-minibuffer "Enter your name: ")))
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ (insert (format "Hello %s!\n\nI am %s." your-name from-name))
+ (other-window 1)))
+
+;; Probémosla:
+(greeting "Bastien")
+
+;; Descansa un poco y respira.
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;
+;; Creemos una lista de nombres:
+(setq list-of-names '("Sarah" "Chloe" "Mathilde"))
+
+;; Para coger el primer elemento de la lista usaremos `car':
+(car list-of-names)
+
+;; Para coger todos menos el primer elemento de la lista
+;; usaremos `cdr':
+(cdr list-of-names)
+
+;; Para añadir un elemento al comienzo de la lista utilizamos `push':
+(push "Stephanie" list-of-names)
+
+;; OJO: `car' y `cdr' no modifican la lista, mientras que `push' sí.
+;; ¡Es una diferencia importante! Algunas funciones no tienen efectos
+;; colaterales (como `car') mientras que otras sí (como `push').
+;; "N. del T.": estos efectos colaterales se les llama `side-effects' en
+;; las distintas variantes de lisp.
+
+;; Llamemos a `hello' con cada elemento de `list-of-names':
+(mapcar 'hello list-of-names)
+
+;; Retocamos `greeting' para que salude a todos los que estén en `list-of-names':
+(defun greeting ()
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ (mapcar 'hello list-of-names)
+ (other-window 1))
+
+(greeting)
+
+;; ¿Te acuerdas de la función `hello' definida un poco más arriba?
+;; Recibía un parámetro: `name'. Así que `mapcar' llama a `hello' con cada
+;; elemento de `list-of-names' como parámetro de `hello'.
+
+;; Ahora ordenaremos un poco lo que tenemos en el buffer:
+
+(defun replace-hello-by-bonjour ()
+ (switch-to-buffer-other-window "*test*")
+ (goto-char (point-min))
+ (while (search-forward "Hello")
+ (replace-match "Bonjour"))
+ (other-window 1))
+
+;; (goto-char (point-min)) mueve el cursor al principio del buffer.
+;; (search-forward "Hello") busca un string "Hello".
+;; (while x y) evalua la/s sexpresion/es y mientras que x devuelva
+;; alguna cosa.
+;; En el momento que x devuelva `nil' (es decir nada), sale del
+;; bucle `while'.
+
+(replace-hello-by-bonjour)
+
+;; Observamos que todas las veces que teníamos la palabra "Hello" en el buffer *test*
+;; han sido reemplazadas por "Bonjour".
+
+;; Y además, hemos obtenido un error: "Search failed: Hello".
+;;
+;; Para evitar este error, hay que decirle a `search-forward' si debería dejar de
+;; buscar en el buffer en algún momento y si debería fallar sin quejarse cuando
+;; no encuentra nada.
+
+;; (search-forward "Hello" nil t) justo hace eso:
+
+;; El argumento `nil' significa que la busqueda no está ligada a ninguna posición.
+;; Y el argumento `t' le pide que no diga nada si no encuentra el string.
+
+;; Usaremos esta sexpresión en la función siguiente, la cual ya
+;; no muestra ningún error:
+
+(defun hello-to-bonjour ()
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ ;; Say hello to names in `list-of-names'
+ (mapcar 'hello list-of-names)
+ (goto-char (point-min))
+ ;; Replace "Hello" by "Bonjour"
+ (while (search-forward "Hello" nil t)
+ (replace-match "Bonjour"))
+ (other-window 1))
+
+(hello-to-bonjour)
+
+;; Añadamos algo de color a los nombres:
+
+(defun boldify-names ()
+ (switch-to-buffer-other-window "*test*")
+ (goto-char (point-min))
+ (while (re-search-forward "Bonjour \\(.+\\)!" nil t)
+ (add-text-properties (match-beginning 1)
+ (match-end 1)
+ (list 'face 'bold)))
+ (other-window 1))
+
+;; Esta función nos presenta `re-search-forward': en vez de
+;; buscar el string "Bonjour" exacto, se busca por un patrón
+;; usando una "expresión regular" (lo cual se muestra abreviado
+;; en el prefijo "re-" del inglés "Regular Expression").
+
+;; La expresión regular a utilizar es "Bonjour \\(.+\\)!" y se traduce como:
+;; el string "Bonjour ", seguido de
+;; un grupo de | representado por \\( ... \\)
+;; cualquier caracter | representado por .
+;; al menos una vez | representado por +
+;; y el string "!".
+
+;; ¿Preparado? ¡Probemoslo!
+
+(boldify-names)
+
+;; `add-text-properties' añade propiedades al texto, como una fuente.
+
+;; ¡Hale! ¡Ya lo tenemos! ¡Feliz hacking!
+
+;; Si quieres saber más sobre una función o una variable:
+;;
+;; C-h v la-variable RET
+;; C-h f la-funcion RET
+;;
+;; Si quieres leer el manual de Emacs Lisp desde dentro de Emacs:
+;;
+;; C-h i m elisp RET
+;;
+;; Para leer una introducción en linea de Emacs Lisp:
+;; https://www.gnu.org/software/emacs/manual/html_node/eintr/index.html
+
+;; Me gustaría agradecer a las siguientes personas su feedback y sugerencias:
+;; - Wes Hardaker
+;; - notbob
+;; - Kevin Montuori
+;; - Arne Babenhauserheide
+;; - Alan Schmitt
+;; - LinXitoW
+;; - Aaron Meurer
+```
diff --git a/es-es/java-es.html.markdown b/es-es/java-es.html.markdown
new file mode 100644
index 00000000..90a43935
--- /dev/null
+++ b/es-es/java-es.html.markdown
@@ -0,0 +1,410 @@
+---
+language: java
+contributors:
+ - ["Jake Prather", "http://github.com/JakeHP"]
+translators:
+ - ["Camilo Garrido", "http://www.twitter.com/hirohope"]
+lang: es-es
+filename: LearnJava.java
+---
+
+Java es un lenguage de programación de propósito general, concurrente, basado en clases y
+orientado a objetos.
+[Lee más aquí.](http://docs.oracle.com/javase/tutorial/java/index.html)
+
+```java
+// Comentarios de una sóla línea comienzan con //
+/*
+Comentarios multilínea lucen así
+*/
+/**
+Comentarios JavaDoc lucen así. Suelen describir la clase o varios atributos
+de una clase.
+*/
+
+// Importa la clase ArrayList dentro del paquete java.util
+import java.util.ArrayList;
+// Importa todas las clases dentro del paquete java.security
+import java.security.*;
+
+// Cada archivo .java contiene una clase pública, con el mismo nombre del archivo.
+public class AprendeJava {
+
+ // Un programa debe tener un método 'main' como punto de entrada
+ public static void main (String[] args) {
+
+ // Usa System.out.println para imprimir líneas
+ System.out.println("¡Hola mundo!");
+ System.out.println(
+ "Entero (int): " + 10 +
+ " Doble (double): " + 3.14 +
+ " Booleano (boolean): " + true);
+
+ // Para imprimir sin el salto de línea, usa System.out.print
+ System.out.print("Hola ");
+ System.out.print("Mundo");
+
+
+ ///////////////////////////////////////
+ // Tipos & Variables
+ ///////////////////////////////////////
+
+ // Declara una variable usando <tipo> <nombre> [
+ // Byte - Entero complemento a dos con signo de 8-bit
+ // (-128 <= byte <= 127)
+ byte fooByte = 100;
+
+ // Short - Entero complemento a dos con signo de 16-bit
+ // (-32,768 <= short <= 32,767)
+ short fooShort = 10000;
+
+ // Integer - Entero complemento a dos con signo de 32-bit
+ // (-2,147,483,648 <= int <= 2,147,483,647)
+ int fooInt = 1;
+
+ // Long - Entero complemento a dos con signo de 64-bit
+ // (-9,223,372,036,854,775,808 <= long <= 9,223,372,036,854,775,807)
+ long fooLong = 100000L;
+ // L es usado para denotar que el valor de esta variable es del tipo Long;
+ // cualquier cosa sin ella es tratado como un entero por defecto.
+
+ // Nota: Java no tiene tipos sin signo
+
+ // Float - Número de coma flotante IEEE 754 de precisión simple de 32-bit
+ float fooFloat = 234.5f;
+ // f es usado para denotar qeu el valor de esta variable es del tipo float;
+ // de otra manera es tratado como un double.
+
+ // Double - Número de coma flotante IEEE 754 de precisión doble de 64-bit
+ double fooDouble = 123.4;
+
+ // Boolean - true & false
+ boolean fooBoolean = true;
+ boolean barBoolean = false;
+
+ // Char - Un simple carácter unicode de 16-bit
+ char fooChar = 'A';
+
+ // Usa 'final' para hacer inmutable las variables
+ final int HORAS_QUE_TRABAJO_POR_SEMANA = 9001;
+
+ // Strings
+ String fooString = "¡Mi String está aquí!";
+
+ // \n es un carácter escapado que inicia una nueva línea
+ String barString = "¿Imprimiendo en una nueva linea?\n¡Ningun problema!";
+ // \t es un carácter escapado que añade un carácter tab
+ String bazString = "¿Quieres añadir un 'tab'?\t¡Ningun problema!";
+ System.out.println(fooString);
+ System.out.println(barString);
+ System.out.println(bazString);
+
+ // Arreglos
+ //El tamaño del arreglo debe decidirse en la declaración
+ //El formato para la declaración de un arreglo es la siguiente:
+ //<tipo_de_dato> [] <nombre_variable> = new <tipo_de_dato>[<tamaño_arreglo>];
+ int [] arreglo_de_enteros = new int[10];
+ String [] arreglo_de_strings = new String[1];
+ boolean [] arreglo_de_booleanos = new boolean[100];
+
+ // Otra forma de declarar & inicializar un arreglo
+ int [] y = {9000, 1000, 1337};
+
+ // Indexación de un arreglo - Accediendo un elemento
+ System.out.println("arreglo_de_enteros @ 0: " + arreglo_de_enteros[0]);
+
+ // Arreglos comienzan su indexación en cero y son mutables
+ arreglo_de_enteros[1] = 1;
+ System.out.println("arreglo_de_enteros @ 1: " + arreglo_de_enteros[1]); // => 1
+
+ // Otros para echar un vistazo
+ // ArrayLists - Son como arreglos excepto que ofrecen más funcionalidades
+ // y el tamaño es mutable
+ // LinkedLists
+ // Maps
+ // HashMaps
+
+ ///////////////////////////////////////
+ // Operadores
+ ///////////////////////////////////////
+ System.out.println("\n->Operadores");
+
+ int i1 = 1, i2 = 2; // Abreviación para múltiples declaraciones
+
+ // La aritmética es directa
+ System.out.println("1+2 = " + (i1 + i2)); // => 3
+ System.out.println("2-1 = " + (i2 - i1)); // => 1
+ System.out.println("2*1 = " + (i2 * i1)); // => 2
+ System.out.println("1/2 = " + (i1 / i2)); // => 0 (0.5 truncado)
+
+ // Módulo
+ System.out.println("11%3 = "+(11 % 3)); // => 2
+
+ // Operadores de comparación
+ System.out.println("3 == 2? " + (3 == 2)); // => false
+ System.out.println("3 != 2? " + (3 != 2)); // => true
+ System.out.println("3 > 2? " + (3 > 2)); // => true
+ System.out.println("3 < 2? " + (3 < 2)); // => false
+ System.out.println("2 <= 2? " + (2 <= 2)); // => true
+ System.out.println("2 >= 2? " + (2 >= 2)); // => true
+
+ // ¡Operaciones a nivel de bits!
+ /*
+ ~ Complemento unario bit a bit
+ << Deplazamiento hacia la izquierda con signo
+ >> Deplazamiento hacia la derecha con signo
+ >>> Deplazamiento hacia la derecha sin signo
+ & AND lógico
+ ^ OR lógico exclusivo
+ | OR lógico inclusivo
+ */
+
+ // Incrementos
+ int i = 0;
+ System.out.println("\n->Incrementos y reducciones");
+ System.out.println(i++); //i = 1. Post-incremento
+ System.out.println(++i); //i = 2. Pre-incremento
+ System.out.println(i--); //i = 1. Post-reducción
+ System.out.println(--i); //i = 0. Pre-reducción
+
+ ///////////////////////////////////////
+ // Estructuras de Control
+ ///////////////////////////////////////
+ System.out.println("\n->Estructuras de Control");
+
+ // Condiciones 'if' son como en c
+ int j = 10;
+ if (j == 10){
+ System.out.println("Me imprimieron");
+ } else if (j > 10) {
+ System.out.println("A mi no");
+ } else {
+ System.out.println("A mi tampoco");
+ }
+
+ // Ciclos 'while'
+ int fooWhile = 0;
+ while(fooWhile < 100)
+ {
+ //System.out.println(fooWhile);
+ //Incrementar el contador
+ //Iteró 99 veces, fooWhile 0->99
+ fooWhile++;
+ }
+ System.out.println("Valor fooWhile: " + fooWhile);
+
+ // Ciclos 'do while'
+ int fooDoWhile = 0;
+ do
+ {
+ //System.out.println(fooDoWhile);
+ //Incrementar el contador
+ //Iteró 99 veces, fooDoWhile 0->99
+ fooDoWhile++;
+ }while(fooDoWhile < 100);
+ System.out.println("Valor fooDoWhile: " + fooDoWhile);
+
+ // Ciclos 'for'
+ int fooFor;
+ //Estructura del ciclo 'for' => for(<declaración_de_inicio>; <condicional>; <paso>)
+ for(fooFor=0; fooFor<10; fooFor++){
+ //System.out.println(fooFor);
+ //Iteró 10 veces, fooFor 0->9
+ }
+ System.out.println("Valor fooFor: " + fooFor);
+
+ // Switch Case
+ // Un 'switch' funciona con un tipo de dato byte, short, char e int
+ // También funciona con tipos enumerados (discutido en tipos Enum),
+ // la clase String y unas pocas clases especiales que envuelven
+ // tipos primitivos: Character, Byte, Short e Integer.
+ int mes = 3;
+ String mesString;
+ switch (mes){
+ case 1:
+ mesString = "Enero";
+ break;
+ case 2:
+ mesString = "Febrero";
+ break;
+ case 3:
+ mesString = "Marzo";
+ break;
+ default:
+ mesString = "Algun otro mes";
+ break;
+ }
+ System.out.println("Resultado switch Case: " + mesString);
+
+
+ ///////////////////////////////////////
+ // Convirtiendo Tipos de Datos y Conversión de Tipos
+ ///////////////////////////////////////
+
+ // Convirtiendo datos
+
+ // Convertir String a Integer
+ Integer.parseInt("123");//retorna una versión entera de "123"
+
+ // Convertir Integer a String
+ Integer.toString(123);//retorna una versión string de 123
+
+ // Para otras conversiones fíjate en las siguientes clases
+ // Double
+ // Long
+ // String
+
+ // Conversión de tipos
+ // También puedes convertir objetos java, hay muchos detalles
+ // con unos pocos conceptos intermedios
+ // No dudes en verlos acá
+ // http://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
+
+
+ ///////////////////////////////////////
+ // Clases y Funciones
+ ///////////////////////////////////////
+
+ System.out.println("\n->Clases & Funciones");
+
+ // (A continuación la definición de una clase Bicicleta)
+
+ // Usa 'new' para instanciar una clase
+ Bicicleta excursion = new Bicicleta();
+
+ // Llama métodos del objeto
+ excursion.aumentarVelocidad(3); // Siempre deberías usar metodos 'set' (establecer) y 'get' (obtener)
+ excursion.setRitmo(100);
+
+ // 'toString' es una convención para mostrar los valores de este objeto.
+ System.out.println("informacion de la excursion: " + excursion.toString());
+
+ } // Fin del método 'main'
+} // Fin de la clase AprendeJava
+
+
+// Puedes incluir otras clases no públicas en un archivo .java
+
+
+// Sintaxis de declaración de clases:
+// <public/private/protected> class <nombre_de_la_clase>{
+// //variables_de_clase, constructores, todas las funciones.
+// //las funciones son llamadas como métodos en Java.
+// }
+
+class Bicicleta {
+
+ // Campos/Variables de Bicicleta
+ public int ritmo; // Public: Puede ser accedido desde cualquier parte
+ private int velocidad; // Private: Accesible sólo desde esta clase
+ protected int engranaje; // Protected: Accesible desde esta clases y sus subclases
+ String nombre; // default: Sólo accesible desde este paquete
+
+ // Constructores son la manera de crear clases
+ // Este es un constructor por defecto
+ public Bicicleta() {
+ engranaje = 1;
+ ritmo = 50;
+ velocidad = 5;
+ nombre = "Bontrager";
+ }
+
+ // Este es un constructor específico (contiene argumentos)
+ public Bicicleta(int ritmoInicial, int velocidadInicial, int engranajeInicial, String nombre) {
+ this.engranaje = engranajeInicial;
+ this.ritmo = ritmoInicial;
+ this.velocidad = velocidadInicial;
+ this.nombre = nombre;
+ }
+
+ // Sintaxis de función:
+ // <public/private/protected> <tipo_de_retorno> <nombre_funcion>(<argumentos>)
+
+ // Las clases de Java usualmente implementan métodos 'get' (obtener) y 'set' (establecer) para sus campos
+
+ // Sintaxis de declaración de métodos
+ // <alcance> <tipo_de_retorno> <nombre_metodo>(<argumentos>)
+ public int getRitmo() {
+ return ritmo;
+ }
+
+ // Métodos void no requieren retornar
+ public void setRitmo(int nuevoValor) {
+ ritmo = nuevoValor;
+ }
+
+ public void setEngranaje(int nuevoValor) {
+ engranaje = nuevoValor;
+ }
+
+ public void aumentarVelocidad(int incremento) {
+ velocidad += incremento;
+ }
+
+ public void disminuirVelocidad(int reduccion) {
+ velocidad -= reduccion;
+ }
+
+ public void setNombre(String nuevoNombre) {
+ nombre = nuevoNombre;
+ }
+
+ public String getNombre() {
+ return nombre;
+ }
+
+ //Método para mostrar los valores de los atributos de este objeto.
+ @Override
+ public String toString() {
+ return "engranaje: " + engranaje +
+ " ritmo: " + ritmo +
+ " velocidad: " + velocidad +
+ " nombre: " + nombre;
+ }
+} // fin clase Bicicleta
+
+// PennyFarthing es una subclase de Bicicleta
+class PennyFarthing extends Bicicleta {
+ // (Penny Farthings son esas bicicletas con una gran rueda forntal.
+ // No tienen engranajes.)
+
+ public PennyFarthing(int ritmoInicial, int velocidadInicial){
+ // Llama al constructor del padre con super
+ super(ritmoInicial, velocidadInicial, 0, "PennyFarthing");
+ }
+
+ // Deberías marcar un método que estás sobre escribiendo con una @anotacion
+ // Para aprender más sobre que son y el propósito de las anotaciones
+ // echa un vistazo acá: http://docs.oracle.com/javase/tutorial/java/annotations/
+ @Override
+ public void setEngranaje(int engranaje) {
+ engranaje = 0;
+ }
+
+}
+
+```
+
+## Más Lectura
+
+Estos links son sólo para tener un entendimiento del tema, no dudes en
+usar Google y encontrar ejemplos más específicos
+
+Otros temas a investigar:
+
+* [Java Tutorial Trail from Sun / Oracle](http://docs.oracle.com/javase/tutorial/index.html)
+
+* [Java Access level modifiers](http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html)
+
+* [Object-Oriented Programming Concepts](http://docs.oracle.com/javase/tutorial/java/concepts/index.html):
+ * [Inheritance](http://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html)
+ * [Polymorphism](http://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html)
+ * [Abstraction](http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html)
+
+* [Exceptions](http://docs.oracle.com/javase/tutorial/essential/exceptions/index.html)
+
+* [Interfaces](http://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html)
+
+* [Generics](http://docs.oracle.com/javase/tutorial/java/generics/index.html)
+
+* [Java Code Conventions](http://www.oracle.com/technetwork/java/codeconv-138413.html)
diff --git a/es-es/python-es.html.markdown b/es-es/python-es.html.markdown
new file mode 100644
index 00000000..1ec8d7e4
--- /dev/null
+++ b/es-es/python-es.html.markdown
@@ -0,0 +1,490 @@
+---
+language: python
+contributors:
+ - ["Louie Dinh", "http://ldinh.ca"]
+translators:
+ - ["Camilo Garrido", "http://www.twitter.com/hirohope"]
+lang: es-es
+filename: learnpython.py
+---
+
+Python fue creado por Guido Van Rossum en el principio de los 90'. Ahora es uno
+de los lenguajes más populares en existencia. Me enamoré de Python por su claridad sintáctica.
+Es básicamente pseudocódigo ejecutable.
+
+¡Comentarios serán muy apreciados! Pueden contactarme en [@louiedinh](http://twitter.com/louiedinh) o louiedinh [at] [servicio de email de google]
+
+Nota: Este artículo aplica a Python 2.7 específicamente, pero debería ser aplicable a Python 2.x. ¡Pronto un recorrido por Python 3!
+
+```python
+# Comentarios de una línea comienzan con una almohadilla (o signo gato)
+""" Strings multilinea pueden escribirse
+ usando tres "'s, y comunmente son usados
+ como comentarios.
+"""
+
+####################################################
+## 1. Tipos de datos primitivos y operadores.
+####################################################
+
+# Tienes números
+3 #=> 3
+
+# Matemática es lo que esperarías
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+35 / 5 #=> 7
+
+# La división es un poco complicada. Es división entera y toma la parte entera
+# de los resultados automáticamente.
+5 / 2 #=> 2
+
+# Para arreglar la división necesitamos aprender sobre 'floats'
+# (números de coma flotante).
+2.0 # Esto es un 'float'
+11.0 / 4.0 #=> 2.75 ahhh...mucho mejor
+
+# Refuerza la precedencia con paréntesis
+(1 + 3) * 2 #=> 8
+
+# Valores 'boolean' (booleanos) son primitivos
+True
+False
+
+# Niega con 'not'
+not True #=> False
+not False #=> True
+
+# Igualdad es ==
+1 == 1 #=> True
+2 == 1 #=> False
+
+# Desigualdad es !=
+1 != 1 #=> False
+2 != 1 #=> True
+
+# Más comparaciones
+1 < 10 #=> True
+1 > 10 #=> False
+2 <= 2 #=> True
+2 >= 2 #=> True
+
+# ¡Las comparaciones pueden ser concatenadas!
+1 < 2 < 3 #=> True
+2 < 3 < 2 #=> False
+
+# Strings se crean con " o '
+"Esto es un string."
+'Esto también es un string'
+
+# ¡Strings también pueden ser sumados!
+"Hola " + "mundo!" #=> "Hola mundo!"
+
+# Un string puede ser tratado como una lista de caracteres
+"Esto es un string"[0] #=> 'E'
+
+# % pueden ser usados para formatear strings, como esto:
+"%s pueden ser %s" % ("strings", "interpolados")
+
+# Una forma más reciente de formatear strings es el método 'format'.
+# Este método es la forma preferida
+"{0} pueden ser {1}".format("strings", "formateados")
+# Puedes usar palabras claves si no quieres contar.
+"{nombre} quiere comer {comida}".format(nombre="Bob", comida="lasaña")
+
+# None es un objeto
+None #=> None
+
+# No uses el símbolo de igualdad `==` para comparar objetos con None
+# Usa `is` en lugar de
+"etc" is None #=> False
+None is None #=> True
+
+# El operador 'is' prueba la identidad del objeto. Esto no es
+# muy útil cuando se trata de datos primitivos, pero es
+# muy útil cuando se trata de objetos.
+
+# None, 0, y strings/listas vacíos(as) todas se evalúan como False.
+# Todos los otros valores son True
+0 == False #=> True
+"" == False #=> True
+
+
+####################################################
+## 2. Variables y Colecciones
+####################################################
+
+# Imprimir es muy fácil
+print "Soy Python. ¡Encantado de conocerte!"
+
+
+# No hay necesidad de declarar las variables antes de asignarlas.
+una_variable = 5 # La convención es usar guiones_bajos_con_minúsculas
+una_variable #=> 5
+
+# Acceder a variables no asignadas previamente es una excepción.
+# Ve Control de Flujo para aprender más sobre el manejo de excepciones.
+otra_variable # Levanta un error de nombre
+
+# 'if' puede ser usado como una expresión
+"yahoo!" if 3 > 2 else 2 #=> "yahoo!"
+
+# Listas sobre secuencias
+lista = []
+# Puedes empezar con una lista prellenada
+otra_lista = [4, 5, 6]
+
+# Añadir cosas al final de una lista con 'append'
+lista.append(1) #lista ahora es [1]
+lista.append(2) #lista ahora es [1, 2]
+lista.append(4) #lista ahora es [1, 2, 4]
+lista.append(3) #lista ahora es [1, 2, 4, 3]
+# Remueve del final de la lista con 'pop'
+lista.pop() #=> 3 y lista ahora es [1, 2, 4]
+# Pongámoslo de vuelta
+lista.append(3) # Nuevamente lista ahora es [1, 2, 4, 3].
+
+# Accede a una lista como lo harías con cualquier arreglo
+lista[0] #=> 1
+# Mira el último elemento
+lista[-1] #=> 3
+
+# Mirar fuera de los límites es un error 'IndexError'
+lista[4] # Levanta la excepción IndexError
+
+# Puedes mirar por rango con la sintáxis de trozo.
+# (Es un rango cerrado/abierto para ustedes los matemáticos.)
+lista[1:3] #=> [2, 4]
+# Omite el inicio
+lista[2:] #=> [4, 3]
+# Omite el final
+lista[:3] #=> [1, 2, 4]
+
+# Remueve elementos arbitrarios de una lista con 'del'
+del lista[2] # lista ahora es [1, 2, 3]
+
+# Puedes sumar listas
+lista + otra_lista #=> [1, 2, 3, 4, 5, 6] - Nota: lista y otra_lista no se tocan
+
+# Concatenar listas con 'extend'
+lista.extend(otra_lista) # lista ahora es [1, 2, 3, 4, 5, 6]
+
+# Chequea la existencia en una lista con
+1 in lista #=> True
+
+# Examina el largo de una lista con 'len'
+len(lista) #=> 6
+
+
+# Tuplas son como listas pero son inmutables.
+tupla = (1, 2, 3)
+tupla[0] #=> 1
+tupla[0] = 3 # Levanta un error TypeError
+
+# También puedes hacer todas esas cosas que haces con listas
+len(tupla) #=> 3
+tupla + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
+tupla[:2] #=> (1, 2)
+2 in tupla #=> True
+
+# Puedes desempacar tuplas (o listas) en variables
+a, b, c = (1, 2, 3) # a ahora es 1, b ahora es 2 y c ahora es 3
+# Tuplas son creadas por defecto si omites los paréntesis
+d, e, f = 4, 5, 6
+# Ahora mira que fácil es intercambiar dos valores
+e, d = d, e # d ahora es 5 y e ahora es 4
+
+
+# Diccionarios almacenan mapeos
+dicc_vacio = {}
+# Aquí está un diccionario prellenado
+dicc_lleno = {"uno": 1, "dos": 2, "tres": 3}
+
+# Busca valores con []
+dicc_lleno["uno"] #=> 1
+
+# Obtén todas las llaves como una lista
+dicc_lleno.keys() #=> ["tres", "dos", "uno"]
+# Nota - El orden de las llaves del diccionario no está garantizada.
+# Tus resultados podrían no ser los mismos del ejemplo.
+
+# Obtén todos los valores como una lista
+dicc_lleno.values() #=> [3, 2, 1]
+# Nota - Lo mismo que con las llaves, no se garantiza el orden.
+
+# Chequea la existencia de una llave en el diccionario con 'in'
+"uno" in dicc_lleno #=> True
+1 in dicc_lleno #=> False
+
+# Buscar una llave inexistente deriva en KeyError
+dicc_lleno["cuatro"] # KeyError
+
+# Usa el método 'get' para evitar la excepción KeyError
+dicc_lleno.get("uno") #=> 1
+dicc_lleno.get("cuatro") #=> None
+# El método 'get' soporta un argumento por defecto cuando el valor no existe.
+dicc_lleno.get("uno", 4) #=> 1
+dicc_lleno.get("cuatro", 4) #=> 4
+
+# El método 'setdefault' es una manera segura de añadir nuevos pares
+# llave-valor en un diccionario
+dicc_lleno.setdefault("cinco", 5) #dicc_lleno["cinco"] es puesto con valor 5
+dicc_lleno.setdefault("cinco", 6) #dicc_lleno["cinco"] todavía es 5
+
+
+# Sets (conjuntos) almacenan ... bueno, conjuntos
+conjunto_vacio = set()
+# Inicializar un conjunto con montón de valores
+un_conjunto = set([1,2,2,3,4]) # un_conjunto ahora es set([1, 2, 3, 4])
+
+# Desde Python 2.7, {} puede ser usado para declarar un conjunto
+conjunto_lleno = {1, 2, 2, 3, 4} # => {1 2 3 4}
+
+# Añade más valores a un conjunto
+conjunto_lleno.add(5) # conjunto_lleno ahora es {1, 2, 3, 4, 5}
+
+# Haz intersección de conjuntos con &
+otro_conjunto = {3, 4, 5, 6}
+conjunto_lleno & otro_conjunto #=> {3, 4, 5}
+
+# Haz unión de conjuntos con |
+conjunto_lleno | otro_conjunto #=> {1, 2, 3, 4, 5, 6}
+
+# Haz diferencia de conjuntos con -
+{1,2,3,4} - {2,3,5} #=> {1, 4}
+
+# CHequea la existencia en un conjunto con 'in'
+2 in conjunto_lleno #=> True
+10 in conjunto_lleno #=> False
+
+
+####################################################
+## 3. Control de Flujo
+####################################################
+
+# Hagamos sólo una variable
+una_variable = 5
+
+# Aquí está una declaración de un 'if'. ¡La indentación es significativa en Python!
+# imprime "una_variable es menor que 10"
+if una_variable > 10:
+ print "una_variable es completamente mas grande que 10."
+elif una_variable < 10: # Este condición 'elif' es opcional.
+ print "una_variable es mas chica que 10."
+else: # Esto también es opcional.
+ print "una_variable es de hecho 10."
+
+
+"""
+For itera sobre listas
+imprime:
+ perro es un mamifero
+ gato es un mamifero
+ raton es un mamifero
+"""
+for animal in ["perro", "gato", "raton"]:
+ # Puedes usar % para interpolar strings formateados
+ print "%s es un mamifero" % animal
+
+"""
+`range(número)` retorna una lista de números
+desde cero hasta el número dado
+imprime:
+ 0
+ 1
+ 2
+ 3
+"""
+for i in range(4):
+ print i
+
+"""
+While itera hasta que una condición no se cumple.
+imprime:
+ 0
+ 1
+ 2
+ 3
+"""
+x = 0
+while x < 4:
+ print x
+ x += 1 # versión corta de x = x + 1
+
+# Maneja excepciones con un bloque try/except
+
+# Funciona desde Python 2.6 en adelante:
+try:
+ # Usa raise para levantar un error
+ raise IndexError("Este es un error de indice")
+except IndexError as e:
+ pass # Pass no hace nada. Usualmente harias alguna recuperacion aqui.
+
+
+####################################################
+## 4. Funciones
+####################################################
+
+# Usa 'def' para crear nuevas funciones
+def add(x, y):
+ print "x es %s y y es %s" % (x, y)
+ return x + y # Retorna valores con una la declaración return
+
+# Llamando funciones con parámetros
+add(5, 6) #=> imprime "x es 5 y y es 6" y retorna 11
+
+# Otra forma de llamar funciones es con argumentos de palabras claves
+add(y=6, x=5) # Argumentos de palabra clave pueden ir en cualquier orden.
+
+# Puedes definir funciones que tomen un número variable de argumentos
+def varargs(*args):
+ return args
+
+varargs(1, 2, 3) #=> (1,2,3)
+
+
+# Puedes definir funciones que toman un número variable de argumentos
+# de palabras claves
+def keyword_args(**kwargs):
+ return kwargs
+
+# Llamémosla para ver que sucede
+keyword_args(pie="grande", lago="ness") #=> {"pie": "grande", "lago": "ness"}
+
+# Puedes hacer ambas a la vez si quieres
+def todos_los_argumentos(*args, **kwargs):
+ print args
+ print kwargs
+"""
+todos_los_argumentos(1, 2, a=3, b=4) imprime:
+ (1, 2)
+ {"a": 3, "b": 4}
+"""
+
+# ¡Cuando llames funciones, puedes hacer lo opuesto a varargs/kwargs!
+# Usa * para expandir tuplas y usa ** para expandir argumentos de palabras claves.
+args = (1, 2, 3, 4)
+kwargs = {"a": 3, "b": 4}
+todos_los_argumentos(*args) # es equivalente a foo(1, 2, 3, 4)
+todos_los_argumentos(**kwargs) # es equivalente a foo(a=3, b=4)
+todos_los_argumentos(*args, **kwargs) # es equivalente a foo(1, 2, 3, 4, a=3, b=4)
+
+# Python tiene funciones de primera clase
+def crear_suma(x):
+ def suma(y):
+ return x + y
+ return suma
+
+sumar_10 = crear_suma(10)
+sumar_10(3) #=> 13
+
+# También hay funciones anónimas
+(lambda x: x > 2)(3) #=> True
+
+# Hay funciones integradas de orden superior
+map(sumar_10, [1,2,3]) #=> [11, 12, 13]
+filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
+
+# Podemos usar listas por comprensión para mapeos y filtros agradables
+[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
+[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]
+
+####################################################
+## 5. Clases
+####################################################
+
+# Heredamos de object para obtener una clase.
+class Humano(object):
+
+ # Un atributo de clase es compartido por todas las instancias de esta clase
+ especie = "H. sapiens"
+
+ # Constructor basico
+ def __init__(self, nombre):
+ # Asigna el argumento al atributo nombre de la instancia
+ self.nombre = nombre
+
+ # Un metodo de instancia. Todos los metodos toman self como primer argumento
+ def decir(self, msg):
+ return "%s: %s" % (self.nombre, msg)
+
+ # Un metodo de clase es compartido a través de todas las instancias
+ # Son llamados con la clase como primer argumento
+ @classmethod
+ def get_especie(cls):
+ return cls.especie
+
+ # Un metodo estatico es llamado sin la clase o instancia como referencia
+ @staticmethod
+ def roncar():
+ return "*roncar*"
+
+
+# Instancia una clase
+i = Humano(nombre="Ian")
+print i.decir("hi") # imprime "Ian: hi"
+
+j = Humano("Joel")
+print j.decir("hello") #imprime "Joel: hello"
+
+# Llama nuestro método de clase
+i.get_especie() #=> "H. sapiens"
+
+# Cambia los atributos compartidos
+Humano.especie = "H. neanderthalensis"
+i.get_especie() #=> "H. neanderthalensis"
+j.get_especie() #=> "H. neanderthalensis"
+
+# Llama al método estático
+Humano.roncar() #=> "*roncar*"
+
+
+####################################################
+## 6. Módulos
+####################################################
+
+# Puedes importar módulos
+import math
+print math.sqrt(16) #=> 4
+
+# Puedes obtener funciones específicas desde un módulo
+from math import ceil, floor
+print ceil(3.7) #=> 4.0
+print floor(3.7) #=> 3.0
+
+# Puedes importar todas las funciones de un módulo
+# Precaución: Esto no es recomendable
+from math import *
+
+# Puedes acortar los nombres de los módulos
+import math as m
+math.sqrt(16) == m.sqrt(16) #=> True
+
+# Los módulos de Python son sólo archivos ordinarios de Python.
+# Puedes escribir tus propios módulos e importarlos. El nombre del módulo
+# es el mismo del nombre del archivo.
+
+# Puedes encontrar que funciones y atributos definen un módulo.
+import math
+dir(math)
+
+
+```
+
+## ¿Listo para más?
+
+### Gratis y en línea
+
+* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
+* [Dive Into Python](http://www.diveintopython.net/)
+* [The Official Docs](http://docs.python.org/2.6/)
+* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
+* [Python Module of the Week](http://pymotw.com/2/)
+
+### Encuadernados
+
+* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
+* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
+* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)
+
diff --git a/es-es/ruby-es.html.markdown b/es-es/ruby-es.html.markdown
new file mode 100644
index 00000000..fa039676
--- /dev/null
+++ b/es-es/ruby-es.html.markdown
@@ -0,0 +1,377 @@
+---
+language: ruby
+filename: learnruby.rb
+contributors:
+ - ["David Underwood", "http://theflyingdeveloper.com"]
+ - ["Joel Walden", "http://joelwalden.net"]
+ - ["Luke Holder", "http://twitter.com/lukeholder"]
+translators:
+ - ["Camilo Garrido", "http://www.twitter.com/hirohope"]
+lang: es-es
+---
+
+```ruby
+# Esto es un comentario
+
+=begin
+Este es un comentario multilínea
+Nadie los usa.
+Tu tampoco deberías
+=end
+
+# Lo primero y principal: Todo es un objeto
+
+# Los números son objetos
+
+3.class #=> Fixnum
+
+3.to_s #=> "3"
+
+
+# Un poco de aritmética básica
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+35 / 5 #=> 7
+
+# La aritmética es sólo azúcar sintáctico
+# para llamar un método de un objeto
+1.+(3) #=> 4
+10.* 5 #=> 50
+
+# Los valores especiales son objetos
+nil # Nada que ver aqui
+true # Verdadero
+false # Falso
+
+nil.class #=> NilClass
+true.class #=> TrueClass
+false.class #=> FalseClass
+
+# Igualdad
+1 == 1 #=> true
+2 == 1 #=> false
+
+# Desigualdad
+1 != 1 #=> false
+2 != 1 #=> true
+!true #=> false
+!false #=> true
+
+# Además de 'false', 'nil' es otro valor falso
+
+!nil #=> true
+!false #=> true
+!0 #=> false
+
+# Más comparaciones
+1 < 10 #=> true
+1 > 10 #=> false
+2 <= 2 #=> true
+2 >= 2 #=> true
+
+# Los strings son objetos
+
+'Soy un string'.class #=> String
+"Soy un string también".class #=> String
+
+referente = "usar interpolacion de strings"
+"Yo puedo #{referente} usando strings de comillas dobles"
+#=> "Yo puedo usar interpolacion de strings usando strings de comillas dobles"
+
+
+# Imprime a la salida estándar
+puts "¡Estoy imprimiendo!"
+
+# Variables
+x = 25 #=> 25
+x #=> 25
+
+# Nota que la asignación retorna el valor asignado
+# Esto significa que puedes hacer múltiples asignaciones:
+
+x = y = 10 #=> 10
+x #=> 10
+y #=> 10
+
+# Por convención, usa snake_case para nombres de variables
+snake_case = true
+
+# Usa nombres de variables descriptivos
+ruta_para_la_raiz_de_un_projecto = '/buen/nombre/'
+ruta = '/mal/nombre/'
+
+# Los símbolos (son objetos)
+# Los símbolos son inmutables, constantes reusables representadas internamente por un
+# valor entero. Son usalmente usados en vez de strings para expresar eficientemente
+# valores específicos y significativos
+
+:pendiente.class #=> Symbol
+
+status = :pendiente
+
+status == :pendiente #=> true
+
+status == 'pendiente' #=> false
+
+status == :aprovado #=> false
+
+# Arreglos
+
+# Esto es un arreglo
+[1, 2, 3, 4, 5] #=> [1, 2, 3, 4, 5]
+
+# Arreglos pueden contener elementos de distintos tipos
+
+arreglo = [1, "hola", false] #=> => [1, "hola", false]
+
+# Arreglos pueden ser indexados
+# Desde el frente
+arreglo[0] #=> 1
+arreglo[12] #=> nil
+
+# Tal como la aritmética, el acceso como variable[índice]
+# es sólo azúcar sintáctica
+# para llamar el método [] de un objeto
+arreglo.[] 0 #=> 1
+arreglo.[] 12 #=> nil
+
+# Desde el final
+arreglo[-1] #=> 5
+
+# Con un índice de inicio y final
+arreglo[2, 4] #=> [3, 4, 5]
+
+# O con rango
+arreglo[1..3] #=> [2, 3, 4]
+
+# Añade elementos a un arreglo así
+arreglo << 6 #=> [1, 2, 3, 4, 5, 6]
+
+# Hashes son los diccionarios principales de Ruby con pares llave/valor.
+# Hashes se denotan con llaves:
+hash = {'color' => 'verde', 'numero' => 5}
+
+hash.keys #=> ['color', 'numero']
+
+# Hashes pueden buscar rápidamente una llave:
+hash['color'] #=> 'verde'
+hash['numero'] #=> 5
+
+# Preguntarle a un hash por una llave que no existe retorna 'nil':
+hash['nada aqui'] #=> nil
+
+# Itera sobre un hash con el método 'each':
+hash.each do |k, v|
+ puts "#{k} is #{v}"
+end
+
+# Desde Ruby 1.9, hay una sintaxis especial cuando se usa un símbolo como llave:
+
+nuevo_hash = { defcon: 3, accion: true}
+
+nuevo_hash.keys #=> [:defcon, :accion]
+
+# Tip: Tanto los arreglos como los hashes son Enumerable (enumerables)
+# Comparten muchos métodos útiles tales como 'each', 'map', 'count', y más
+
+# Estructuras de Control
+
+if true
+ "declaracion 'if'"
+elsif false
+ "else if, opcional"
+else
+ "else, tambien opcional"
+end
+
+for contador in 1..5
+ puts "iteracion #{contador}"
+end
+#=> iteracion 1
+#=> iteracion 2
+#=> iteracion 3
+#=> iteracion 4
+#=> iteracion 5
+
+# Aunque
+# Nadie usa los ciclos `for`
+# Usa `each`, así:
+
+(1..5).each do |contador|
+ puts "iteracion #{contador}"
+end
+#=> iteracion 1
+#=> iteracion 2
+#=> iteracion 3
+#=> iteracion 4
+#=> iteracion 5
+
+counter = 1
+while counter <= 5 do
+ puts "iteracion #{counter}"
+ counter += 1
+end
+#=> iteracion 1
+#=> iteracion 2
+#=> iteracion 3
+#=> iteracion 4
+#=> iteracion 5
+
+nota = 'B'
+
+case nota
+when 'A'
+ puts "Muy bien muchacho"
+when 'B'
+ puts "Mejor suerte para la proxima"
+when 'C'
+ puts "Puedes hacerlo mejor"
+when 'D'
+ puts "Sobreviviendo"
+when 'F'
+ puts "¡Reprobaste!"
+else
+ puts "Sistema alternativo de notas, ¿eh?"
+end
+
+# Funciones
+
+def doble(x)
+ x * 2
+end
+
+# Funciones (y todos los bloques) implícitamente retornan el valor de la última instrucción
+doble(2) #=> 4
+
+# Paréntesis son opcionales cuando el resultado es ambiguo
+doble 3 #=> 6
+
+doble doble 3 #=> 12
+
+def suma(x,y)
+ x + y
+end
+
+# Arguméntos del método son separados por coma
+suma 3, 4 #=> 7
+
+suma suma(3,4), 5 #=> 12
+
+# yield
+# Todos los métodos tienen un parámetro de bloqueo opcional e implícitp
+# puede llamarse con la palabra clave 'yield'
+
+def alrededor
+ puts "{"
+ yield
+ puts "}"
+end
+
+alrededor { puts 'hola mundo' }
+
+# {
+# hola mundo
+# }
+
+
+# Define una clase con la palabra clave 'class'
+class Humano
+
+ # Una variable de clase. Es compartida por todas las instancias de la clase.
+ @@species = "H. sapiens"
+
+ # Inicializador Básico
+ def initialize(nombre, edad=0)
+ # Asigna el argumento a la variable de instancia 'nombre'
+ @nombre = nombre
+ # Si no dan edad, se usará el valor por defecto en la lista de argumentos.
+ @edad = edad
+ end
+
+ # Método 'setter' (establecer) básico
+ def nombre=(nombre)
+ @nombre = nombre
+ end
+
+ # Método 'getter' (obtener) básico
+ def nombre
+ @nombre
+ end
+
+ # Un método de clase usa 'self' (sí mismo) para distinguirse de métodos de instancia.
+ # Sólo puede ser llamado en la clase, no por una instancia.
+ def self.decir(mensaje)
+ puts "#{mensaje}"
+ end
+
+ def especie
+ @@especie
+ end
+
+end
+
+
+# Instancia una clase
+jim = Humano.new("Jim Halpert")
+
+dwight = Humano.new("Dwight K. Schrute")
+
+# Llamemos un par de métodos
+jim.especie #=> "H. sapiens"
+jim.nombre #=> "Jim Halpert"
+jim.nombre = "Jim Halpert II" #=> "Jim Halpert II"
+jim.nombre #=> "Jim Halpert II"
+dwight.especie #=> "H. sapiens"
+dwight.nombre #=> "Dwight K. Schrute"
+
+# Llama el método de clase
+Humano.decir("Hi") #=> "Hi"
+
+# Las clases también son un objeto en ruby. Por lo cual, las clases también pueden tener variables de instancia.
+# Variables de clase son compartidas a través de la clase y todos sus descendientes.
+
+# clase base
+class Humano
+ @@foo = 0
+
+ def self.foo
+ @@foo
+ end
+
+ def self.foo=(valor)
+ @@foo = valor
+ end
+end
+
+# clase derivada
+class Trabajador < Humano
+end
+
+Humano.foo # 0
+Trabajador.foo # 0
+
+Humano.foo = 2 # 2
+Trabajador.foo # 2
+
+# Las variables de instancia de la clase no son compartidas por los descendientes de la clase.
+
+class Humano
+ @bar = 0
+
+ def self.bar
+ @bar
+ end
+
+ def self.bar=(valor)
+ @bar = valor
+ end
+end
+
+class Doctor < Humano
+end
+
+Human.bar # 0
+Doctor.bar # nil
+
+```
diff --git a/git.html.markdown b/git.html.markdown
index 00f38d60..d8537300 100644
--- a/git.html.markdown
+++ b/git.html.markdown
@@ -310,7 +310,12 @@ Pulls from a repository and merges it with another branch.
# Update your local repo, by merging in new changes
# from the remote "origin" and "master" branch.
# git pull <remote> <branch>
+# git pull => implicitly defaults to => git pull origin master
$ git pull origin master
+
+# Merge in changes from remote branch and rebase
+# branch commits onto your local repo, like: "git pull <remote> <branch>, git rebase <branch>"
+$ git pull origin master --rebase
```
### push
diff --git a/haskell.html.markdown b/haskell.html.markdown
index be7d8669..9847ef2a 100644
--- a/haskell.html.markdown
+++ b/haskell.html.markdown
@@ -131,7 +131,7 @@ add 1 2 -- 3
-- with backticks:
1 `add` 2 -- 3
--- You can also define functions that have no characters! This lets
+-- You can also define functions that have no letters! This lets
-- you define your own operators! Here's an operator that does
-- integer division
(//) a b = a `div` b
diff --git a/javascript.html.markdown b/javascript.html.markdown
index 9cc7617d..cc279b9a 100644
--- a/javascript.html.markdown
+++ b/javascript.html.markdown
@@ -241,7 +241,7 @@ i // = 5 - not undefined as you'd expect in a block-scoped language
// This has led to a common pattern of "immediately-executing anonymous
// functions", which prevent temporary variables from leaking into the global
// scope.
-function(){
+(function(){
var temporary = 5
// We can access the global scope by assiging to the 'global object', which
// in a web browser is always 'window'. The global object may have a
@@ -249,7 +249,7 @@ function(){
window.permanent = 10
// Or, as previously mentioned, we can just leave the var keyword off.
permanent2 = 15
-}()
+})()
temporary // raises ReferenceError
permanent // = 10
permanent2 // = 15
diff --git a/pt-br/python-pt.html.markdown b/pt-br/python-pt.html.markdown
new file mode 100644
index 00000000..c365ba96
--- /dev/null
+++ b/pt-br/python-pt.html.markdown
@@ -0,0 +1,509 @@
+---
+language: python
+contributors:
+ - ["Louie Dinh", "http://ldinh.ca"]
+translators:
+ - ["Vilson Vieira", "http://automata.cc"]
+lang: pt-bf
+filename: learnpython.py
+---
+
+Python foi criado por Guido Van Rossum no começo dos anos 90. Atualmente é uma
+das linguagens de programação mais populares. Eu me apaixonei por Python, por
+sua clareza de sintaxe. É basicamente pseudocódigo executável.
+
+Comentários serão muito apreciados! Você pode me contactar em
+[@louiedinh](http://twitter.com/louiedinh) ou louiedinh [arroba]
+[serviço de email do google]
+
+Nota: Este artigo usa Python 2.7 especificamente, mas deveria ser aplicável a
+qualquer Python 2.x. Logo haverá uma versão abordando Python 3!
+
+```python
+# Comentários de uma linha começam com cerquilha (ou sustenido)
+""" Strings de várias linhas podem ser escritas
+ usando três ", e são comumente usadas
+ como comentários
+"""
+
+####################################################
+## 1. Tipos de dados primitivos e operadores
+####################################################
+
+# Você usa números normalmente
+3 #=> 3
+
+# Operadores matemáticos são aqueles que você já está acostumado
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+35 / 5 #=> 7
+
+# A divisão é um pouco estranha. A divisão de números inteiros arredonda
+# para baixo o resultado, automaticamente
+5 / 2 #=> 2
+
+# Para concertar a divisão, precisamos aprender sobre números de ponto
+# flutuante (conhecidos como 'float').
+2.0 # Isso é um 'float'
+11.0 / 4.0 #=> 2.75 ahhh... muito melhor
+
+# Forçamos a precedência de operadores usando parênteses
+(1 + 3) * 2 #=> 8
+
+# Valores booleanos (ou 'boolean') são também tipos primitivos
+True
+False
+
+# Negamos usando 'not'
+not True #=> False
+not False #=> True
+
+# Testamos igualdade usando '=='
+1 == 1 #=> True
+2 == 1 #=> False
+
+# E desigualdade com '!='
+1 != 1 #=> False
+2 != 1 #=> True
+
+# Mais comparações
+1 < 10 #=> True
+1 > 10 #=> False
+2 <= 2 #=> True
+2 >= 2 #=> True
+
+# As comparações podem ser encadeadas!
+1 < 2 < 3 #=> True
+2 < 3 < 2 #=> False
+
+# Strings são criadas com " ou '
+"Isso é uma string."
+'Isso também é uma string.'
+
+# Strings podem ser somadas (ou melhor, concatenadas)!
+"Olá " + "mundo!" #=> "Olá mundo!"
+
+# Uma string pode ser tratada como uma lista de caracteres
+"Esta é uma string"[0] #=> 'E'
+
+# O caractere % pode ser usado para formatar strings, desta forma:
+"%s podem ser %s" % ("strings", "interpoladas")
+
+# Um jeito novo de formatar strings é usando o método 'format'.
+# Esse método é o jeito mais usado
+"{0} podem ser {1}".format("strings", "formatadas")
+# Você pode usar palavras-chave (ou 'keywords') se você não quiser contar.
+"{nome} quer comer {comida}".format(nome="João", comida="lasanha")
+
+# 'None' é um objeto
+None #=> None
+
+# Não use o operador de igualdade `==` para comparar objetos com 'None'
+# Ao invés disso, use `is`
+"etc" is None #=> False
+None is None #=> True
+
+# O operador 'is' teste a identidade de um objeto. Isso não é
+# muito útil quando estamos lidando com valores primitivos, mas é
+# muito útil quando lidamos com objetos.
+
+# None, 0, e strings/listas vazias são todas interpretadas como 'False'.
+# Todos os outros valores são 'True'
+0 == False #=> True
+"" == False #=> True
+
+
+####################################################
+## 2. Variáveis e Coleções
+####################################################
+
+# Imprimir na tela é muito fácil
+print "Eu sou o Python. Prazer em te conhecer!"
+
+
+# Nós não precisamos declarar variáveis antes de usá-las, basta usar!
+alguma_variavel = 5 # A convenção é usar caixa_baixa_com_sobrescritos
+alguma_variavel #=> 5
+
+# Acessar uma variável que não teve nenhum valor atribuído anteriormente é
+# uma exceção.
+# Veja a seção 'Controle' para aprender mais sobre tratamento de exceção.
+outra_variavel # Gera uma exceção de erro de nome
+
+# 'if' pode ser usado como uma expressão
+"uepa!" if 3 > 2 else 2 #=> "uepa!"
+
+# Listas armazenam sequências de elementos
+lista = []
+# Você pode inicializar uma lista com valores
+outra_lista = [4, 5, 6]
+
+# Adicione elementos no final da lista usando 'append'
+lista.append(1) # lista é agora [1]
+lista.append(2) # lista é agora [1, 2]
+lista.append(4) # lista é agora [1, 2, 4]
+lista.append(3) # lista é agora [1, 2, 4, 3]
+# Remova elementos do fim da lista usando 'pop'
+lista.pop() #=> 3 e lista é agora [1, 2, 4]
+# Vamos adicionar o elemento novamente
+lista.append(3) # lista agora é [1, 2, 4, 3] novamente.
+
+# Acesse elementos de uma lista através de seu índices
+lista[0] #=> 1
+# Acesse o último elemento com índice negativo!
+lista[-1] #=> 3
+
+# Tentar acessar um elemento fora dos limites da lista gera uma exceção
+# do tipo 'IndexError'
+lista[4] # Gera uma exceção 'IndexError'
+
+# Você pode acessar vários elementos ao mesmo tempo usando a sintaxe de
+# limites
+# (Para quem gosta de matemática, isso é um limite fechado/aberto)
+lista[1:3] #=> [2, 4]
+# Você pode omitir o fim se quiser os elementos até o final da lista
+lista[2:] #=> [4, 3]
+# O mesmo para o início
+lista[:3] #=> [1, 2, 4]
+
+# Remova um elemento qualquer de uma lista usando 'del'
+del lista[2] # lista agora é [1, 2, 3]
+
+# Você pode somar listas (obs: as listas originais não são modificadas)
+lista + outra_lista #=> [1, 2, 3, 4, 5, 6]
+
+# Você também pode concatenar usando o método 'extend' (lista será modificada!)
+lista.extend(outra_lista) # Agora lista é [1, 2, 3, 4, 5, 6]
+
+# Para checar se um elemento pertence a uma lista, use 'in'
+1 in lista #=> True
+
+# Saiba quantos elementos uma lista possui com 'len'
+len(lista) #=> 6
+
+
+# Tuplas são iguais a listas, mas são imutáveis
+tup = (1, 2, 3)
+tup[0] #=> 1
+tup[0] = 3 # Isso gera uma exceção do tipo TypeError
+
+# Você pode fazer nas tuplas todas aquelas coisas fez com a lista
+len(tup) #=> 3
+tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
+tup[:2] #=> (1, 2)
+2 in tup #=> True
+
+# Você pode 'desempacotar' tuplas (ou listas) em variáveis, associando cada
+# elemento da tupla/lista a uma variável correspondente
+a, b, c = (1, 2, 3) # a agora é 1, b agora é 2, c agora é 3
+# Tuplas são criadas por padrão, mesmo se você não usar parênteses
+d, e, f = 4, 5, 6
+# Sabendo disso, veja só como é fácil trocar os valores de duas variáveis!
+e, d = d, e # d agora é 5, e agora é 4
+
+
+# Dicionários armazenam 'mapeamentos' (do tipo chave-valor)
+dicionario_vazio = {}
+# Aqui criamos um dicionário já contendo valores
+dicionario = {"um": 1, "dois": 2, "três": 3}
+
+# Acesse valores usando []
+dicionario["um"] #=> 1
+
+# Retorna uma lista com todas as chaves do dicionário
+dicionario.keys() #=> ["três", "dois", "um"]
+# Nota: A ordem das chaves não é garantida.
+# O resultado no seu interpretador não necessariamente será igual a esse.
+
+# Retorna uma lista com todos os valores do dicionário
+dicionario.values() #=> [3, 2, 1]
+# Nota: A mesma nota acima sobre a ordenação é válida aqui.
+
+# Veja se uma chave qualquer está em um dicionário usando 'in'
+"um" in dicionario #=> True
+1 in dicionario #=> False
+
+# Tentar acessar uma chave que não existe gera uma exceção do tipo 'KeyError'
+dicionario["quatro"] # Gera uma exceção KeyError
+
+# Você pode usar o método 'get' para evitar gerar a exceção 'KeyError'.
+# Ao invés de gerar essa exceção, irá retornar 'None' se a chave não existir.
+dicionario.get("um") #=> 1
+dicionario.get("quatro") #=> None
+# O método 'get' suporta um argumento que diz qual valor deverá ser
+# retornado se a chave não existir (ao invés de 'None').
+dicionario.get("um", 4) #=> 1
+dicionario.get("quatro", 4) #=> 4
+
+# O método 'setdefault' é um jeito seguro de adicionar um novo par
+# chave-valor a um dicionário, associando um valor padrão imutável à uma chave
+dicionario.setdefault("cinco", 5) # dicionario["cinco"] é definido como 5
+dicionario.setdefault("cinco", 6) # dicionario["cinco"] ainda é igual a 5
+
+
+# Conjuntos (ou sets) armazenam ... bem, conjuntos
+# Nota: lembre-se que conjuntos não admitem elementos repetidos!
+conjunto_vazio = set()
+# Podemos inicializar um conjunto com valores
+conjunto = set([1, 2, 2, 3, 4]) # conjunto é set([1, 2, 3, 4]), sem repetição!
+
+# Desde o Python 2.7, {} pode ser usado para declarar um conjunto
+conjunto = {1, 2, 2, 3, 4} # => {1 2 3 4}
+
+# Adicione mais ítens a um conjunto com 'add'
+conjunto.add(5) # conjunto agora é {1, 2, 3, 4, 5}
+
+# Calcule a intersecção de dois conjuntos com &
+outro_conj = {3, 4, 5, 6}
+conjunto & outro_conj #=> {3, 4, 5}
+
+# Calcule a união de dois conjuntos com |
+conjunto | outro_conj #=> {1, 2, 3, 4, 5, 6}
+
+# E a diferença entre dois conjuntos com -
+{1,2,3,4} - {2,3,5} #=> {1, 4}
+
+# Veja se um elemento existe em um conjunto usando 'in'
+2 in conjunto #=> True
+10 in conjunto #=> False
+
+
+####################################################
+## 3. Controle
+####################################################
+
+# Para começar, vamos apenas criar uma variável
+alguma_var = 5
+
+# Aqui está uma expressão 'if'. Veja como a identação é importante em Python!
+# Esses comandos irão imprimir "alguma_var é menor que 10"
+if alguma_var > 10:
+ print "some_var é maior que 10."
+elif some_var < 10: # Esse 'elif' é opcional
+ print "some_var é menor que 10."
+else: # Esse 'else' também é opcional
+ print "some_var é igual a 10."
+
+
+"""
+Laços (ou loops) 'for' iteram em listas.
+Irá imprimir:
+ cachorro é um mamífero
+ gato é um mamífero
+ rato é um mamífero
+"""
+for animal in ["cachorro", "gato", "rato"]:
+ # Você pode usar % para interpolar strings formatadas
+ print "%s é um mamífero" % animal
+
+"""
+A função `range(um número)` retorna uma lista de números
+do zero até o número dado.
+Irá imprimir:
+ 0
+ 1
+ 2
+ 3
+"""
+for i in range(4):
+ print i
+
+"""
+Laços 'while' executam enquanto uma condição dada for verdadeira.
+Irá imprimir:
+ 0
+ 1
+ 2
+ 3
+"""
+x = 0
+while x < 4:
+ print x
+ x += 1 # Isso é um atalho para a expressão x = x + 1
+
+# Tratamos excessões usando o bloco try/except
+# Funciona em Python 2.6 e versões superiores:
+
+try:
+ # Use 'raise' para gerar um erro
+ raise IndexError("Isso é um erro de índice")
+except IndexError as e:
+ pass # Pass é um operador que não faz nada, deixa passar.
+ # Usualmente você iria tratar a exceção aqui...
+
+
+####################################################
+## 4. Funções
+####################################################
+
+# Use 'def' para definir novas funções
+def soma(x, y):
+ print "x é %s e y é %s" % (x, y)
+ return x + y # Retorne valores usando 'return'
+
+# Chamando funções com parâmetros
+soma(5, 6) #=> imprime "x é 5 e y é 6" e retorna o valor 11
+
+# Um outro jeito de chamar funções é especificando explicitamente os valores
+# de cada parâmetro com chaves
+soma(y=6, x=5) # Argumentos com chaves podem vir em qualquer ordem.
+
+# Você pode definir funções que recebem um número qualquer de argumentos
+# (respeitando a sua ordem)
+def varargs(*args):
+ return args
+
+varargs(1, 2, 3) #=> (1,2,3)
+
+
+# Você também pode definir funções que recebem um número qualquer de argumentos
+# com chaves
+def args_com_chaves(**ch_args):
+ return ch_args
+
+# Vamos chamar essa função para ver o que acontece
+args_com_chaves(pe="grande", lago="Ness") #=> {"pe": "grande", "lago": "Ness"}
+
+# Você pode fazer as duas coisas ao mesmo tempo, se desejar
+def todos_args(*args, **ch_wargs):
+ print args
+ print ch_args
+"""
+todos_args(1, 2, a=3, b=4) imprime:
+ (1, 2)
+ {"a": 3, "b": 4}
+"""
+
+# Quando você chamar funções, pode fazer o oposto do que fizemos até agora!
+# Podemos usar * para expandir tuplas de argumentos e ** para expandir
+# dicionários de argumentos com chave.
+args = (1, 2, 3, 4)
+ch_args = {"a": 3, "b": 4}
+todos_args(*args) # equivalente a todos_args(1, 2, 3, 4)
+todos_args(**ch_args) # equivalente a todos_args(a=3, b=4)
+todos_args(*args, **ch_args) # equivalente a todos_args(1, 2, 3, 4, a=3, b=4)
+
+# Em Python, funções são elementos de primeira ordem (são como objetos,
+# strings ou números)
+def cria_somador(x):
+ def somador(y):
+ return x + y
+ return somador
+
+soma_10 = cria_somador(10)
+soma_10(3) #=> 13
+
+# Desta forma, existem também funções anônimas
+(lambda x: x > 2)(3) #=> True
+
+# E existem funções de alta ordem por padrão
+map(soma_10, [1,2,3]) #=> [11, 12, 13]
+filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
+reduce(lambda x, y: x + y, [3, 4, 5, 6, 7]) #=> 25
+
+# Nós podemos usar compreensão de listas para mapear e filtrar também
+[soma_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
+[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]
+
+####################################################
+## 5. Classes
+####################################################
+
+# Para criar uma nova classe, devemos herdar de 'object'
+class Humano(object):
+
+ # Um atributo de classe. Ele é compartilhado por todas as instâncias dessa
+ # classe
+ especie = "H. sapiens"
+
+ # Definimos um inicializador básico
+ def __init__(self, nome):
+ # Atribui o valor de argumento dado a um atributo da instância
+ self.nome = nome
+
+ # Um método de instância. Todos os métodos levam 'self' como primeiro
+ # argumento
+ def diga(self, msg):
+ return "%s: %s" % (self.nome, msg)
+
+ # Um método de classe é compartilhado por todas as instâncias
+ # Eles são chamados passando o nome da classe como primeiro argumento
+ @classmethod
+ def get_especie(cls):
+ return cls.especie
+
+ # Um método estático é chamado sem uma referência a classe ou instância
+ @staticmethod
+ def ronca():
+ return "*arrrrrrr*"
+
+
+# Instancie uma classe
+i = Humano(nome="Ivone")
+print i.diga("oi") # imprime "Ivone: oi"
+
+j = Human("Joel")
+print j.say("olá") #prints out "Joel: olá"
+
+# Chame nosso método de classe
+i.get_especie() #=> "H. sapiens"
+
+# Modifique um atributo compartilhado
+Humano.especie = "H. neanderthalensis"
+i.get_especie() #=> "H. neanderthalensis"
+j.get_especie() #=> "H. neanderthalensis"
+
+# Chame o método estático
+Humano.ronca() #=> "*arrrrrrr*"
+
+
+####################################################
+## 6. Módulos
+####################################################
+
+# Você pode importar módulos
+import math
+print math.sqrt(16) #=> 4
+
+# Você pode importar funções específicas de um módulo
+from math import ceil, floor
+print ceil(3.7) #=> 4.0
+print floor(3.7) #=> 3.0
+
+# Você também pode importar todas as funções de um módulo
+# Atenção: isso não é recomendado!
+from math import *
+
+# Você pode usar apelidos para os módulos, encurtando seus nomes
+import math as m
+math.sqrt(16) == m.sqrt(16) #=> True
+
+# Módulos em Python são apenas arquivos Python. Você
+# pode escrever o seu próprio módulo e importá-lo. O nome do
+# módulo será o mesmo que o nome do arquivo.
+
+# Você pode descobrir quais funções e atributos
+# estão definidos em um módulo qualquer.
+import math
+dir(math)
+
+
+```
+
+## Pronto para mais?
+
+### Online e gratuito
+
+* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
+* [Dive Into Python](http://www.diveintopython.net/)
+* [The Official Docs](http://docs.python.org/2.6/)
+* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
+* [Python Module of the Week](http://pymotw.com/2/)
+
+### Livros impressos
+
+* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
+* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
+* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)
+
diff --git a/python.html.markdown b/python.html.markdown
index e7ee6fbd..f0b74d08 100644
--- a/python.html.markdown
+++ b/python.html.markdown
@@ -6,7 +6,7 @@ filename: learnpython.py
---
Python was created by Guido Van Rossum in the early 90's. It is now one of the most popular
-languages in existence. I fell in love with Python for its syntactic clarity. Its basically
+languages in existence. I fell in love with Python for its syntactic clarity. It's basically
executable pseudocode.
Feedback would be highly appreciated! You can reach me at [@louiedinh](http://twitter.com/louiedinh) or louiedinh [at] [google's email service]
@@ -67,7 +67,7 @@ not False #=> True
2 <= 2 #=> True
2 >= 2 #=> True
-# Comparisons can be chained !
+# Comparisons can be chained!
1 < 2 < 3 #=> True
2 < 3 < 2 #=> False
@@ -214,7 +214,7 @@ filled_dict.values() #=> [3, 2, 1]
"one" in filled_dict #=> True
1 in filled_dict #=> False
- # Looking up a non-existing key is a KeyError
+# Looking up a non-existing key is a KeyError
filled_dict["four"] # KeyError
# Use get method to avoid the KeyError
@@ -232,7 +232,7 @@ filled_dict.setdefault("five", 6) #filled_dict["five"] is still 5
# Sets store ... well sets
empty_set = set()
# Initialize a set with a bunch of values
-some_set = set([1,2,2,3,4]) # filled_set is now set([1, 2, 3, 4])
+some_set = set([1,2,2,3,4]) # some_set is now set([1, 2, 3, 4])
# Since Python 2.7, {} can be used to declare a set
filled_set = {1, 2, 2, 3, 4} # => {1 2 3 4}
@@ -263,7 +263,7 @@ filled_set | other_set #=> {1, 2, 3, 4, 5, 6}
some_var = 5
# Here is an if statement. Indentation is significant in python!
-# prints "some var is smaller than 10"
+# prints "some_var is smaller than 10"
if some_var > 10:
print "some_var is totally bigger than 10."
elif some_var < 10: # This elif clause is optional.
@@ -394,7 +394,7 @@ filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
# We subclass from object to get a class.
class Human(object):
- # A class attribute. It is shared by all instances of this class
+ # A class attribute. It is shared by all instances of this class
species = "H. sapiens"
# Basic initializer
@@ -470,12 +470,19 @@ dir(math)
```
-## Further Reading
+## Ready For More?
-Still up for more? Try:
+### Free Online
* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
* [Dive Into Python](http://www.diveintopython.net/)
* [The Official Docs](http://docs.python.org/2.6/)
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
* [Python Module of the Week](http://pymotw.com/2/)
+
+### Dead Tree
+
+* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
+* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
+* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)
+
diff --git a/r.html.markdown b/r.html.markdown
index 0240e8fb..03aa1dd2 100644
--- a/r.html.markdown
+++ b/r.html.markdown
@@ -2,10 +2,11 @@
language: R
contributors:
- ["e99n09", "http://github.com/e99n09"]
+ - ["isomorphismes", "http://twitter.com/isomorphisms"]
filename: learnr.r
---
-R is a statistical computing language. It has lots of good built-in functions for uploading and cleaning data sets, running common statistical tests, and making graphs. You can also easily compile it within a LaTeX document.
+R is a statistical computing language. It has lots of libraries for uploading and cleaning data sets, running statistical procedures, and making graphs. You can also run `R`commands within a LaTeX document.
```python
@@ -14,63 +15,244 @@ R is a statistical computing language. It has lots of good built-in functions fo
# You can't make a multi-line comment per se,
# but you can stack multiple comments like so.
-# Hit COMMAND-ENTER to execute a line
+# in Windows, hit COMMAND-ENTER to execute a line
+
+
+###################################################################
+# Stuff you can do without understanding anything about programming
+###################################################################
+
+data() # Browse pre-loaded data sets
+data(rivers) # Lengths of Major North American Rivers
+ls() # Notice that "rivers" appears in the workspace
+head(rivers) # peek at the dataset
+# 735 320 325 392 524 450
+length(rivers) # how many rivers were measured?
+# 141
+summary(rivers)
+# Min. 1st Qu. Median Mean 3rd Qu. Max.
+# 135.0 310.0 425.0 591.2 680.0 3710.0
+stem(rivers) #stem-and-leaf plot (like a histogram)
+#
+# The decimal point is 2 digit(s) to the right of the |
+#
+# 0 | 4
+# 2 | 011223334555566667778888899900001111223333344455555666688888999
+# 4 | 111222333445566779001233344567
+# 6 | 000112233578012234468
+# 8 | 045790018
+# 10 | 04507
+# 12 | 1471
+# 14 | 56
+# 16 | 7
+# 18 | 9
+# 20 |
+# 22 | 25
+# 24 | 3
+# 26 |
+# 28 |
+# 30 |
+# 32 |
+# 34 |
+# 36 | 1
+
+
+stem(log(rivers)) #Notice that the data are neither normal nor log-normal! Take that, Bell Curve fundamentalists.
+
+# The decimal point is 1 digit(s) to the left of the |
+#
+# 48 | 1
+# 50 |
+# 52 | 15578
+# 54 | 44571222466689
+# 56 | 023334677000124455789
+# 58 | 00122366666999933445777
+# 60 | 122445567800133459
+# 62 | 112666799035
+# 64 | 00011334581257889
+# 66 | 003683579
+# 68 | 0019156
+# 70 | 079357
+# 72 | 89
+# 74 | 84
+# 76 | 56
+# 78 | 4
+# 80 |
+# 82 | 2
+
+
+hist(rivers, col="#333333", border="white", breaks=25) #play around with these parameters
+hist(log(rivers), col="#333333", border="white", breaks=25) #you'll do more plotting later
+
+#Here's another neat data set that comes pre-loaded. R has tons of these. data()
+data(discoveries)
+plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")
+plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year", main="Number of important discoveries per year")
+
+
+#rather than leaving the default ordering (by year) we could also sort to see what's typical
+sort(discoveries)
+# [1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
+# [26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
+# [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
+# [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12
+
+stem(discoveries, scale=2)
+#
+# The decimal point is at the |
+#
+# 0 | 000000000
+# 1 | 000000000000
+# 2 | 00000000000000000000000000
+# 3 | 00000000000000000000
+# 4 | 000000000000
+# 5 | 0000000
+# 6 | 000000
+# 7 | 0000
+# 8 | 0
+# 9 | 0
+# 10 | 0
+# 11 |
+# 12 | 0
+
+max(discoveries)
+# 12
+
+summary(discoveries)
+# Min. 1st Qu. Median Mean 3rd Qu. Max.
+# 0.0 2.0 3.0 3.1 4.0 12.0
+
+
+
+
+#Basic statistical operations don't require any programming knowledge either
+
+#roll a die a few times
+round(runif(7, min=.5, max=6.5))
+# 1 4 6 1 4 6 4
+
+#your numbers will differ from mine unless we set the same random.seed(31337)
+
+
+#draw from a standard Gaussian 9 times
+rnorm(9)
+# [1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271
+# [7] -0.59975593 0.57629164 1.08455362
+
+
+
+
+
+
+
+
#########################
-# The absolute basics
+# Basic programming stuff
#########################
# NUMBERS
-# We've got doubles! Behold the "numeric" class
-5 # => [1] 5
-class(5) # => [1] "numeric"
-# We've also got integers! They look suspiciously similar,
-# but indeed are different
-5L # => [1] 5
-class(5L) # => [1] "integer"
+# "numeric" means double-precision floating-point numbers
+5 # 5
+class(5) # "numeric"
+5e4 # 50000 #handy when dealing with large,small,or variable orders of magnitude
+6.02e23 # Avogadro's number
+1.6e-35 # Planck length
+
+# long-storage integers are written with L
+5L # 5
+class(5L) # "integer"
+
# Try ?class for more information on the class() function
-# In fact, you can look up the documentation on just about anything with ?
+# In fact, you can look up the documentation on `xyz` with ?xyz
+# or see the source for `xyz` by evaluating xyz
+
+# Arithmetic
+10 + 66 # 76
+53.2 - 4 # 49.2
+2 * 2.0 # 4
+3L / 4 # 0.75
+3 %% 2 # 1
+
+# Weird number types
+class(NaN) # "numeric"
+class(Inf) # "numeric"
+class(-Inf) # "numeric" #used in for example integrate( dnorm(x), 3, Inf ) -- which obviates Z-score tables
+
+# but beware, NaN isn't the only weird type...
+class(NA) # see below
+class(NULL) # NULL
+
+
+# SIMPLE LISTS
+c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9
+c('alef', 'bet', 'gimmel', 'dalet', 'he') # "alef" "bet" "gimmel" "dalet" "he"
+c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE
+
+#some more nice built-ins
+5:15 # 5 6 7 8 9 10 11 12 13 14 15
+
+seq(from=0, to=31337, by=1337)
+# [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707
+# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
+
+letters
+# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
+# [20] "t" "u" "v" "w" "x" "y" "z"
+
+month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
+
+
+# Access the n'th element of a list with list.name[n] or sometimes list.name[[n]]
+letters[18] # "r"
+LETTERS[13] # "M"
+month.name[9] # "September"
+c(6, 8, 7, 5, 3, 0, 9)[3] # 7
-# All the normal operations!
-10 + 66 # => [1] 76
-53.2 - 4 # => [1] 49.2
-2 * 2.0 # => [1] 4
-3L / 4 # => [1] 0.75
-3 %% 2 # => [1] 1
-# Finally, we've got not-a-numbers! They're numerics too
-class(NaN) # => [1] "numeric"
# CHARACTERS
-# We've (sort of) got strings! Behold the "character" class
-"plugh" # => [1] "plugh"
-class("plugh") # "character"
# There's no difference between strings and characters in R
+"Horatio" # "Horatio"
+class("Horatio") # "character"
+substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
+gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."
+
+
+
# LOGICALS
-# We've got booleans! Behold the "logical" class
-class(TRUE) # => [1] "logical"
-class(FALSE) # => [1] "logical"
+# booleans
+class(TRUE) # "logical"
+class(FALSE) # "logical"
# Behavior is normal
-TRUE == TRUE # => [1] TRUE
-TRUE == FALSE # => [1] FALSE
-FALSE != FALSE # => [1] FALSE
-FALSE != TRUE # => [1] TRUE
+TRUE == TRUE # TRUE
+TRUE == FALSE # FALSE
+FALSE != FALSE # FALSE
+FALSE != TRUE # TRUE
# Missing data (NA) is logical, too
-class(NA) # => [1] "logical"
+class(NA) # "logical"
+
+
# FACTORS
# The factor class is for categorical data
-# It has an attribute called levels that describes all the possible categories
-factor("dog")
-# =>
-# [1] dog
-# Levels: dog
-# (This will make more sense once we start talking about vectors)
+# which can be ordered (like childrens' grade levels)
+# or unordered (like gender)
+levels(factor(c("female", "male", "male", "female", "NA", "female"))) # "female" "male" "NA"
+
+factor(c("female", "female", "male", "NA", "female"))
+# female female male NA female
+# Levels: female male NA
+
+data(infert) #Infertility after Spontaneous and Induced Abortion
+levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs"
+
+
# VARIABLES
@@ -80,8 +262,8 @@ y <- "1" # this is preferred
TRUE -> z # this works but is weird
# We can use coerce variables to different classes
-as.numeric(y) # => [1] 1
-as.character(x) # => [1] "5"
+as.numeric(y) # 1
+as.character(x) # "5"
# LOOPS
@@ -115,14 +297,13 @@ if (4 > 3) {
# FUNCTIONS
# Defined like so:
-myFunc <- function(x) {
- x <- x * 4
- x <- x - 1
+jiggle <- function(x) {
+ x+ rnorm(x, sd=.1) #add in a bit of (controlled) noise
return(x)
}
# Called like any other R function:
-myFunc(5) # => [1] 19
+jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043
#########################
# Fun with data: vectors, matrices, data frames, and arrays
@@ -132,35 +313,35 @@ myFunc(5) # => [1] 19
# You can vectorize anything, so long as all components have the same type
vec <- c(8, 9, 10, 11)
-vec # => [1] 8 9 10 11
+vec # 8 9 10 11
# The class of a vector is the class of its components
-class(vec) # => [1] "numeric"
+class(vec) # "numeric"
# If you vectorize items of different classes, weird coercions happen
-c(TRUE, 4) # => [1] 1 4
-c("dog", TRUE, 4) # => [1] "dog" "TRUE" "4"
+c(TRUE, 4) # 1 4
+c("dog", TRUE, 4) # "dog" "TRUE" "4"
# We ask for specific components like so (R starts counting from 1)
-vec[1] # => [1] 8
+vec[1] # 8
# We can also search for the indices of specific components,
-which(vec %% 2 == 0) # => [1] 1 3
+which(vec %% 2 == 0) # 1 3
# or grab just the first or last entry in the vector
-head(vec, 1) # => [1] 8
-tail(vec, 1) # => [1] 11
+head(vec, 1) # 8
+tail(vec, 1) # 11
# If an index "goes over" you'll get NA:
-vec[6] # => [1] NA
+vec[6] # NA
# You can find the length of your vector with length()
-length(vec) # => [1] 4
+length(vec) # 4
# You can perform operations on entire vectors or subsets of vectors
-vec * 4 # => [1] 16 20 24 28
-vec[2:3] * 5 # => [1] 25 30
+vec * 4 # 16 20 24 28
+vec[2:3] * 5 # 25 30
# and there are many built-in functions to summarize vectors
-mean(vec) # => [1] 9.5
-var(vec) # => [1] 1.666667
-sd(vec) # => [1] 1.290994
-max(vec) # => [1] 11
-min(vec) # => [1] 8
-sum(vec) # => [1] 38
+mean(vec) # 9.5
+var(vec) # 1.666667
+sd(vec) # 1.290994
+max(vec) # 11
+min(vec) # 8
+sum(vec) # 38
# TWO-DIMENSIONAL (ALL ONE CLASS)
@@ -175,11 +356,11 @@ mat
# Unlike a vector, the class of a matrix is "matrix", no matter what's in it
class(mat) # => "matrix"
# Ask for the first row
-mat[1,] # => [1] 1 4
+mat[1,] # 1 4
# Perform operation on the first column
-3 * mat[,1] # => [1] 3 6 9
+3 * mat[,1] # 3 6 9
# Ask for a specific cell
-mat[3,2] # => [1] 6
+mat[3,2] # 6
# Transpose the whole matrix
t(mat)
# =>
@@ -196,7 +377,7 @@ mat2
# [2,] "2" "cat"
# [3,] "3" "bird"
# [4,] "4" "dog"
-class(mat2) # => [1] matrix
+class(mat2) # matrix
# Again, note what happened!
# Because matrices must contain entries all of the same class,
# everything got converted to the character class
@@ -216,7 +397,7 @@ mat3
# For columns of different classes, use the data frame
dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
names(dat) <- c("number", "species") # name the columns
-class(dat) # => [1] "data.frame"
+class(dat) # "data.frame"
dat
# =>
# number species
@@ -224,14 +405,14 @@ dat
# 2 2 cat
# 3 1 bird
# 4 4 dog
-class(dat$number) # => [1] "numeric"
-class(dat[,2]) # => [1] "factor"
+class(dat$number) # "numeric"
+class(dat[,2]) # "factor"
# The data.frame() function converts character vectors to factor vectors
# There are many twisty ways to subset data frames, all subtly unalike
-dat$number # => [1] 5 2 1 4
-dat[,1] # => [1] 5 2 1 4
-dat[,"number"] # => [1] 5 2 1 4
+dat$number # 5 2 1 4
+dat[,1] # 5 2 1 4
+dat[,"number"] # 5 2 1 4
# MULTI-DIMENSIONAL (ALL OF ONE CLASS)
@@ -247,15 +428,17 @@ array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
# =>
# , , 1
#
-# [,1] [,2]
-# [1,] 1 4
-# [2,] 2 5
+# [,1] [,2]
+# [1,] 2 8
+# [2,] 300 9
+# [3,] 4 0
#
# , , 2
#
# [,1] [,2]
-# [1,] 8 1
-# [2,] 9 2
+# [1,] 5 66
+# [2,] 60 7
+# [3,] 0 847
# LISTS (MULTI-DIMENSIONAL, POSSIBLY RAGGED, OF DIFFERENT TYPES)
diff --git a/ruby-ecosystem.html.markdown b/ruby-ecosystem.html.markdown
new file mode 100644
index 00000000..a31f552d
--- /dev/null
+++ b/ruby-ecosystem.html.markdown
@@ -0,0 +1,137 @@
+---
+category: tool
+tool: ruby ecosystem
+contributors:
+ - ["Jon Smock", "http://github.com/jonsmock"]
+
+---
+
+People using ruby generally have a way to install different ruby versions,
+manage their packages (or gems), and manage their gem dependencies.
+
+## Ruby Managers
+
+Some platforms have ruby pre-installed or available as a package. Most rubyists
+do not use these, or if they do, they only use them to bootstrap another ruby
+installer or implementation. Instead rubyists tend to install a ruby manager to
+install and switch between many versions of ruby and their projects' ruby
+environments.
+
+The following are the popular ruby/environment managers:
+
+* [RVM](https://rvm.io/) - Installs and switches between rubies. RVM also has
+ the concept of gemsets to isolate projects' environments completely.
+* [ruby-build](https://github.com/sstephenson/ruby-build) - Only installs
+ rubies. Use this for finer control over your rubies' installations.
+* [rbenv](https://github.com/sstephenson/rbenv) - Only switches between rubies.
+ Used with ruby-build. Use this for finer control over how rubies load.
+* [chruby](https://github.com/postmodern/chruby) - Only switches between rubies.
+ Similar in spirit to rbenv. Unopinionated about how rubies are installed.
+
+## Ruby Versions
+
+Ruby was created by Yukihiro "Matz" Matsumoto, who remains somewhat of a
+[BDFL](https://en.wikipedia.org/wiki/Benevolent_Dictator_for_Life), although
+that is changing recently. As a result, the reference implementation of ruby is
+called MRI (Matz' Reference Implementation), and when you hear a ruby version,
+it is referring to the release version of MRI.
+
+The three major version of ruby in use are:
+
+* 2.0.0 - Released in February 2013. Most major libraries and frameworks support
+ 2.0.0.
+* 1.9.3 - Released in October 2011. This is the version most rubyists use
+ currently.
+* 1.8.7 - Ruby 1.8.7 has been
+ [retired](http://www.ruby-lang.org/en/news/2013/06/30/we-retire-1-8-7/).
+
+The change between 1.8.7 to 1.9.x is a much larger change than 1.9.3 to 2.0.0.
+For instance, the 1.9 series introduced encodings and a bytecode VM. There
+are projects still on 1.8.7, but they are becoming a small minority, as most of
+the community has moved to at least 1.9.2 or 1.9.3.
+
+## Ruby Implementations
+
+The ruby ecosystem enjoys many different implementations of ruby, each with
+unique strengths and states of compatability. To be clear, the different
+implementations are written in different languages, but *they are all ruby*.
+Each implementation has special hooks and extra features, but they all run
+normal ruby files well. For instance, JRuby is written in Java, but you do
+not need to know Java to use it.
+
+Very mature/compatible:
+
+* MRI - Written in C, this is the reference implementation of ruby. By
+ definition it is 100% compatible (with itself). All other rubies
+maintain capatability with MRI (see RubySpec below).
+* JRuby - Written in Java and ruby, this robust implementation is quite fast.
+ Most importantly, JRuby's strength is JVM/Java interop, leveraging existing
+JVM tools, projects, and languages.
+* Rubinius - Written primarily in ruby itself with a C++ bytecode VM. Also
+ mature and fast. Because it is implemented in ruby itself, it exposes many VM
+features into rubyland.
+
+Medium mature/compatible:
+
+* Maglev - Built on top of Gemstone, a Smalltalk VM. Smalltalk has some
+ impressive tooling, and this project tries to bring that into ruby
+development.
+* RubyMotion - Brings ruby to iOS development.
+
+Less mature/compatible:
+
+* Topaz - Written in RPython (using the PyPy toolchain), Topaz is fairly young
+ and not yet compatable. It shows promise to be a high-performance ruby
+implementation.
+* IronRuby - Written in C# targeting the .NET platform, work on IronRuby seems
+ to have stopped since Microsoft pulled their support.
+
+Ruby implementations may have their own release version numbers, but they always
+target a specific version of MRI for compatability. Many implementations have
+the ability to enter different modes (for example, 1.8 or 1.9 mode) to specify
+which MRI version to target.
+
+## RubySpec
+
+Most ruby implementations rely heavily on (RubySpec)[http://rubyspec.org/]. Ruby
+has no official specification, so the community has written executable specs in
+ruby to test their implementations' compatability with MRI.
+
+## RubyGems
+
+(RubyGems)[http://rubygems.org/] is a community-run package manager for ruby.
+RubyGems ships with ruby, so there is no need to download it separately.
+
+Ruby packages are called "gems," and they can be hosted by the community at
+RubyGems.org. Each gem contains its source code and some metadata, including
+things like version, dependencies, author(s), and license(s).
+
+## Bundler
+
+(Bundler)[http://bundler.io/] is a gem dependency resolver. It uses a project's
+Gemfile to find dependencies, and then fetches those dependencies' dependencies
+recursively. It does this until all dependencies are resolved and downloaded, or
+it will stop if a conflict has been found.
+
+Bundler will raise an error if it finds conflicting dependencies. For example,
+if gem A requires version 3 or greater of gem Z, but gem B requires version 2,
+Bundler will notify you of the conflict. This becomes extremely helpful as many
+gems refer to other gems (which refer to other gems), which can form a large
+dependency graph to resolve.
+
+# Testing
+
+Testing is a large of ruby culture. Ruby comes with its own Unit-style testing
+framework called minitest (Or TestUnit for ruby version 1.8.x). There are many
+testing libraries with different goals.
+
+* TestUnit - Ruby 1.8's built-in "Unit-style" testing framework
+* minitest - Ruby 1.9/2.0's built-in testing framework
+* RSpec - A testing framework that focuses on expressivity
+* Cucumber - A BDD testing framework that parses Gherkin formatted tests
+
+## Be Nice
+
+The ruby community takes pride in being an open, diverse, welcoming community.
+Matz himself is extremely friendly, and the generosity of rubyists on the whole
+is amazing.
diff --git a/ruby.html.markdown b/ruby.html.markdown
index a3bcbbd5..861a94ad 100644
--- a/ruby.html.markdown
+++ b/ruby.html.markdown
@@ -275,36 +275,36 @@ surround { puts 'hello world' }
# Define a class with the class keyword
class Human
- # A class variable. It is shared by all instances of this class.
- @@species = "H. sapiens"
-
- # Basic initializer
- def initialize(name, age=0)
- # Assign the argument to the "name" instance variable for the instance
- @name = name
- # If no age given, we will fall back to the default in the arguments list.
- @age = age
- end
-
- # Basic setter method
- def name=(name)
- @name = name
- end
-
- # Basic getter method
- def name
- @name
- end
-
- # A class method uses self to distinguish from instance methods.
- # It can only be called on the class, not an instance.
- def self.say(msg)
- puts "#{msg}"
- end
-
- def species
- @@species
- end
+ # A class variable. It is shared by all instances of this class.
+ @@species = "H. sapiens"
+
+ # Basic initializer
+ def initialize(name, age=0)
+ # Assign the argument to the "name" instance variable for the instance
+ @name = name
+ # If no age given, we will fall back to the default in the arguments list.
+ @age = age
+ end
+
+ # Basic setter method
+ def name=(name)
+ @name = name
+ end
+
+ # Basic getter method
+ def name
+ @name
+ end
+
+ # A class method uses self to distinguish from instance methods.
+ # It can only be called on the class, not an instance.
+ def self.say(msg)
+ puts "#{msg}"
+ end
+
+ def species
+ @@species
+ end
end
@@ -325,4 +325,50 @@ dwight.name #=> "Dwight K. Schrute"
# Call the class method
Human.say("Hi") #=> "Hi"
+# Class also is object in ruby. So class can have instance variables.
+# Class variable is shared among the class and all of its descendants.
+
+# base class
+class Human
+ @@foo = 0
+
+ def self.foo
+ @@foo
+ end
+
+ def self.foo=(value)
+ @@foo = value
+ end
+end
+
+# derived class
+class Worker < Human
+end
+
+Human.foo # 0
+Worker.foo # 0
+
+Human.foo = 2 # 2
+Worker.foo # 2
+
+# Class instance variable is not shared by the class's descendants.
+
+class Human
+ @bar = 0
+
+ def self.bar
+ @bar
+ end
+
+ def self.bar=(value)
+ @bar = value
+ end
+end
+
+class Doctor < Human
+end
+
+Human.bar # 0
+Doctor.bar # nil
+
```
diff --git a/scala.html.markdown b/scala.html.markdown
index e6720c02..b1b3ecbf 100644
--- a/scala.html.markdown
+++ b/scala.html.markdown
@@ -410,7 +410,9 @@ for(line <- Source.fromPath("myfile.txt").getLines())
[Twitter Scala school](http://twitter.github.io/scala_school/)
-[The scala documentation](http://www.scala-lang.org/documentation/)
+[The scala documentation](http://docs.scala-lang.org/)
+
+[Try Scala in your browser](http://scalatutorials.com/tour/)
Join the [Scala user group](https://groups.google.com/forum/#!forum/scala-user)
diff --git a/zh-cn/dart-cn.html.markdown b/zh-cn/dart-cn.html.markdown
new file mode 100644
index 00000000..1b0cceb9
--- /dev/null
+++ b/zh-cn/dart-cn.html.markdown
@@ -0,0 +1,499 @@
+---
+language: dart
+lang: zh-cn
+filename: learndart.dart
+contributors:
+ - ["Joao Pedrosa", "https://github.com/jpedrosa/"]
+translators:
+ - ["Guokai Han", "https://github.com/hanguokai/"]
+---
+
+Dart 是编程语言王国的新人。
+它借鉴了许多其他主流语言,并且不会偏离它的兄弟语言 JavaScript 太多。
+就像 JavaScript 一样,Dart 的目标是提供良好的浏览器集成。
+
+Dart 最有争议的特性必然是它的可选类型。
+
+```javascript
+import "dart:collection";
+import "dart:math" as DM;
+
+// 欢迎进入15分钟的 Dart 学习。 http://www.dartlang.org/
+// 这是一个可实际执行的向导。你可以用 Dart 运行它
+// 或者在线执行! 可以把代码复制/粘贴到这个网站。 http://try.dartlang.org/
+
+// 函数声明和方法声明看起来一样。
+// 函数声明可以嵌套。声明使用这种 name() {} 的形式,
+// 或者 name() => 单行表达式; 的形式。
+// 右箭头的声明形式会隐式地返回表达式的结果。
+example1() {
+ example1nested1() {
+ example1nested2() => print("Example1 nested 1 nested 2");
+ example1nested2();
+ }
+ example1nested1();
+}
+
+// 匿名函数没有函数名。
+example2() {
+ example2nested1(fn) {
+ fn();
+ }
+ example2nested1(() => print("Example2 nested 1"));
+}
+
+// 当声明函数类型的参数的时候,声明中可以包含
+// 函数参数需要的参数,指定所需的参数名即可。
+example3() {
+ example3nested1(fn(informSomething)) {
+ fn("Example3 nested 1");
+ }
+ example3planB(fn) { // 或者不声明函数参数的参数
+ fn("Example3 plan B");
+ }
+ example3nested1((s) => print(s));
+ example3planB((s) => print(s));
+}
+
+// 函数有可以访问到外层变量的闭包。
+var example4Something = "Example4 nested 1";
+example4() {
+ example4nested1(fn(informSomething)) {
+ fn(example4Something);
+ }
+ example4nested1((s) => print(s));
+}
+
+// 下面这个包含 sayIt 方法的类声明,同样有一个可以访问外层变量的闭包,
+// 就像前面的函数一样。
+var example5method = "Example5 sayIt";
+class Example5Class {
+ sayIt() {
+ print(example5method);
+ }
+}
+example5() {
+ // 创建一个 Example5Class 类的匿名实例,
+ // 并调用它的 sayIt 方法。
+ new Example5Class().sayIt();
+}
+
+// 类的声明使用这种形式 class name { [classBody] }.
+// classBody 中可以包含实例方法和变量,
+// 还可以包含类方法和变量。
+class Example6Class {
+ var example6InstanceVariable = "Example6 instance variable";
+ sayIt() {
+ print(example6InstanceVariable);
+ }
+}
+example6() {
+ new Example6Class().sayIt();
+}
+
+// 类方法和变量使用 static 关键词声明。
+class Example7Class {
+ static var example7ClassVariable = "Example7 class variable";
+ static sayItFromClass() {
+ print(example7ClassVariable);
+ }
+ sayItFromInstance() {
+ print(example7ClassVariable);
+ }
+}
+example7() {
+ Example7Class.sayItFromClass();
+ new Example7Class().sayItFromInstance();
+}
+
+// 字面量非常方便,但是对于在函数/方法的外层的字面量有一个限制,
+// 类的外层或外面的字面量必需是常量。
+// 字符串和数字默认是常量。
+// 但是 array 和 map 不是。他们需要用 "const" 声明为常量。
+var example8A = const ["Example8 const array"],
+ example8M = const {"someKey": "Example8 const map"};
+example8() {
+ print(example8A[0]);
+ print(example8M["someKey"]);
+}
+
+// Dart 中的循环使用标准的 for () {} 或 while () {} 的形式,
+// 以及更加现代的 for (.. in ..) {} 的形式, 或者
+// 以 forEach 开头并具有许多特性支持的函数回调的形式。
+var example9A = const ["a", "b"];
+example9() {
+ for (var i = 0; i < example9A.length; i++) {
+ print("Example9 for loop '${example9A[i]}'");
+ }
+ var i = 0;
+ while (i < example9A.length) {
+ print("Example9 while loop '${example9A[i]}'");
+ i++;
+ }
+ for (var e in example9A) {
+ print("Example9 for-in loop '${e}'");
+ }
+ example9A.forEach((e) => print("Example9 forEach loop '${e}'"));
+}
+
+// 遍历字符串中的每个字符或者提取其子串。
+var example10S = "ab";
+example10() {
+ for (var i = 0; i < example10S.length; i++) {
+ print("Example10 String character loop '${example10S[i]}'");
+ }
+ for (var i = 0; i < example10S.length; i++) {
+ print("Example10 substring loop '${example10S.substring(i, i + 1)}'");
+ }
+}
+
+// 支持两种数字格式 int 和 double 。
+example11() {
+ var i = 1 + 320, d = 3.2 + 0.01;
+ print("Example11 int ${i}");
+ print("Example11 double ${d}");
+}
+
+// DateTime 提供了日期/时间的算法。
+example12() {
+ var now = new DateTime.now();
+ print("Example12 now '${now}'");
+ now = now.add(new Duration(days: 1));
+ print("Example12 tomorrow '${now}'");
+}
+
+// 支持正则表达式。
+example13() {
+ var s1 = "some string", s2 = "some", re = new RegExp("^s.+?g\$");
+ match(s) {
+ if (re.hasMatch(s)) {
+ print("Example13 regexp matches '${s}'");
+ } else {
+ print("Example13 regexp doesn't match '${s}'");
+ }
+ }
+ match(s1);
+ match(s2);
+}
+
+// 布尔表达式必需被解析为 true 或 false,
+// 因为不支持隐式转换。
+example14() {
+ var v = true;
+ if (v) {
+ print("Example14 value is true");
+ }
+ v = null;
+ try {
+ if (v) {
+ // 不会执行
+ } else {
+ // 不会执行
+ }
+ } catch (e) {
+ print("Example14 null value causes an exception: '${e}'");
+ }
+}
+
+// try/catch/finally 和 throw 语句用于异常处理。
+// throw 语句可以使用任何对象作为参数。
+example15() {
+ try {
+ try {
+ throw "Some unexpected error.";
+ } catch (e) {
+ print("Example15 an exception: '${e}'");
+ throw e; // Re-throw
+ }
+ } catch (e) {
+ print("Example15 catch exception being re-thrown: '${e}'");
+ } finally {
+ print("Example15 Still run finally");
+ }
+}
+
+// 要想有效地动态创建长字符串,
+// 应该使用 StringBuffer。 或者 join 一个字符串的数组。
+example16() {
+ var sb = new StringBuffer(), a = ["a", "b", "c", "d"], e;
+ for (e in a) { sb.write(e); }
+ print("Example16 dynamic string created with "
+ "StringBuffer '${sb.toString()}'");
+ print("Example16 join string array '${a.join()}'");
+}
+
+// 字符串连接只需让相邻的字符串字面量挨着,
+// 不需要额外的操作符。
+example17() {
+ print("Example17 "
+ "concatenate "
+ "strings "
+ "just like that");
+}
+
+// 字符串使用单引号或双引号做分隔符,二者并没有实际的差异。
+// 这种灵活性可以很好地避免内容中需要转义分隔符的情况。
+// 例如,字符串内容里的 HTML 属性使用了双引号。
+example18() {
+ print('Example18 <a href="etc">'
+ "Don't can't I'm Etc"
+ '</a>');
+}
+
+// 用三个单引号或三个双引号表示的字符串
+// 可以跨越多行,并且包含行分隔符。
+example19() {
+ print('''Example19 <a href="etc">
+Example19 Don't can't I'm Etc
+Example19 </a>''');
+}
+
+// 字符串可以使用 $ 字符插入内容。
+// 使用 $ { [expression] } 的形式,表达式的值会被插入到字符串中。
+// $ 跟着一个变量名会插入变量的值。
+// 如果要在字符串中插入 $ ,可以使用 \$ 的转义形式代替。
+example20() {
+ var s1 = "'\${s}'", s2 = "'\$s'";
+ print("Example20 \$ interpolation ${s1} or $s2 works.");
+}
+
+// 可选类型允许作为 API 的标注,并且可以辅助 IDE,
+// 这样 IDE 可以更好地提供重构、自动完成和错误检测功能。
+// 目前为止我们还没有声明任何类型,并且程序运行地很好。
+// 事实上,类型在运行时会被忽略。
+// 类型甚至可以是错的,并且程序依然可以执行,
+// 好像和类型完全无关一样。
+// 有一个运行时参数可以让程序进入检查模式,它会在运行时检查类型错误。
+// 这在开发时很有用,但是由于增加了额外的检查会使程序变慢,
+// 因此应该避免在部署时使用。
+class Example21 {
+ List<String> _names;
+ Example21() {
+ _names = ["a", "b"];
+ }
+ List<String> get names => _names;
+ set names(List<String> list) {
+ _names = list;
+ }
+ int get length => _names.length;
+ void add(String name) {
+ _names.add(name);
+ }
+}
+void example21() {
+ Example21 o = new Example21();
+ o.add("c");
+ print("Example21 names '${o.names}' and length '${o.length}'");
+ o.names = ["d", "e"];
+ print("Example21 names '${o.names}' and length '${o.length}'");
+}
+
+// 类的继承形式是 class name extends AnotherClassName {} 。
+class Example22A {
+ var _name = "Some Name!";
+ get name => _name;
+}
+class Example22B extends Example22A {}
+example22() {
+ var o = new Example22B();
+ print("Example22 class inheritance '${o.name}'");
+}
+
+// 类也可以使用 mixin 的形式 :
+// class name extends SomeClass with AnotherClassName {}.
+// 必需继承某个类才能 mixin 另一个类。
+// 当前 mixin 的模板类不能有构造函数。
+// Mixin 主要是用来和辅助的类共享方法的,
+// 这样单一继承就不会影响代码复用。
+// Mixin 声明在类定义的 "with" 关键词后面。
+class Example23A {}
+class Example23Utils {
+ addTwo(n1, n2) {
+ return n1 + n2;
+ }
+}
+class Example23B extends Example23A with Example23Utils {
+ addThree(n1, n2, n3) {
+ return addTwo(n1, n2) + n3;
+ }
+}
+example23() {
+ var o = new Example23B(), r1 = o.addThree(1, 2, 3),
+ r2 = o.addTwo(1, 2);
+ print("Example23 addThree(1, 2, 3) results in '${r1}'");
+ print("Example23 addTwo(1, 2) results in '${r2}'");
+}
+
+// 类的构造函数名和类名相同,形式为
+// SomeClass() : super() {}, 其中 ": super()" 的部分是可选的,
+// 它用来传递参数给父类的构造函数。
+class Example24A {
+ var _value;
+ Example24A({value: "someValue"}) {
+ _value = value;
+ }
+ get value => _value;
+}
+class Example24B extends Example24A {
+ Example24B({value: "someOtherValue"}) : super(value: value);
+}
+example24() {
+ var o1 = new Example24B(),
+ o2 = new Example24B(value: "evenMore");
+ print("Example24 calling super during constructor '${o1.value}'");
+ print("Example24 calling super during constructor '${o2.value}'");
+}
+
+// 对于简单的类,有一种设置构造函数参数的快捷方式。
+// 只需要使用 this.parameterName 的前缀,
+// 它就会把参数设置为同名的实例变量。
+class Example25 {
+ var value, anotherValue;
+ Example25({this.value, this.anotherValue});
+}
+example25() {
+ var o = new Example25(value: "a", anotherValue: "b");
+ print("Example25 shortcut for constructor '${o.value}' and "
+ "'${o.anotherValue}'");
+}
+
+// 可以在大括号 {} 中声明命名参数。
+// 大括号 {} 中声明的参数的顺序是随意的。
+// 在中括号 [] 中声明的参数也是可选的。
+example26() {
+ var _name, _surname, _email;
+ setConfig1({name, surname}) {
+ _name = name;
+ _surname = surname;
+ }
+ setConfig2(name, [surname, email]) {
+ _name = name;
+ _surname = surname;
+ _email = email;
+ }
+ setConfig1(surname: "Doe", name: "John");
+ print("Example26 name '${_name}', surname '${_surname}', "
+ "email '${_email}'");
+ setConfig2("Mary", "Jane");
+ print("Example26 name '${_name}', surname '${_surname}', "
+ "email '${_email}'");
+}
+
+// 使用 final 声明的变量只能被设置一次。
+// 在类里面,final 实例变量可以通过常量的构造函数参数设置。
+class Example27 {
+ final color1, color2;
+ // 更灵活一点的方法是在冒号 : 后面设置 final 实例变量。
+ Example27({this.color1, color2}) : color2 = color2;
+}
+example27() {
+ final color = "orange", o = new Example27(color1: "lilac", color2: "white");
+ print("Example27 color is '${color}'");
+ print("Example27 color is '${o.color1}' and '${o.color2}'");
+}
+
+// 要导入一个库,使用 import "libraryPath" 的形式,或者如果要导入的是
+// 核心库使用 import "dart:libraryName" 。还有一个称为 "pub" 的包管理工具,
+// 它使用 import "package:packageName" 的约定形式。
+// 看下这个文件顶部的 import "dart:collection"; 语句。
+// 导入语句必需在其它代码声明之前出现。IterableBase 来自于 dart:collection 。
+class Example28 extends IterableBase {
+ var names;
+ Example28() {
+ names = ["a", "b"];
+ }
+ get iterator => names.iterator;
+}
+example28() {
+ var o = new Example28();
+ o.forEach((name) => print("Example28 '${name}'"));
+}
+
+// 对于控制流语句,我们有:
+// * 必需带 break 的标准 switch 语句
+// * if-else 和三元操作符 ..?..:..
+// * 闭包和匿名函数
+// * break, continue 和 return 语句
+example29() {
+ var v = true ? 30 : 60;
+ switch (v) {
+ case 30:
+ print("Example29 switch statement");
+ break;
+ }
+ if (v < 30) {
+ } else if (v > 30) {
+ } else {
+ print("Example29 if-else statement");
+ }
+ callItForMe(fn()) {
+ return fn();
+ }
+ rand() {
+ v = new DM.Random().nextInt(50);
+ return v;
+ }
+ while (true) {
+ print("Example29 callItForMe(rand) '${callItForMe(rand)}'");
+ if (v != 30) {
+ break;
+ } else {
+ continue;
+ }
+ // 不会到这里。
+ }
+}
+
+// 解析 int,把 double 转成 int,或者使用 ~/ 操作符在除法计算时仅保留整数位。
+// 让我们也来场猜数游戏吧。
+example30() {
+ var gn, tooHigh = false,
+ n, n2 = (2.0).toInt(), top = int.parse("123") ~/ n2, bottom = 0;
+ top = top ~/ 6;
+ gn = new DM.Random().nextInt(top + 1); // +1 because nextInt top is exclusive
+ print("Example30 Guess a number between 0 and ${top}");
+ guessNumber(i) {
+ if (n == gn) {
+ print("Example30 Guessed right! The number is ${gn}");
+ } else {
+ tooHigh = n > gn;
+ print("Example30 Number ${n} is too "
+ "${tooHigh ? 'high' : 'low'}. Try again");
+ }
+ return n == gn;
+ }
+ n = (top - bottom) ~/ 2;
+ while (!guessNumber(n)) {
+ if (tooHigh) {
+ top = n - 1;
+ } else {
+ bottom = n + 1;
+ }
+ n = bottom + ((top - bottom) ~/ 2);
+ }
+}
+
+// 程序的唯一入口点是 main 函数。
+// 在程序开始执行 main 函数之前,不期望执行任何外层代码。
+// 这样可以帮助程序更快地加载,甚至仅惰性加载程序启动时需要的部分。
+main() {
+ print("Learn Dart in 15 minutes!");
+ [example1, example2, example3, example4, example5, example6, example7,
+ example8, example9, example10, example11, example12, example13, example14,
+ example15, example16, example17, example18, example19, example20,
+ example21, example22, example23, example24, example25, example26,
+ example27, example28, example29, example30
+ ].forEach((ef) => ef());
+}
+
+```
+
+## 延伸阅读
+
+Dart 有一个综合性网站。它涵盖了 API 参考、入门向导、文章以及更多,
+还包括一个有用的在线试用 Dart 页面。
+http://www.dartlang.org/
+http://try.dartlang.org/
+
+
+
diff --git a/zh-cn/git-cn.html.markdown b/zh-cn/git-cn.html.markdown
index 7aab8986..8c24f0b8 100755
--- a/zh-cn/git-cn.html.markdown
+++ b/zh-cn/git-cn.html.markdown
@@ -120,7 +120,7 @@ $ git help
$ git help -a
# 在文档当中查找特定的命令
-$ git help <命令>
+# git help <命令>
$ git help add
$ git help commit
$ git help init
diff --git a/zh-cn/python-cn.html.markdown b/zh-cn/python-cn.html.markdown
new file mode 100755
index 00000000..259e4ed8
--- /dev/null
+++ b/zh-cn/python-cn.html.markdown
@@ -0,0 +1,475 @@
+---
+language: python
+contributors:
+ - ["Louie Dinh", "http://ldinh.ca"]
+translators:
+ - ["Chenbo Li", "http://binarythink.net"]
+filename: learnpython.py
+lang: zh-cn
+---
+
+Python 由 Guido Van Rossum 在90年代初创建。 它现在是最流行的语言之一
+我喜爱python是因为它有极为清晰的语法,甚至可以说,它就是可以执行的伪代码
+
+很欢迎来自您的反馈,你可以在[@louiedinh](http://twitter.com/louiedinh) 和 louiedinh [at] [google's email service] 这里找到我
+
+注意: 这篇文章针对的版本是Python 2.7,但大多也可使用于其他Python 2的版本
+如果是Python 3,请在网络上寻找其他教程
+
+```python
+# 单行注释
+""" 多行字符串可以用
+ 三个引号包裹,不过这也可以被当做
+ 多行注释
+"""
+
+####################################################
+## 1. 原始数据类型和操作符
+####################################################
+
+# 数字类型
+3 #=> 3
+
+# 简单的算数
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+35 / 5 #=> 7
+
+# 整数的除法会自动取整
+5 / 2 #=> 2
+
+# 要做精确的除法,我们需要引入浮点数
+2.0 # 浮点数
+11.0 / 4.0 #=> 2.75 好多了
+
+# 括号具有最高优先级
+(1 + 3) * 2 #=> 8
+
+# 布尔值也是原始数据类型
+True
+False
+
+# 用not来取非
+not True #=> False
+not False #=> True
+
+# 相等
+1 == 1 #=> True
+2 == 1 #=> False
+
+# 不等
+1 != 1 #=> False
+2 != 1 #=> True
+
+# 更多的比较操作符
+1 < 10 #=> True
+1 > 10 #=> False
+2 <= 2 #=> True
+2 >= 2 #=> True
+
+# 比较运算可以连起来写!
+1 < 2 < 3 #=> True
+2 < 3 < 2 #=> False
+
+# 字符串通过"或'括起来
+"This is a string."
+'This is also a string.'
+
+# 字符串通过加号拼接
+"Hello " + "world!" #=> "Hello world!"
+
+# 字符串可以被视为字符的列表
+"This is a string"[0] #=> 'T'
+
+# % 可以用来格式化字符串
+"%s can be %s" % ("strings", "interpolated")
+
+# 也可以用format方法来格式化字符串
+# 推荐使用这个方法
+"{0} can be {1}".format("strings", "formatted")
+# 也可以用变量名代替数字
+"{name} wants to eat {food}".format(name="Bob", food="lasagna")
+
+# None 是对象
+None #=> None
+
+# 不要用相等 `==` 符号来和None进行比较
+# 要用 `is`
+"etc" is None #=> False
+None is None #=> True
+
+# 'is' 可以用来比较对象的相等性
+# 这个操作符在比较原始数据时没多少用,但是比较对象时必不可少
+
+# None, 0, 和空字符串都被算作False
+# 其他的均为True
+0 == False #=> True
+"" == False #=> True
+
+
+####################################################
+## 2. 变量和集合
+####################################################
+
+# 很方便的输出
+print "I'm Python. Nice to meet you!"
+
+
+# 给变量赋值前不需要事先生命
+some_var = 5 # 规范用小写字母和下划线来做为变量名
+some_var #=> 5
+
+# 访问之前为赋值的变量会抛出异常
+# 查看控制流程一节来了解异常处理
+some_other_var # 抛出命名异常
+
+# if语句可以作为表达式来使用
+"yahoo!" if 3 > 2 else 2 #=> "yahoo!"
+
+# 列表用来保存序列
+li = []
+# 可以直接初始化列表
+other_li = [4, 5, 6]
+
+# 在列表末尾添加元素
+li.append(1) #li 现在是 [1]
+li.append(2) #li 现在是 [1, 2]
+li.append(4) #li 现在是 [1, 2, 4]
+li.append(3) #li 现在是 [1, 2, 4, 3]
+# 移除列表末尾元素
+li.pop() #=> 3 and li is now [1, 2, 4]
+# 放回来
+li.append(3) # li is now [1, 2, 4, 3] again.
+
+# 像其他语言访问数组一样访问列表
+li[0] #=> 1
+# 访问最后一个元素
+li[-1] #=> 3
+
+# 越界会抛出异常
+li[4] # 抛出越界异常
+
+# 切片语法需要用到列表的索引访问
+# 可以看做数学之中左闭右开区间
+li[1:3] #=> [2, 4]
+# 省略开头的元素
+li[2:] #=> [4, 3]
+# 省略末尾的元素
+li[:3] #=> [1, 2, 4]
+
+# 删除特定元素
+del li[2] # li 现在是 [1, 2, 3]
+
+# 合并列表
+li + other_li #=> [1, 2, 3, 4, 5, 6] - 不改变这两个列表
+
+# 通过拼接合并列表
+li.extend(other_li) # li 是 [1, 2, 3, 4, 5, 6]
+
+# 用in来返回元素是否在列表中
+1 in li #=> True
+
+# 返回列表长度
+len(li) #=> 6
+
+
+# 元组类似于列表,但是他是不可改变的
+tup = (1, 2, 3)
+tup[0] #=> 1
+tup[0] = 3 # 类型错误
+
+# 对于大多数的列表操作,也适用于元组
+len(tup) #=> 3
+tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
+tup[:2] #=> (1, 2)
+2 in tup #=> True
+
+# 你可以将元组解包赋给多个变量
+a, b, c = (1, 2, 3) # a是1,b是2,c是3
+# 如果不加括号,那么会自动视为元组
+d, e, f = 4, 5, 6
+# 现在我们可以看看交换两个数字是多么容易的事
+e, d = d, e # d是5,e是4
+
+
+# 字典用来储存映射关系
+empty_dict = {}
+# 字典初始化
+filled_dict = {"one": 1, "two": 2, "three": 3}
+
+# 字典也用中括号访问元素
+filled_dict["one"] #=> 1
+
+# 把所有的键保存在列表中
+filled_dict.keys() #=> ["three", "two", "one"]
+# 键的顺序并不是唯一的,得到的不一定是这个顺序
+
+# 把所有的值保存在列表中
+filled_dict.values() #=> [3, 2, 1]
+# 和键的顺序相同
+
+# 判断一个键是否存在
+"one" in filled_dict #=> True
+1 in filled_dict #=> False
+
+# 查询一个不存在的键会抛出键异常
+filled_dict["four"] # 键异常
+
+# 用get方法来避免键异常
+filled_dict.get("one") #=> 1
+filled_dict.get("four") #=> None
+# get方法支持在不存在的时候返回一个默认值
+filled_dict.get("one", 4) #=> 1
+filled_dict.get("four", 4) #=> 4
+
+# Setdefault是一个更安全的添加字典元素的方法
+filled_dict.setdefault("five", 5) #filled_dict["five"] 的值为 5
+filled_dict.setdefault("five", 6) #filled_dict["five"] 的值仍然是 5
+
+
+# 集合储存无顺序的元素
+empty_set = set()
+# 出事话一个集合
+some_set = set([1,2,2,3,4]) # filled_set 现在是 set([1, 2, 3, 4])
+
+# Python 2.7 之后,大括号可以用来表示集合
+filled_set = {1, 2, 2, 3, 4} # => {1 2 3 4}
+
+# 为集合添加元素
+filled_set.add(5) # filled_set 现在是 {1, 2, 3, 4, 5}
+
+# 用&来实现集合的交
+other_set = {3, 4, 5, 6}
+filled_set & other_set #=> {3, 4, 5}
+
+# 用|来实现集合的并
+filled_set | other_set #=> {1, 2, 3, 4, 5, 6}
+
+# 用-来实现集合的差
+{1,2,3,4} - {2,3,5} #=> {1, 4}
+
+# 用in来判断元素是否存在于集合中
+2 in filled_set #=> True
+10 in filled_set #=> False
+
+
+####################################################
+## 3. 控制流程
+####################################################
+
+# 新建一个变量
+some_var = 5
+
+# 这是个if语句,在python中缩进是很重要的。
+# 会输出 "some var is smaller than 10"
+if some_var > 10:
+ print "some_var is totally bigger than 10."
+elif some_var < 10: # 这个 elif 语句是不必须的
+ print "some_var is smaller than 10."
+else: # 也不是必须的
+ print "some_var is indeed 10."
+
+
+"""
+用for循环遍历列表
+输出:
+ dog is a mammal
+ cat is a mammal
+ mouse is a mammal
+"""
+for animal in ["dog", "cat", "mouse"]:
+ # 你可以用 % 来格式化字符串
+ print "%s is a mammal" % animal
+
+"""
+`range(number)` 返回从0到给定数字的列表
+输出:
+ 0
+ 1
+ 2
+ 3
+"""
+for i in range(4):
+ print i
+
+"""
+While循环
+输出:
+ 0
+ 1
+ 2
+ 3
+"""
+x = 0
+while x < 4:
+ print x
+ x += 1 # Shorthand for x = x + 1
+
+# 用 try/except块来处理异常
+
+# Python 2.6 及以上适用:
+try:
+ # 用raise来抛出异常
+ raise IndexError("This is an index error")
+except IndexError as e:
+ pass # Pass就是什么都不做,不过通常这里会做一些恢复工作
+
+
+####################################################
+## 4. 函数
+####################################################
+
+# 用def来新建函数
+def add(x, y):
+ print "x is %s and y is %s" % (x, y)
+ return x + y # Return values with a return statement
+
+# 调用带参数的函数
+add(5, 6) #=> 输出 "x is 5 and y is 6" 返回 11
+
+# 通过关键字赋值来调用函数
+add(y=6, x=5) # 顺序是无所谓的
+
+# 我们也可以定义接受多个变量的函数,这些变量是按照顺序排列的
+def varargs(*args):
+ return args
+
+varargs(1, 2, 3) #=> (1,2,3)
+
+
+# 我们也可以定义接受多个变量的函数,这些变量是按照关键字排列的
+def keyword_args(**kwargs):
+ return kwargs
+
+# 实际效果:
+keyword_args(big="foot", loch="ness") #=> {"big": "foot", "loch": "ness"}
+
+# 你也可以同时将一个函数定义成两种形式
+def all_the_args(*args, **kwargs):
+ print args
+ print kwargs
+"""
+all_the_args(1, 2, a=3, b=4) prints:
+ (1, 2)
+ {"a": 3, "b": 4}
+"""
+
+# 当调用函数的时候,我们也可以和之前所做的相反,把元组和字典展开为参数
+args = (1, 2, 3, 4)
+kwargs = {"a": 3, "b": 4}
+all_the_args(*args) # equivalent to foo(1, 2, 3, 4)
+all_the_args(**kwargs) # equivalent to foo(a=3, b=4)
+all_the_args(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4)
+
+# Python 有一等函数:
+def create_adder(x):
+ def adder(y):
+ return x + y
+ return adder
+
+add_10 = create_adder(10)
+add_10(3) #=> 13
+
+# 匿名函数
+(lambda x: x > 2)(3) #=> True
+
+# 内置高阶函数
+map(add_10, [1,2,3]) #=> [11, 12, 13]
+filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
+
+# 可以用列表方法来对高阶函数进行更巧妙的引用
+[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
+[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]
+
+####################################################
+## 5. 类
+####################################################
+
+# 我们新建的类是从object类中继承的
+class Human(object):
+
+ # 类属性,由所有类的对象共享
+ species = "H. sapiens"
+
+ # 基本构造函数
+ def __init__(self, name):
+ # 将参数赋给对象成员属性
+ self.name = name
+
+ # 成员方法,参数要有self
+ def say(self, msg):
+ return "%s: %s" % (self.name, msg)
+
+ # 类方法由所有类的对象共享
+ # 这类方法在调用时,会把类本身传给第一个参数
+ @classmethod
+ def get_species(cls):
+ return cls.species
+
+ # 静态方法是不需要类和对象的引用就可以调用的方法
+ @staticmethod
+ def grunt():
+ return "*grunt*"
+
+
+# 实例化一个类
+i = Human(name="Ian")
+print i.say("hi") # 输出 "Ian: hi"
+
+j = Human("Joel")
+print j.say("hello") # 输出 "Joel: hello"
+
+# 访问类的方法
+i.get_species() #=> "H. sapiens"
+
+# 改变共享属性
+Human.species = "H. neanderthalensis"
+i.get_species() #=> "H. neanderthalensis"
+j.get_species() #=> "H. neanderthalensis"
+
+# 访问静态变量
+Human.grunt() #=> "*grunt*"
+
+
+####################################################
+## 6. 模块
+####################################################
+
+# 我们可以导入其他模块
+import math
+print math.sqrt(16) #=> 4
+
+# 我们也可以从一个模块中特定的函数
+from math import ceil, floor
+print ceil(3.7) #=> 4.0
+print floor(3.7) #=> 3.0
+
+# 从模块中导入所有的函数
+# 警告:不推荐使用
+from math import *
+
+# 简写模块名
+import math as m
+math.sqrt(16) == m.sqrt(16) #=> True
+
+# Python的模块其实只是普通的python文件
+# 你也可以创建自己的模块,并且导入它们
+# 模块的名字就和文件的名字相同
+
+# 以可以通过下面的信息找找要成为模块需要什么属性或方法
+import math
+dir(math)
+
+
+```
+
+## 更多阅读
+
+希望学到更多?试试下面的链接:
+
+* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
+* [Dive Into Python](http://www.diveintopython.net/)
+* [The Official Docs](http://docs.python.org/2.6/)
+* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
+* [Python Module of the Week](http://pymotw.com/2/)
diff --git a/zh-cn/ruby-cn.html.markdown b/zh-cn/ruby-cn.html.markdown
new file mode 100644
index 00000000..16c0ed67
--- /dev/null
+++ b/zh-cn/ruby-cn.html.markdown
@@ -0,0 +1,330 @@
+---
+language: ruby
+filename: learnruby.rb
+lang: zh-cn
+contributors:
+ - ["David Underwood", "http://theflyingdeveloper.com"]
+ - ["Joel Walden", "http://joelwalden.net"]
+ - ["Luke Holder", "http://twitter.com/lukeholder"]
+translators:
+ - ["Lin Xiangyu", "https://github.com/oa414"]
+---
+
+```ruby
+# 这是单行注释
+
+=begin
+这是多行注释
+没人用这个
+你也不该用
+=end
+
+# 首先,也是最重要的,所有东西都是对象
+
+# 数字是对象
+
+3.class #=> Fixnum
+
+3.to_s #=> "3"
+
+
+# 一些基本的算术符号
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+35 / 5 #=> 7
+
+# 算术符号只是语法糖而已
+# 实际上是调用对象的方法
+1.+(3) #=> 4
+10.* 5 #=> 50
+
+# 特殊的只也是对象
+nil # 空
+true # 真
+false # 假
+
+nil.class #=> NilClass
+true.class #=> TrueClass
+false.class #=> FalseClass
+
+# 相等运算符
+1 == 1 #=> true
+2 == 1 #=> false
+
+# 不等运算符
+1 != 1 #=> false
+2 != 1 #=> true
+!true #=> false
+!false #=> true
+
+# 除了false自己,nil是唯一的值为false的对象
+
+!nil #=> true
+!false #=> true
+!0 #=> false
+
+# 更多比较
+1 < 10 #=> true
+1 > 10 #=> false
+2 <= 2 #=> true
+2 >= 2 #=> true
+
+# 字符串是对象
+
+'I am a string'.class #=> String
+"I am a string too".class #=> String
+
+placeholder = "use string interpolation"
+"I can #{placeholder} when using double quoted strings"
+#=> "I can use string interpolation when using double quoted strings"
+
+
+# 输出值
+puts "I'm printing!"
+
+# 变量
+x = 25 #=> 25
+x #=> 25
+
+# 注意赋值语句返回了赋的值
+# 这意味着你可以用多重赋值语句
+
+x = y = 10 #=> 10
+x #=> 10
+y #=> 10
+
+# 按照惯例,用snake_case 作为变量名
+snake_case = true
+
+# 使用具有描述性的运算符
+path_to_project_root = '/good/name/'
+path = '/bad/name/'
+
+# 符号(Symbols,也是对象)
+# 符号是不可变的,内部用整数类型表示的可重用的值。通常用它代替字符串来有效地表达有意义的值
+
+
+:pending.class #=> Symbol
+
+status = :pending
+
+status == :pending #=> true
+
+status == 'pending' #=> false
+
+status == :approved #=> false
+
+# 数组
+
+# 这是一个数组
+[1, 2, 3, 4, 5] #=> [1, 2, 3, 4, 5]
+
+# 数组可以包含不同类型的元素
+
+array = [1, "hello", false] #=> => [1, "hello", false]
+
+# 数组可以被索引
+# 从前面开始
+array[0] #=> 1
+array[12] #=> nil
+
+# 像运算符一样,[var]形式的访问
+# 也就是一个语法糖
+# 实际上是调用对象的[] 方法
+array.[] 0 #=> 1
+array.[] 12 #=> nil
+
+# 从尾部开始
+array[-1] #=> 5
+
+# 同时指定开始的位置和结束的位置
+array[2, 4] #=> [3, 4, 5]
+
+# 或者指定一个范围
+array[1..3] #=> [2, 3, 4]
+
+# 像这样往数组增加一个元素
+array << 6 #=> [1, 2, 3, 4, 5, 6]
+
+# 哈希表是Ruby的键值对的基本数据结构
+# 哈希表由大括号定义
+hash = {'color' => 'green', 'number' => 5}
+
+hash.keys #=> ['color', 'number']
+
+# 哈希表可以通过键快速地查询
+hash['color'] #=> 'green'
+hash['number'] #=> 5
+
+# 查询一个不存在地键将会返回nil
+hash['nothing here'] #=> nil
+
+# 用 #each 方法来枚举哈希表:
+hash.each do |k, v|
+ puts "#{k} is #{v}"
+end
+
+# 从Ruby 1.9开始, 用符号作为键的时候有特别的记号表示:
+
+new_hash = { defcon: 3, action: true}
+
+new_hash.keys #=> [:defcon, :action]
+
+# 小贴士:数组和哈希表都是可枚举的
+# 它们可以共享一些有用的方法,比如each, map, count, 和more
+
+# 控制流
+
+if true
+ "if statement"
+elsif false
+ "else if, optional"
+else
+ "else, also optional"
+end
+
+for counter in 1..5
+ puts "iteration #{counter}"
+end
+#=> iteration 1
+#=> iteration 2
+#=> iteration 3
+#=> iteration 4
+#=> iteration 5
+
+# 然而
+# 没人用for循环
+# 用`each`来代替,就像这样
+
+(1..5).each do |counter|
+ puts "iteration #{counter}"
+end
+#=> iteration 1
+#=> iteration 2
+#=> iteration 3
+#=> iteration 4
+#=> iteration 5
+
+counter = 1
+while counter <= 5 do
+ puts "iteration #{counter}"
+ counter += 1
+end
+#=> iteration 1
+#=> iteration 2
+#=> iteration 3
+#=> iteration 4
+#=> iteration 5
+
+grade = 'B'
+
+case grade
+when 'A'
+ puts "Way to go kiddo"
+when 'B'
+ puts "Better luck next time"
+when 'C'
+ puts "You can do better"
+when 'D'
+ puts "Scraping through"
+when 'F'
+ puts "You failed!"
+else
+ puts "Alternative grading system, eh?"
+end
+
+# 函数
+
+def double(x)
+ x * 2
+end
+
+# 函数 (以及所有的方法块) 隐式地返回了最后语句的值
+double(2) #=> 4
+
+# 当不存在歧义的时候括号是可有可无的
+double 3 #=> 6
+
+double double 3 #=> 12
+
+def sum(x,y)
+ x + y
+end
+
+# 方法的参数通过逗号分隔
+sum 3, 4 #=> 7
+
+sum sum(3,4), 5 #=> 12
+
+# yield
+# 所有的方法都有一个隐式的块参数
+# 可以用yield参数调用
+
+def surround
+ puts "{"
+ yield
+ puts "}"
+end
+
+surround { puts 'hello world' }
+
+# {
+# hello world
+# }
+
+
+# 用class关键字定义一个类
+class Human
+
+ # 一个类变量,它被这个类地所有实例变量共享
+ @@species = "H. sapiens"
+
+ # 构造函数
+ def initialize(name, age=0)
+ # 将参数name的值赋给实例变量@name
+ @name = name
+ # 如果没有给出age, 那么会采用参数列表中地默认地值
+ @age = age
+ end
+
+ # 基本的 setter 方法
+ def name=(name)
+ @name = name
+ end
+
+ # 基本地 getter 方法
+ def name
+ @name
+ end
+
+ # 一个类方法以self.开头
+ # 它可以被类调用,但不能被类的实例调用
+ def self.say(msg)
+ puts "#{msg}"
+ end
+
+ def species
+ @@species
+ end
+
+end
+
+
+# 类的例子
+jim = Human.new("Jim Halpert")
+
+dwight = Human.new("Dwight K. Schrute")
+
+# 让我们来调用一些方法
+jim.species #=> "H. sapiens"
+jim.name #=> "Jim Halpert"
+jim.name = "Jim Halpert II" #=> "Jim Halpert II"
+jim.name #=> "Jim Halpert II"
+dwight.species #=> "H. sapiens"
+dwight.name #=> "Dwight K. Schrute"
+
+# 调用对象的方法
+Human.say("Hi") #=> "Hi"
+
+```