summaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--c++.html.markdown77
-rw-r--r--c.html.markdown30
-rw-r--r--de-de/yaml-de.html.markdown5
-rw-r--r--el-gr/racket-gr.html.markdown33
-rw-r--r--es-es/go-es.html.markdown618
-rw-r--r--es-es/javascript-es.html.markdown9
-rw-r--r--es-es/julia-es.html.markdown1268
-rw-r--r--es-es/python-es.html.markdown120
-rw-r--r--objective-c.html.markdown2
-rw-r--r--perl6.html.markdown2
-rw-r--r--pt-br/xml-pt.html.markdown6
-rw-r--r--red.html.markdown4
-rw-r--r--ro-ro/clojure-ro.html.markdown386
-rw-r--r--ru-ru/brainfuck-ru.html.markdown2
-rw-r--r--ru-ru/objective-c-ru.html.markdown654
-rw-r--r--ruby.html.markdown2
-rw-r--r--[-rwxr-xr-x]tcl.html.markdown12
17 files changed, 2288 insertions, 942 deletions
diff --git a/c++.html.markdown b/c++.html.markdown
index ff2a98fd..fa80e6d5 100644
--- a/c++.html.markdown
+++ b/c++.html.markdown
@@ -4,6 +4,7 @@ filename: learncpp.cpp
contributors:
- ["Steven Basart", "http://github.com/xksteven"]
- ["Matt Kline", "https://github.com/mrkline"]
+ - ["Geoff Liu", "http://geoffliu.me"]
lang: en
---
@@ -158,11 +159,12 @@ void foo()
int main()
{
- // Assume everything is from the namespace "Second"
- // unless otherwise specified.
+ // Includes all symbols from `namesapce Second` into the current scope. Note
+ // that simply `foo()` no longer works, since it is now ambiguous whether
+ // we're calling the `foo` in `namespace Second` or the top level.
using namespace Second;
- foo(); // prints "This is Second::foo"
+ Second::foo(); // prints "This is Second::foo"
First::Nested::foo(); // prints "This is First::Nested::foo"
::foo(); // prints "This is global foo"
}
@@ -248,6 +250,56 @@ const string& barRef = bar; // Create a const reference to bar.
// Like C, const values (and pointers and references) cannot be modified.
barRef += ". Hi!"; // Error, const references cannot be modified.
+// Sidetrack: Before we talk more about references, we must introduce a concept
+// called a temporary object. Suppose we have the following code:
+string tempObjectFun() { ... }
+string retVal = tempObjectFun();
+
+// What happens in the second line is actually:
+// - a string object is returned from `tempObjectFun`
+// - a new string is constructed with the returned object as arugment to the
+// constructor
+// - the returned object is destroyed
+// The returned object is called a temporary object. Temporary objects are
+// created whenever a function returns an object, and they are destroyed at the
+// end of the evaluation of the enclosing expression. So in this code:
+foo(bar(tempObjectFun()))
+
+// assuming `foo` and `bar` exist, the object returned from `tempObjectFun` is
+// passed to `bar`, and it is destroyed before `foo` is called.
+
+// Now back to references. The exception to the "at the end of the enclosing
+// expression" rule is if a temporary object is bound to a const reference, in
+// which case its life gets extended to the current scope:
+
+void constReferenceTempObjectFun() {
+ // `constRef` gets the temporary object, and it is valid until the end of this
+ // function.
+ const string& constRef = tempObjectFun();
+ ...
+}
+
+// Another kind of reference introduced in C++11 is specifically for temporary
+// objects. You cannot have a variable of its type, but it takes precedence in
+// overload resolution:
+
+void someFun(string& s) { ... } // Regular reference
+void someFun(string&& s) { ... } // Reference to temporary object
+
+string foo;
+someFun(foo); // Calls the version with regular reference
+someFun(tempObjectFun()); // Calls the version with temporary reference
+
+// For example, you will see these two versions of constructors for
+// std::basic_string:
+basic_string(const basic_string& other);
+basic_string(basic_string&& other);
+
+// Idea being if we are constructing a new string from a temporary object (which
+// is going to be destroyed soon anyway), we can have a more efficient
+// constructor that "salvages" parts of that temporary string. You will see this
+// concept referred to as the move semantic.
+
//////////////////////////////////////////
// Classes and object-oriented programming
//////////////////////////////////////////
@@ -699,7 +751,8 @@ pt2 = nullptr; // Sets pt2 to null.
// '=' != '=' != '='!
-// Calls Foo::Foo(const Foo&) or some variant copy constructor.
+// Calls Foo::Foo(const Foo&) or some variant (see move semantics) copy
+// constructor.
Foo f2;
Foo f1 = f2;
@@ -713,6 +766,22 @@ Foo f1 = fooSub;
Foo f1;
f1 = f2;
+
+// How to truly clear a container:
+class Foo { ... };
+vector<Foo> v;
+for (int i = 0; i < 10; ++i)
+ v.push_back(Foo());
+
+// Following line sets size of v to 0, but destructors don't get called,
+// and resources aren't released!
+v.empty();
+v.push_back(Foo()); // New value is copied into the first Foo we inserted in the loop.
+
+// Truly destroys all values in v. See section about temporary object for
+// explanation of why this works.
+v.swap(vector<Foo>());
+
```
Further Reading:
diff --git a/c.html.markdown b/c.html.markdown
index d3f20eda..8e631de4 100644
--- a/c.html.markdown
+++ b/c.html.markdown
@@ -18,9 +18,9 @@ memory management and C will take you as far as you need to go.
```c
// Single-line comments start with // - only available in C99 and later.
- /*
+/*
Multi-line comments look like this. They work in C89 as well.
- */
+*/
/*
Multi-line comments don't nest /* Be careful */ // comment ends on this line...
@@ -55,7 +55,7 @@ int add_two_ints(int x1, int x2); // function prototype
// Your program's entry point is a function called
// main with an integer return type.
-int main() {
+int main(void) {
// print output using printf, for "print formatted"
// %d is an integer, \n is a newline
printf("%d\n", 0); // => Prints 0
@@ -157,12 +157,12 @@ int main() {
int cha = 'a'; // fine
char chb = 'a'; // fine too (implicit conversion from int to char)
- //Multi-dimensional arrays:
+ // Multi-dimensional arrays:
int multi_array[2][5] = {
{1, 2, 3, 4, 5},
{6, 7, 8, 9, 0}
};
- //access elements:
+ // access elements:
int array_int = multi_array[0][2]; // => 3
///////////////////////////////////////
@@ -183,8 +183,8 @@ int main() {
i1 / i2; // => 0 (0.5, but truncated towards 0)
// You need to cast at least one integer to float to get a floating-point result
- (float)i1 / i2 // => 0.5f
- i1 / (double)i2 // => 0.5 // Same with double
+ (float)i1 / i2; // => 0.5f
+ i1 / (double)i2; // => 0.5 // Same with double
f1 / f2; // => 0.5, plus or minus epsilon
// Floating-point numbers and calculations are not exact
@@ -219,13 +219,13 @@ int main() {
0 || 1; // => 1 (Logical or)
0 || 0; // => 0
- //Conditional expression ( ? : )
+ // Conditional expression ( ? : )
int e = 5;
int f = 10;
int z;
z = (e > f) ? e : f; // => 10 "if e > f return e, else return f."
- //Increment and decrement operators:
+ // Increment and decrement operators:
char *s = "iLoveC";
int j = 0;
s[j++]; // => "i". Returns the j-th item of s THEN increments value of j.
@@ -371,7 +371,7 @@ int main() {
x_array[xx] = 20 - xx;
} // Initialize x_array to 20, 19, 18,... 2, 1
- // Declare a pointer of type int and initialize it to point to x_array
+ // Declare a pointer of type int and initialize it to point to x_array
int* x_ptr = x_array;
// x_ptr now points to the first element in the array (the integer 20).
// This works because arrays often decay into pointers to their first element.
@@ -404,8 +404,8 @@ int main() {
*(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx
} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints)
- // Dereferencing memory that you haven't allocated gives
- // "unpredictable results" - the program is said to invoke "undefined behavior"
+ // Dereferencing memory that you haven't allocated gives
+ // "unpredictable results" - the program is said to invoke "undefined behavior"
printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash.
// When you're done with a malloc'd block of memory, you need to free it,
@@ -471,13 +471,13 @@ str_reverse(c);
printf("%s\n", c); // => ".tset a si sihT"
*/
-//if referring to external variables outside function, must use extern keyword.
+// if referring to external variables outside function, must use extern keyword.
int i = 0;
void testFunc() {
extern int i; //i here is now using external variable i
}
-//make external variables private to source file with static:
+// make external variables private to source file with static:
static int j = 0; //other files using testFunc2() cannot access variable j
void testFunc2() {
extern int j;
@@ -634,7 +634,7 @@ Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://
It is *the* book about C, written by Dennis Ritchie, the creator of C, and Brian Kernighan. Be careful, though - it's ancient and it contains some
inaccuracies (well, ideas that are not considered good anymore) or now-changed practices.
-Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/).
+Another good resource is [Learn C The Hard Way](http://c.learncodethehardway.org/book/).
If you have a question, read the [compl.lang.c Frequently Asked Questions](http://c-faq.com).
diff --git a/de-de/yaml-de.html.markdown b/de-de/yaml-de.html.markdown
index 88318014..19ea9e87 100644
--- a/de-de/yaml-de.html.markdown
+++ b/de-de/yaml-de.html.markdown
@@ -1,10 +1,11 @@
---
language: yaml
-filename: learnyaml.yaml
contributors:
- ["Adam Brenecki", "https://github.com/adambrenecki"]
translators:
- - ["Ruben M.", https://github.com/switchhax]
+ - ["Ruben M.", "https://github.com/switchhax"]
+filename: learnyaml-de.yaml
+lang: de-de
---
YAML ist eine Sprache zur Datenserialisierung, die sofort von Menschenhand geschrieben und gelesen werden kann.
diff --git a/el-gr/racket-gr.html.markdown b/el-gr/racket-gr.html.markdown
index 4c76b174..4c4576bb 100644
--- a/el-gr/racket-gr.html.markdown
+++ b/el-gr/racket-gr.html.markdown
@@ -74,8 +74,8 @@ H Racket είναι μια γενικού σκοπού, πολυ-υποδειγ
(+ 1+2i 2-3i) ; => 3-1i
;;; Λογικές μεταβλητές
-#t ; για το true
-#f ; για το false
+#t ; για το true (αληθής)
+#f ; για το false (ψευδής)
(not #t) ; => #f
(and 0 #f (error "doesn't get here")) ; => #f
(or #f 0 (error "doesn't get here")) ; => 0
@@ -88,9 +88,9 @@ H Racket είναι μια γενικού σκοπού, πολυ-υποδειγ
;;; Τα αλφαριθμητικά είναι πίνακες χαρακτήρων συγκεκριμένου μήκους
"Hello, world!"
"Benjamin \"Bugsy\" Siegel" ; Το backslash είναι χαρακτήρας διαφυγής
-"Foo\tbar\41\x21\u0021\a\r\n" ; συμπεριλαμβάνονται οι χαρακτήες διαφυγής της C,
- ; σε Unicode
-"λx:(μα.α→α).xx" ; μπορούν να υπάρχουν και Unicode χαρακτήρες
+"Foo\tbar\41\x21\u0021\a\r\n" ; Συμπεριλαμβάνονται οι χαρακτήες διαφυγής της C,
+ ; σε Unicode
+"λx:(μα.α→α).xx" ; Μπορούν να υπάρχουν και Unicode χαρακτήρες
;; Μπορούμε να εννώσουμε αλφαριθμητικά!
(string-append "Hello " "world!") ; => "Hello world!"
@@ -109,14 +109,16 @@ H Racket είναι μια γενικού σκοπού, πολυ-υποδειγ
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 2. Μεταβλητές
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; You can create a variable using define
-;; a variable name can use any character except: ()[]{}",'`;#|\
+;; Μπορούμε να δημιουργήσουμε μεταβλητές
+;; χρησιμοποιώντας το define.
+;; Ένα όνομα μεταβλητής μπορεί να χρησιμοποιεί οποιονδήποτε
+;; χαρακτήρα, εκτός από τους: ()[]{}",'`;#|\
(define some-var 5)
some-var ; => 5
-;; You can also use unicode characters
+;; Μπορούμε επίσης να χρησιμοποιήσουμε unicode χαρακτήρες.
(define ⊆ subset?) ;; Εδώ ουστιαστικά δίνουμε στη ήδη ύπαρχουσα συνάρτηση subset?
- ;; ένα νέο όνομα ⊆ , και παρακάτω την καλούμε με το νέο της όνομα.
+ ;; ένα νέο όνομα ⊆ , και παρακάτω την καλούμε με το νέο της όνομα.
(⊆ (set 3 2) (set 1 2 3)) ; => #t
;; Αν ζητήσουμε μια μεταβλητή που δεν έχει οριστεί πρίν π.χ
@@ -560,7 +562,7 @@ vec ; => #(1 2 3 4)
;; Οι ενότητες μας επιτρέπουν να οργανώνουμε τον κώδικα σε πολλαπλά
;; αρχεία και επαναχρησιμοποιούμενες βιβλιοθήκες
;; Εδώ χρησιμοποιούμε υπο-ενότητες, εμφωλευμένες μέσα σε μια
-;; άλλη ενότητα που δημιουργεί αυτό το κείμενο(ξεκινώντας από
+;; άλλη ενότητα που δημιουργεί αυτό το κείμενο (ξεκινώντας από
;; την γραμμή '#lang' )
(module cake racket/base ; ορίζουμε μια ενότητα 'cake' βασισμένο στο
; racket/base
@@ -614,8 +616,7 @@ vec ; => #(1 2 3 4)
(send charlie get-size) ; => 16
;; Το `fish%' είναι μία τιμή "πρώτης κλάσης"
-;; `fish%' is a plain "first class" value, με το οποίο μπορούμε να
-;; κάνουμε προσμείξεις
+;; με το οποίο μπορούμε να κάνουμε προσμείξεις
(define (add-color c%)
(class c%
(init color)
@@ -663,17 +664,17 @@ vec ; => #(1 2 3 4)
;; (set! tmp other)
;; (set! other tmp_1))
-;; But they are still code transformations, for example:
+;; Αλλά ακόμα υπάρχουν ακόμη μετασχηματισμοί του κώδικα, π.χ:
(define-syntax-rule (bad-while condition body ...)
(when condition
body ...
(bad-while condition body ...)))
-;; αυτή η μακροεντολή είναι χαλασένη: δημιουγεί ατέρμονα βρόχο
-;; και αν προσπαθήσουμε να το χρησιμοποιήσουμε, ο μεταγλωττιστης
+;; αυτή η μακροεντολή είναι χαλασμένη: δημιουγεί ατέρμονα βρόχο
+;; και αν προσπαθήσουμε να το χρησιμοποιήσουμε, ο μεταγλωττιστής
;; θα μπεί στον ατέρμονα βρόχο.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; 10. Συμβόλαια
+;; 10. Συμβόλαια (Contracts)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Τα συμβόλαια βάζουν περιορισμόυς σε τιμές που προέρχονται
diff --git a/es-es/go-es.html.markdown b/es-es/go-es.html.markdown
index 86de33ec..c41d693d 100644
--- a/es-es/go-es.html.markdown
+++ b/es-es/go-es.html.markdown
@@ -1,326 +1,450 @@
---
+name: Go
+category: language
language: Go
lang: es-es
filename: learngo-es.go
contributors:
- ["Sonia Keys", "https://github.com/soniakeys"]
+ - ["Christopher Bess", "https://github.com/cbess"]
+ - ["Jesse Johnson", "https://github.com/holocronweaver"]
+ - ["Quint Guvernator", "https://github.com/qguv"]
+ - ["Jose Donizetti", "https://github.com/josedonizetti"]
+ - ["Alexej Friesen", "https://github.com/heyalexej"]
translators:
- ["Adrian Espinosa", "http://www.adrianespinosa.com"]
- ["Jesse Johnson", "https://github.com/holocronweaver"]
+ - ["Nacho Pacheco -- Feb/2015", "https://github.com/gitnacho"]
---
-Go fue creado por la necesidad de hacer el trabajo rápidamente. No es
-la última tendencia en informática, pero es la forma nueva y más
-rápida de resolver problemas reales.
+Go fue creado por la necesidad de hacer el trabajo rápidamente. No es la
+última tendencia en informática, pero es la forma nueva y más rápida de
+resolver problemas reales.
-Tiene conceptos familiares de lenguajes imperativos con tipado
-estático. Es rápido compilando y rápido al ejecutar, añade una
-concurrencia fácil de entender para las CPUs de varios núcleos de hoy
-en día, y tiene características que ayudan con la programación a gran
-escala.
+Tiene conceptos familiares de lenguajes imperativos con tipado estático.
+Es rápido compilando y rápido al ejecutar, añade una concurrencia fácil de
+entender para las CPUs de varios núcleos de hoy día, y tiene
+características que ayudan con la programación a gran escala.
-Go viene con una librería estándar muy buena y una comunidad entusiasta.
+Go viene con una biblioteca estándar muy buena y una entusiasta comunidad.
```go
// Comentario de una sola línea
-/* Comentario
- multi línea */
+/* Comentario
+ multilínea */
-// La cláusula package aparece al comienzo de cada archivo fuente.
-// Main es un nombre especial que declara un ejecutable en vez de una librería.
+// La cláusula `package` aparece al comienzo de cada fichero fuente.
+// `main` es un nombre especial que declara un ejecutable en vez de una
+// biblioteca.
package main
-// La declaración Import declara los paquetes de librerías
-// referenciados en este archivo.
+// La instrucción `import` declara los paquetes de bibliotecas referidos
+// en este fichero.
import (
- "fmt" // Un paquete en la librería estándar de Go.
- "net/http" // Sí, un servidor web!
- "strconv" // Conversiones de cadenas.
- m "math" // Librería matemáticas con alias local m.
+ "fmt" // Un paquete en la biblioteca estándar de Go.
+ "io/ioutil" // Implementa algunas útiles funciones de E/S.
+ m "math" // Biblioteca de matemáticas con alias local m.
+ "net/http" // Sí, ¡un servidor web!
+ "strconv" // Conversiones de cadenas.
)
-// Definición de una función. Main es especial. Es el punto de
-// entrada para el ejecutable. Te guste o no, Go utiliza llaves.
+// Definición de una función. `main` es especial. Es el punto de entrada
+// para el ejecutable. Te guste o no, Go utiliza llaves.
func main() {
- // Println imprime una línea a stdout.
- // Cualificalo con el nombre del paquete, fmt.
- fmt.Println("Hello world!")
+ // Println imprime una línea a stdout.
+ // Cualificalo con el nombre del paquete, fmt.
+ fmt.Println("¡Hola mundo!")
- // Llama a otra función de este paquete.
- beyondHello()
+ // Llama a otra función de este paquete.
+ másAlláDelHola()
}
// Las funciones llevan parámetros entre paréntesis.
// Si no hay parámetros, los paréntesis siguen siendo obligatorios.
-func beyondHello() {
- var x int // Declaración de una variable.
- // Las variables se deben declarar antes de utilizarlas.
- x = 3 // Asignación de variables.
- // Declaración "corta" con := para inferir el tipo, declarar y asignar.
- y := 4
- sum, prod := learnMultiple(x, y) // Función devuelve dos valores.
- fmt.Println("sum:", sum, "prod:", prod) // Simple salida.
- learnTypes() // < y minutes, learn more!
+func másAlláDelHola() {
+ var x int // Declaración de una variable.
+ // Las variables se deben declarar antes de utilizarlas.
+ x = 3 // Asignación de variable.
+ // Declaración "corta" con := para inferir el tipo, declarar y asignar.
+ y := 4
+ suma, producto := aprendeMúltiple(x, y) // La función devuelve dos
+ // valores.
+ fmt.Println("suma:", suma, "producto:", producto) // Simple salida.
+ aprendeTipos() // < y minutos, ¡aprende más!
}
-// Las funciones pueden tener parámetros y (múltiples!) valores de retorno.
-func learnMultiple(x, y int) (sum, prod int) {
- return x + y, x * y // Devolver dos valores.
+// Las funciones pueden tener parámetros y (¡múltiples!) valores de
+// retorno.
+func aprendeMúltiple(x, y int) (suma, producto int) {
+ return x + y, x * y // Devuelve dos valores.
}
// Algunos tipos incorporados y literales.
-func learnTypes() {
- // La declaración corta suele darte lo que quieres.
- s := "Learn Go!" // tipo cadena
-
- s2 := ` Un tipo cadena "puro" puede incluir
+func aprendeTipos() {
+ // La declaración corta suele darte lo que quieres.
+ s := "¡Aprende Go!" // tipo cadena.
+ s2 := `Un tipo cadena "puro" puede incluir
saltos de línea.` // mismo tipo cadena
- // Literal no ASCII. Los fuentes de Go son UTF-8.
- g := 'Σ' // Tipo rune, un alias de int32, alberga un punto unicode.
- f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
- c := 3 + 4i // complex128, representado internamente por dos float64.
- // Sintaxis Var con inicializadores.
- var u uint = 7 // Sin signo, pero la implementación depende del
- // tamaño como en int.
- var pi float32 = 22. / 7
-
- // Sintáxis de conversión con una declaración corta.
- n := byte('\n') // byte es un alias de uint8.
-
- // Los Arrays tienen un tamaño fijo a la hora de compilar.
- var a4 [4]int // Un array de 4 ints, inicializados a 0.
- a3 := [...]int{3, 1, 5} // Un array de 3 ints, inicializados como se indica.
-
- // Los Slices tienen tamaño dinámico. Los arrays y slices tienen sus ventajas
- // y desventajas pero los casos de uso para los slices son más comunes.
- s3 := []int{4, 5, 9} // Comparar con a3. No hay puntos suspensivos.
- s4 := make([]int, 4) // Asigna slices de 4 ints, inicializados a 0.
- var d2 [][]float64 // Solo declaración, sin asignación.
- bs := []byte("a slice") // Sintaxis de conversión de tipo.
-
- p, q := learnMemory() // Declara p, q para ser un tipo puntero a int.
- fmt.Println(*p, *q) // * sigue un puntero. Esto imprime dos ints.
-
- // Los Maps son arrays asociativos dinámicos, como los hash o
- // diccionarios de otros lenguajes.
- m := map[string]int{"three": 3, "four": 4}
- m["one"] = 1
-
- // Las variables no utilizadas en Go producen error.
- // El guión bajo permite "utilizar" una variable, pero descartar su valor.
- _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
- // Esto cuenta como utilización de variables.
- fmt.Println(s, c, a4, s3, d2, m)
-
- learnFlowControl() // Vuelta al flujo.
+ // Literal no ASCII. Los ficheros fuente de Go son UTF-8.
+ g := 'Σ' // Tipo rune, un alias de int32, alberga un carácter unicode.
+ f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
+ c := 3 + 4i // complex128, representado internamente por dos float64.
+ // Sintaxis Var con iniciadores.
+ var u uint = 7 // Sin signo, pero la implementación depende del tamaño
+ // como en int.
+ var pi float32 = 22. / 7
+
+ // Sintáxis de conversión con una declaración corta.
+ n := byte('\n') // byte es un alias para uint8.
+
+ // Los Arreglos tienen un tamaño fijo a la hora de compilar.
+ var a4 [4]int // Un arreglo de 4 ints, iniciados a 0.
+ a3 := [...]int{3, 1, 5} // Un arreglo iniciado con un tamaño fijo de tres
+ // elementos, con valores 3, 1 y 5.
+ // Los Sectores tienen tamaño dinámico. Los arreglos y sectores tienen
+ // sus ventajas y desventajas pero los casos de uso para los sectores
+ // son más comunes.
+ s3 := []int{4, 5, 9} // Comparar con a3. No hay puntos suspensivos.
+ s4 := make([]int, 4) // Asigna sectores de 4 ints, iniciados a 0.
+ var d2 [][]float64 // Solo declaración, sin asignación.
+ bs := []byte("a sector") // Sintaxis de conversión de tipo.
+ // Debido a que son dinámicos, los sectores pueden crecer bajo demanda.
+ // Para añadir elementos a un sector, se utiliza la función incorporada
+ // append().
+ // El primer argumento es el sector al que se está anexando. Comúnmente,
+ // la variable del arreglo se actualiza en su lugar, como en el
+ // siguiente ejemplo.
+ sec := []int{1, 2 , 3} // El resultado es un sector de longitud 3.
+ sec = append(sec, 4, 5, 6) // Añade 3 elementos. El sector ahora tiene una
+ // longitud de 6.
+ fmt.Println(sec) // El sector actualizado ahora es [1 2 3 4 5 6]
+ // Para anexar otro sector, en lugar de la lista de elementos atómicos
+ // podemos pasar una referencia a un sector o un sector literal como
+ // este, con elipsis al final, lo que significa tomar un sector y
+ // desempacar sus elementos, añadiéndolos al sector sec.
+ sec = append(sec, []int{7, 8, 9} ...) // El segundo argumento es un
+ // sector literal.
+ fmt.Println(sec) // El sector actualizado ahora es [1 2 3 4 5 6 7 8 9]
+ p, q := aprendeMemoria() // Declara p, q para ser un tipo puntero a
+ // int.
+ fmt.Println(*p, *q) // * sigue un puntero. Esto imprime dos ints.
+
+ // Los Mapas son arreglos asociativos dinámicos, como los hash o
+ // diccionarios de otros lenguajes.
+ m := map[string]int{"tres": 3, "cuatro": 4}
+ m["uno"] = 1
+
+ // Las variables no utilizadas en Go producen error.
+ // El guión bajo permite "utilizar" una variable, pero descartar su
+ // valor.
+ _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
+ // Esto cuenta como utilización de variables.
+ fmt.Println(s, c, a4, s3, d2, m)
+
+ aprendeControlDeFlujo() // Vuelta al flujo.
+}
+
+// Es posible, a diferencia de muchos otros lenguajes tener valores de
+// retorno con nombre en las funciones.
+// Asignar un nombre al tipo que se devuelve en la línea de declaración de
+// la función nos permite volver fácilmente desde múltiples puntos en una
+// función, así como sólo utilizar la palabra clave `return`, sin nada
+// más.
+func aprendeRetornosNombrados(x, y int) (z int) {
+ z = x * y
+ return // aquí z es implícito, porque lo nombramos antes.
}
-// Go posee recolector de basura. Tiene puntero pero no aritmética de
-// punteros. Puedes cometer un errores con un puntero nil, pero no
+// Go posee recolector de basura. Tiene punteros pero no aritmética de
+// punteros. Puedes cometer errores con un puntero nil, pero no
// incrementando un puntero.
-func learnMemory() (p, q *int) {
- // q y p tienen un tipo puntero a int.
- p = new(int) // Función incorporada que asigna memoria.
- // La asignación de int se inicializa a 0, p ya no es nil.
- s := make([]int, 20) // Asigna 20 ints a un solo bloque de memoria.
- s[3] = 7 // Asignar uno de ellos.
- r := -2 // Declarar otra variable local.
- return &s[3], &r // & toma la dirección de un objeto.
+func aprendeMemoria() (p, q *int) {
+ // Los valores de retorno nombrados q y p tienen un tipo puntero
+ // a int.
+ p = new(int) // Función incorporada que reserva memoria.
+ // La asignación de int se inicia a 0, p ya no es nil.
+ s := make([]int, 20) // Reserva 20 ints en un solo bloque de memoria.
+ s[3] = 7 // Asigna uno de ellos.
+ r := -2 // Declara otra variable local.
+ return &s[3], &r // & toma la dirección de un objeto.
}
-func expensiveComputation() float64 {
- return m.Exp(10)
+func cálculoCaro() float64 {
+ return m.Exp(10)
}
-func learnFlowControl() {
- // La declaración If requiere llaves, pero no paréntesis.
- if true {
- fmt.Println("told ya")
- }
- // El formato está estandarizado por el comando "go fmt."
- if false {
- // Pout.
- } else {
- // Gloat.
- }
- // Utiliza switch preferiblemente para if encadenados.
- x := 42.0
- switch x {
- case 0:
- case 1:
- case 42:
- // Los cases no se mezclan, no requieren de "break".
- case 43:
- // No llega.
+func aprendeControlDeFlujo() {
+ // La declaración If requiere llaves, pero no paréntesis.
+ if true {
+ fmt.Println("ya relatado")
+ }
+ // El formato está estandarizado por la orden "go fmt."
+ if false {
+ // Abadejo.
+ } else {
+ // Relamido.
+ }
+ // Utiliza switch preferentemente para if encadenados.
+ x := 42.0
+ switch x {
+ case 0:
+ case 1:
+ case 42:
+ // Los cases no se mezclan, no requieren de "break".
+ case 43:
+ // No llega.
+ }
+ // Como if, for no utiliza paréntesis tampoco.
+ // Variables declaradas en for e if son locales a su ámbito.
+ for x := 0; x < 3; x++ { // ++ es una instrucción.
+ fmt.Println("iteración", x)
+ }
+ // aquí x == 42.
+
+ // For es la única instrucción de bucle en Go, pero tiene formas
+ // alternativas.
+ for { // Bucle infinito.
+ break // ¡Solo bromeaba!
+ continue // No llega.
+ }
+
+ // Puedes usar `range` para iterar en un arreglo, un sector, una
+ // cadena, un mapa o un canal.
+ // `range` devuelve o bien, un canal o de uno a dos valores (arreglo,
+ // sector, cadena y mapa).
+ for clave, valor := range map[string]int{"uno": 1, "dos": 2, "tres": 3} {
+ // por cada par en el mapa, imprime la clave y el valor
+ fmt.Printf("clave=%s, valor=%d\n", clave, valor)
+ }
+
+ // Como en for, := en una instrucción if significa declarar y asignar
+ // primero, luego comprobar y > x.
+ if y := cálculoCaro(); y > x {
+ x = y
}
- // Como if, for no utiliza paréntesis tampoco.
- // Variables declaradas en for y if son locales de su ámbito local.
- for x := 0; x < 3; x++ { // ++ es una sentencia.
- fmt.Println("iteration", x)
- }
- // x == 42 aqui.
+ // Las funciones literales son "cierres".
+ granX := func() bool {
+ return x > 100 // Referencia a x declarada encima de la instrucción
+ // switch.
+ }
+ fmt.Println("granX:", granX()) // cierto (la última vez asignamos
+ // 1e6 a x).
+ x /= 1.3e3 // Esto hace a x == 1300
+ fmt.Println("granX:", granX()) // Ahora es falso.
+
+ // Es más las funciones literales se pueden definir y llamar en línea,
+ // actuando como un argumento para la función, siempre y cuando:
+ // a) la función literal sea llamada inmediatamente (),
+ // b) el tipo del resultado sea del tipo esperado del argumento
+ fmt.Println("Suma dos números + doble: ",
+ func(a, b int) int {
+ return (a + b) * 2
+ }(10, 2)) // Llamada con argumentos 10 y 2
+ // => Suma dos números + doble: 24
+
+ // Cuando lo necesites, te encantará.
+ goto encanto
+encanto:
+
+ aprendeFunciónFábrica() // func devolviendo func es divertido(3)(3)
+ aprendeADiferir() // Un rápido desvío a una importante palabra clave.
+ aprendeInterfaces() // ¡Buen material dentro de poco!
+}
- // For es la única sentencia de bucle en Go, pero tiene formas alternativas.
- for { // Bucle infinito.
- break // Solo bromeaba!
- continue // No llega.
- }
- // Como en for, := en una sentencia if significa declarar y asignar primero,
- // luego comprobar y > x.
- if y := expensiveComputation(); y > x {
- x = y
- }
- // Los literales de funciones son "closures".
- xBig := func() bool {
- return x > 100 // Referencia a x declarada encima de la sentencia switch.
- }
- fmt.Println("xBig:", xBig()) // verdadero (la última vez asignamos 1e6 a x).
- x /= m.Exp(9) // Esto lo hace x == e.
- fmt.Println("xBig:", xBig()) // Ahora es falso.
+func aprendeFunciónFábrica() {
+ // Las dos siguientes son equivalentes, la segunda es más práctica
+ fmt.Println(instrucciónFábrica("día")("Un bello", "de verano"))
+
+ d := instrucciónFábrica("atardecer")
+ fmt.Println(d("Un hermoso", "de verano"))
+ fmt.Println(d("Un maravilloso", "de verano"))
+}
- // Cuando lo necesites, te encantará.
- goto love
-love:
+// Los decoradores son comunes en otros lenguajes. Lo mismo se puede hacer
+// en Go con funciónes literales que aceptan argumentos.
+func instrucciónFábrica(micadena string) func(antes, después string) string {
+ return func(antes, después string) string {
+ return fmt.Sprintf("¡%s %s %s!", antes, micadena, después) // nueva cadena
+ }
+}
- learnInterfaces() // Buen material dentro de poco!
+func aprendeADiferir() (ok bool) {
+ // las instrucciones diferidas se ejecutan justo antes de que la
+ // función regrese.
+ defer fmt.Println("las instrucciones diferidas se ejecutan en orden inverso (PEPS).")
+ defer fmt.Println("\nEsta línea se imprime primero debido a que")
+ // Defer se usa comunmente para cerrar un fichero, por lo que la
+ // función que cierra el fichero se mantiene cerca de la función que lo
+ // abrió.
+ return true
}
// Define Stringer como un tipo interfaz con un método, String.
type Stringer interface {
- String() string
+ String() string
}
-// Define pair como un struct con dos campos int, x e y.
-type pair struct {
- x, y int
+// Define par como una estructura con dos campos int, x e y.
+type par struct {
+ x, y int
}
-// Define un método del tipo pair. Pair ahora implementa Stringer.
-func (p pair) String() string { // p se llama "recibidor"
- // Sprintf es otra función pública del paquete fmt.
- // La sintaxis con punto referencia campos de p.
- return fmt.Sprintf("(%d, %d)", p.x, p.y)
+// Define un método en el tipo par. Par ahora implementa a Stringer.
+func (p par) String() string { // p se conoce como el "receptor"
+ // Sprintf es otra función pública del paquete fmt.
+ // La sintaxis con punto se refiere a los campos de p.
+ return fmt.Sprintf("(%d, %d)", p.x, p.y)
}
-func learnInterfaces() {
- // La sintaxis de llaves es un "literal struct". Evalúa a un struct
- // inicializado. La sintaxis := declara e inicializa p a este struct.
- p := pair{3, 4}
- fmt.Println(p.String()) // Llamar al método String de p, de tipo pair.
- var i Stringer // Declarar i como interfaz tipo Stringer.
- i = p // Válido porque pair implementa Stringer.
- // Llamar al metodo String de i, de tipo Stringer. Misma salida que arriba.
- fmt.Println(i.String())
-
- // Las funciones en el paquete fmt llaman al método String para
- // preguntar a un objeto por una versión imprimible de si mismo.
- fmt.Println(p) // Salida igual que arriba. Println llama al método String.
- fmt.Println(i) // Salida igual que arriba.
-
- learnVariadicParams("great", "learning", "here!")
+func aprendeInterfaces() {
+ // La sintaxis de llaves es una "estructura literal". Evalúa a una
+ // estructura iniciada. La sintaxis := declara e inicia p a esta
+ // estructura.
+ p := par{3, 4}
+ fmt.Println(p.String()) // Llama al método String de p, de tipo par.
+ var i Stringer // Declara i como interfaz de tipo Stringer.
+ i = p // Válido porque par implementa Stringer.
+ // Llama al metodo String de i, de tipo Stringer. Misma salida que
+ // arriba.
+ fmt.Println(i.String())
+
+ // Las funciones en el paquete fmt llaman al método String para
+ // consultar un objeto por una representación imprimible de si
+ // mismo.
+ fmt.Println(p) // Salida igual que arriba. Println llama al método
+ // String.
+ fmt.Println(i) // Salida igual que arriba.
+ aprendeNúmeroVariableDeParámetros("¡gran", "aprendizaje", "aquí!")
}
// Las funciones pueden tener número variable de argumentos.
-func learnVariadicParams(myStrings ...interface{}) {
- // Iterar cada valor de la variadic.
- for _, param := range myStrings {
- fmt.Println("param:", param)
- }
-
- // Pasar valor variadic como parámetro variadic.
- fmt.Println("params:", fmt.Sprintln(myStrings...))
-
- learnErrorHandling()
+func aprendeNúmeroVariableDeParámetros(misCadenas ...interface{}) {
+ // Itera en cada valor de los argumentos variables.
+ // El espacio en blanco aquí omite el índice del argumento arreglo.
+ for _, parámetro := range misCadenas {
+ fmt.Println("parámetro:", parámetro)
+ }
+
+ // Pasa el valor de múltiples variables como parámetro variadic.
+ fmt.Println("parámetros:", fmt.Sprintln(misCadenas...))
+ aprendeManejoDeError()
}
-func learnErrorHandling() {
- // ", ok" forma utilizada para saber si algo funcionó o no.
- m := map[int]string{3: "three", 4: "four"}
- if x, ok := m[1]; !ok { // ok será falso porque 1 no está en el map.
- fmt.Println("no one there")
- } else {
- fmt.Print(x) // x sería el valor, si estuviera en el map.
- }
- // Un valor de error comunica más información sobre el problema aparte de "ok".
- if _, err := strconv.Atoi("non-int"); err != nil { // _ descarta el valor
- // Imprime "strconv.ParseInt: parsing "non-int": invalid syntax".
- fmt.Println(err)
- }
- // Revisarmeos las interfaces más tarde. Mientras tanto,
- learnConcurrency()
+func aprendeManejoDeError() {
+ // ", ok" forma utilizada para saber si algo funcionó o no.
+ m := map[int]string{3: "tres", 4: "cuatro"}
+ if x, ok := m[1]; !ok { // ok será falso porque 1 no está en el mapa.
+ fmt.Println("nada allí")
+ } else {
+ fmt.Print(x) // x sería el valor, si estuviera en el mapa.
+ }
+ // Un valor de error comunica más información sobre el problema aparte
+ // de "ok".
+ if _, err := strconv.Atoi("no-int"); err != nil { // _ descarta el
+ // valor
+ // Imprime "strconv.ParseInt: parsing "no-int": invalid syntax".
+ fmt.Println(err)
+ }
+ // Revisaremos las interfaces más adelante. Mientras tanto...
+ aprendeConcurrencia()
}
-// c es un canal, un objeto de comunicación de concurrencia segura.
+// c es un canal, un objeto de comunicación concurrente seguro.
func inc(i int, c chan int) {
- c <- i + 1 // <- es el operador "enviar" cuando un canal aparece a la izquierda.
+ c <- i + 1 // <- es el operador "enviar" cuando aparece un canal a la
+ // izquierda.
}
// Utilizaremos inc para incrementar algunos números concurrentemente.
-func learnConcurrency() {
- // Misma función make utilizada antes para crear un slice. Make asigna e
- // inicializa slices, maps, y channels.
- c := make(chan int)
- // Iniciar tres goroutines concurrentes. Los números serán incrementados
- // concurrentemente, quizás en paralelo si la máquina es capaz y
- // está correctamente configurada. Las tres envían al mismo channel.
- go inc(0, c) // go es una sentencia que inicia una nueva goroutine.
- go inc(10, c)
- go inc(-805, c)
- // Leer los tres resultados del channel e imprimirlos.
- // No se puede saber en que orden llegarán los resultados!
- fmt.Println(<-c, <-c, <-c) // Channel a la derecha, <- es el operador "recibir".
-
- cs := make(chan string) // Otro channel, este gestiona cadenas.
- ccs := make(chan chan string) // Un channel de cadenas de channels.
- go func() { c <- 84 }() // Iniciar una nueva goroutine solo para
- // enviar un valor.
- go func() { cs <- "wordy" }() // Otra vez, para cs en esta ocasión.
- // Select tiene una sintáxis parecida a la sentencia switch pero
- // cada caso involucra una operacion de channels. Selecciona un caso
- // de forma aleatoria de los casos que están listos para comunicarse.
- select {
- case i := <-c: // El valor recibido puede ser asignado a una variable,
- fmt.Printf("it's a %T", i)
- case <-cs: // o el valor puede ser descartado.
- fmt.Println("it's a string")
- case <-ccs: // Channel vacío, no está listo para la comunicación.
- fmt.Println("didn't happen.")
- }
-
- // En este punto un valor fue devuelvto de c o cs. Uno de las dos
- // goroutines que se iniciaron se ha completado, la otrá permancerá
- // bloqueada.
-
- learnWebProgramming() // Go lo hace. Tu también quieres hacerlo.
+func aprendeConcurrencia() {
+ // Misma función make utilizada antes para crear un sector. Make asigna
+ // e inicia sectores, mapas y canales.
+ c := make(chan int)
+ // Inicia tres rutinasgo concurrentes. Los números serán incrementados
+ // concurrentemente, quizás en paralelo si la máquina es capaz y está
+ // correctamente configurada. Las tres envían al mismo canal.
+ go inc(0, c) // go es una instrucción que inicia una nueva rutinago.
+ go inc(10, c)
+ go inc(-805, c)
+ // Lee los tres resultados del canal y los imprime.
+ // ¡No se puede saber en que orden llegarán los resultados!
+ fmt.Println(<-c, <-c, <-c) // Canal a la derecha, <- es el operador
+ // "recibe".
+
+ cs := make(chan string) // Otro canal, este gestiona cadenas.
+ ccs := make(chan chan string) // Un canal de canales cadena.
+ go func() { c <- 84 }() // Inicia una nueva rutinago solo para
+ // enviar un valor.
+ go func() { cs <- "verboso" }() // Otra vez, para cs en esta ocasión.
+ // Select tiene una sintáxis parecida a la instrucción switch pero cada
+ // caso involucra una operacion con un canal. Selecciona un caso de
+ // forma aleatoria de los casos que están listos para comunicarse.
+ select {
+ case i := <-c: // El valor recibido se puede asignar a una variable,
+ fmt.Printf("es un %T", i)
+ case <-cs: // o el valor se puede descartar.
+ fmt.Println("es una cadena")
+ case <-ccs: // Canal vacío, no está listo para la comunicación.
+ fmt.Println("no sucedió.")
+ }
+
+ // En este punto un valor fue devuelto de c o cs. Una de las dos
+ // rutinasgo que se iniciaron se ha completado, la otrá permancerá
+ // bloqueada.
+
+ aprendeProgramaciónWeb() // Go lo hace. Tú también quieres hacerlo.
}
// Una simple función del paquete http inicia un servidor web.
-func learnWebProgramming() {
- // El primer parámetro de la direccinón TCP a la que escuchar.
- // El segundo parámetro es una interfaz, concretamente http.Handler.
- err := http.ListenAndServe(":8080", pair{})
- fmt.Println(err) // no ignorar errores
+func aprendeProgramaciónWeb() {
+// El primer parámetro es la direccinón TCP a la que escuchar.
+ // El segundo parámetro es una interfaz, concretamente http.Handler.
+ go func() {
+ err := http.ListenAndServe(":8080", par{})
+ fmt.Println(err) // no ignora errores
+ }()
+ consultaAlServidor()
}
-// Haz pair un http.Handler implementando su único método, ServeHTTP.
-func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
- // Servir datos con un método de http.ResponseWriter.
- w.Write([]byte("You learned Go in Y minutes!"))
+// Hace un http.Handler de par implementando su único método, ServeHTTP.
+func (p par) ServeHTTP(w http.ResponseWriter, r *http.Request) {
+ // Sirve datos con un método de http.ResponseWriter.
+ w.Write([]byte("¡Aprendiste Go en Y minutos!"))
+}
+
+func consultaAlServidor() {
+ resp, err := http.Get("http://localhost:8080")
+ fmt.Println(err)
+ defer resp.Body.Close()
+ cuerpo, err := ioutil.ReadAll(resp.Body)
+ fmt.Printf("\nEl servidor web dijo: `%s`\n", string(cuerpo))
}
```
-## Para leer más
+## Más información
+
+La raíz de todas las cosas sobre Go es el
+[sitio web oficial de Go](http://golang.org/).
+Allí puedes seguir el tutorial, jugar interactivamente y leer mucho más.
-La raíz de todas las cosas de Go es la [web oficial de Go](http://golang.org/).
-Ahí puedes seguir el tutorial, jugar interactivamente y leer mucho.
+La definición del lenguaje es altamente recomendada. Es fácil de leer y
+sorprendentemente corta (como la definición del lenguaje Go en estos
+días).
-La propia definición del lenguaje también está altamente
-recomendada. Es fácil de leer e increíblemente corta (como otras
-definiciones de lenguajes hoy en día)
+Puedes jugar con el código en el
+[parque de diversiones Go](https://play.golang.org/p/ncRC2Zevag). ¡Trata
+de cambiarlo y ejecutarlo desde tu navegador! Ten en cuenta que puedes
+utilizar [https://play.golang.org]( https://play.golang.org) como un
+[REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) para probar
+cosas y el código en el navegador, sin ni siquiera instalar Go.
-En la lista de lectura de estudiantes de Go está el código fuente de
-la librería estándar. Muy bien documentada, demuestra lo mejor de Go
-leíble, comprendible, estilo Go y formas Go. Pincha en el nombre de
-una función en la documentación y te aparecerá el código fuente!
+En la lista de lecturas para estudiantes de Go está el
+[código fuente de la biblioteca estándar](http://golang.org/src/pkg/).
+Ampliamente documentado, que demuestra lo mejor del legible y comprensible
+Go, con su característico estilo y modismos. ¡O puedes hacer clic en un
+nombre de función en [la documentación](http://golang.org/pkg/) y
+aparecerá el código fuente!
+Otro gran recurso para aprender Go está en
+[Go con ejemplos](http://goconejemplos.com/).
diff --git a/es-es/javascript-es.html.markdown b/es-es/javascript-es.html.markdown
index a1348508..fd01e7b9 100644
--- a/es-es/javascript-es.html.markdown
+++ b/es-es/javascript-es.html.markdown
@@ -16,8 +16,7 @@ con Java para aplicaciones más complejas. Debido a su integracion estrecha con
web y soporte por defecto de los navegadores modernos se ha vuelto mucho más común
para front-end que Java.
-JavaScript no sólo se limita a los navegadores web:
-* Node.js: Un proyecto que provee con un ambiente para el motor V8 de Google Chrome.
+JavaScript no sólo se limita a los navegadores web, aunque: Node.js, Un proyecto que proporciona un entorno de ejecución independiente para el motor V8 de Google Chrome, se está volviendo más y más popular.
¡La retroalimentación es bienvenida! Puedes encontrarme en:
[@adambrenecki](https://twitter.com/adambrenecki), o
@@ -49,6 +48,7 @@ hazAlgo()
// Toda la aritmética básica funciona como uno esperaría.
1 + 1; // = 2
+0.1 + 0.2; // = 0.30000000000000004
8 - 1; // = 7
10 * 2; // = 20
35 / 5; // = 7
@@ -102,9 +102,11 @@ false;
// Los tipos no importan con el operador ==...
"5" == 5; // = true
+null == undefined; // = true
// ...a menos que uses ===
"5" === 5; // = false
+null === undefined; // false
// Los Strings funcionan como arreglos de caracteres
// Puedes accesar a cada caracter con la función charAt()
@@ -126,7 +128,7 @@ undefined; // usado para indicar que un valor no está presente actualmente
// Aunque 0 === "0" sí es false.
///////////////////////////////////
-// 2. Variables, Arreglos y Objetos
+// 2. Variables, Arrays y Objetos
// Las variables se declaran con la palabra var. JavaScript cuenta con tipado dinámico,
// así que no se necesitan aplicar tipos. La asignación se logra con el operador =.
@@ -220,7 +222,6 @@ for (var i = 0; i < 5; i++){
}
// && es un "y" lógico, || es un "o" lógico
-var casa = {tamano:"grande",casa:"color"};
if (casa.tamano == "grande" && casa.color == "azul"){
casa.contiene = "oso";
}
diff --git a/es-es/julia-es.html.markdown b/es-es/julia-es.html.markdown
index 203ee3bb..1e01c2e3 100644
--- a/es-es/julia-es.html.markdown
+++ b/es-es/julia-es.html.markdown
@@ -4,757 +4,937 @@ contributors:
- ["Leah Hanson", "http://leahhanson.us"]
translators:
- ["Guillermo Garza", "http://github.com/ggarza"]
+ - ["Ismael Venegas Castelló", "https://github.com/Ismael-VC"]
filename: learnjulia-es.jl
lang: es-es
---
-Julia es un nuevo lenguaje funcional homoiconic enfocado en computación técnica.
-Aunque que tiene todo el poder de macros homoiconic, funciones de primera
-clase, y control de bajo nivel, Julia es tan fácil de aprender y utilizar como
-Python.
+![JuliaLang](https://camo.githubusercontent.com/e1ae5c7f6fe275a50134d5889a68f0acdd09ada8/687474703a2f2f6a756c69616c616e672e6f72672f696d616765732f6c6f676f5f68697265732e706e67)
-Esto se basa en la versión de desarrollo actual de Julia, del 18 de octubre de
-2013.
+[Julia](http://julialanges.github.io) es un [lenguaje de programación](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n) [multiplataforma](http://es.wikipedia.org/wiki/Multiplataforma) y [multiparadigma](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n_multiparadigma) de [tipado dinámico](http://es.wikipedia.org/wiki/Tipado_din%C3%A1mico), [alto nivel](http://es.wikipedia.org/wiki/Lenguaje_de_alto_nivel) y [alto desempeño](http://es.wikipedia.org/wiki/Computaci%C3%B3n_de_alto_rendimiento) para la computación [genérica](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n_de_prop%C3%B3sito_general), [técnica y científica](http://es.wikipedia.org/wiki/Computaci%C3%B3n_cient%C3%ADfica), con una sintaxis que es familiar para los usuarios de otros entornos de computación técnica y científica. Provee de un [sofisticado compilador JIT](http://es.wikipedia.org/wiki/Compilaci%C3%B3n_en_tiempo_de_ejecuci%C3%B3n), [ejecución distribuida y paralela](http://docs.julialang.org/en/release-0.3/manual/parallel-computing), [precisión numérica](http://julia.readthedocs.org/en/latest/manual/integers-and-floating-point-numbers) y de una [extensa librería con funciones matemáticas](http://docs.julialang.org/en/release-0.3/stdlib). La librería estándar, escrita casi completamente en Julia, también integra las mejores y más maduras librerías de C y Fortran para el [álgebra lineal](http://docs.julialang.org/en/release-0.3/stdlib/linalg), [generación de números aleatorios](http://docs.julialang.org/en/release-0.3/stdlib/numbers/?highlight=random#random-numbers), [procesamiento de señales](http://docs.julialang.org/en/release-0.3/stdlib/math/?highlight=signal#signal-processing), y [procesamiento de cadenas](http://docs.julialang.org/en/release-0.3/stdlib/strings). Adicionalmente, la comunidad de [desarrolladores de Julia](https://github.com/JuliaLang/julia/graphs/contributors) contribuye un número de [paquetes externos](http://pkg.julialang.org) a través del gestor de paquetes integrado de Julia a un paso acelerado. [IJulia](https://github.com/JuliaLang/IJulia.jl), una colaboración entre las comunidades de [IPython](http://ipython.org) y Julia, provee de una poderosa interfaz gráfica basada en el [navegador para Julia](https://juliabox.org).
-```ruby
+En Julia los programas están organizados entorno al [despacho múltiple](http://docs.julialang.org/en/release-0.3/manual/methods/#man-methods); definiendo funciones y sobrecargándolas para diferentes combinaciones de tipos de argumentos, los cuales también pueden ser definidos por el usuario.
-# Comentarios de una línea comienzan con una almohadilla (o signo gato)
+### ¡Prueba Julia ahora mismo!
-#= Commentarios multilinea pueden escribirse
- usando '#=' antes de el texto y '=#'
- después del texto. También se pueden anidar.
+* [TryJupyter](https://try.jupyter.org)
+* [JuliaBox](https://juliabox.org)
+* [SageMathCloud](https://cloud.sagemath.com)
+
+### Resumen de Características:
+
+* [Despacho múltiple](http://en.wikipedia.org/wiki/Multiple_dispatch): permite definir el comportamiento de las funciones a través de múltiples combinaciones de tipos de argumentos (**métodos**).
+* Sistema de **tipado dinámico**: tipos para la documentación, la optimización y el despacho.
+* [Buen desempeño](http://julialang.org/benchmarks), comparado al de lenguajes **estáticamente compilados** como C.
+* [Gestor de paquetes](http://docs.julialang.org/en/release-0.3/stdlib/pkg) integrado.
+* [Macros tipo Lisp](http://docs.julialang.org/en/release-0.3/manual/metaprogramming/#macros) y otras comodidades para la [meta programación](http://docs.julialang.org/en/release-0.3/manual/metaprogramming).
+* Llamar funciones de otros lenguajes, mediante paquetes como: **Python** ([PyCall](https://github.com/stevengj/PyCall.jl)), [Mathematica](http://github.com/one-more-minute/Mathematica.jl), **Java** ([JavaCall](http://github.com/aviks/JavaCall.jl)), **R** ([Rif](http://github.com/lgautier/Rif.jl) y [RCall](http://github.com/JuliaStats/RCall.jl)) y **Matlab** ([MATLAB](http://github.com/JuliaLang/MATLAB.jl)).
+* [Llamar funciones de C y Fortran](http://docs.julialang.org/en/release-0.3/manual/calling-c-and-fortran-code) **directamente**: sin necesidad de usar envoltorios u APIs especiales.
+* Poderosas características de **línea de comandos** para [gestionar otros procesos](http://docs.julialang.org/en/release-0.3/manual/running-external-programs).
+* Diseñado para la [computación paralela y distribuida](http://docs.julialang.org/en/release-0.3/manual/parallel-computing) **desde el principio**.
+* [Corrutinas](http://en.wikipedia.org/wiki/Coroutine): hilos ligeros "**verdes**".
+* Los [tipos definidos por el usuario](http://docs.julialang.org/en/release-0.3/manual/types) son tan **rápidos y compactos** como los tipos estándar integrados.
+* [Generación automática de código](http://docs.julialang.org/en/release-0.3/stdlib/base/?highlight=%40code#internals) **eficiente y especializado** para diferentes tipos de argumentos.
+* [Conversiones y promociones](http://docs.julialang.org/en/release-0.3/manual/conversion-and-promotion) para tipos numéricos y de otros tipos, **elegantes y extensibles**.
+* Soporte eficiente para [Unicode](http://es.wikipedia.org/wiki/Unicode), incluyendo [UTF-8](http://es.wikipedia.org/wiki/UTF-8) pero sin limitarse solo a este.
+* [Licencia MIT](https://github.com/JuliaLang/julia/blob/master/LICENSE.md): libre y de código abierto.
+
+Esto se basa en la versión `0.3.11`.
+
+```julia
+# Los comentarios de una línea comienzan con una almohadilla (o signo de gato).
+
+#=
+ Los commentarios multilínea pueden escribirse
+ usando '#=' antes de el texto y '=#'
+ después del texto. También se pueden anidar.
=#
-####################################################
-## 1. Tipos de datos primitivos y operadores.
-####################################################
-# Todo en Julia es una expresión.
+##############################################
+# 1. Tipos de datos primitivos y operadores. #
+##############################################
+
+# Todo en Julia es una expresión (Expr).
# Hay varios tipos básicos de números.
-3 # => 3 (Int64)
-3.2 # => 3.2 (Float64)
-2 + 1im # => 2 + 1im (Complex{Int64})
-2//3 # => 2//3 (Rational{Int64})
+3 # => 3 # Int64
+3.2 # => 3.2 # Float64
+2 + 1im # => 2 + 1im # Complex{Int64}
+2 // 3 # => 2//3 # Rational{Int64}
# Todos los operadores infijos normales están disponibles.
-1 + 1 # => 2
-8 - 1 # => 7
-10 * 2 # => 20
-35 / 5 # => 7.0
-5/2 # => 2.5 # dividir un Int por un Int siempre resulta en un Float
-div (5, 2) # => 2 # para un resultado truncado, usa div
-5 \ 35 # => 7.0
-2 ^ 2 # => 4 # exponente, no es xor
-12 % 10 # => 2
-
-# Refuerza la precedencia con paréntesis
-(1 + 3) * 2 # => 8
-
-# Operadores a nivel de bit
-~2 # => -3 # bitwise not
-3 & 5 # => 1 # bitwise and
-2 | 4 # => 6 # bitwise or
-2 $ 4 # => 6 # bitwise xor
-2 >>> 1 # => 1 # logical shift right
-2 >> 1 # => 1 # arithmetic shift right
-2 << 1 # => 4 # logical/arithmetic shift left
-
-# Se puede utilizar la función bits para ver la representación binaria de un
-# número.
+1 + 1 # => 2
+8 - 1 # => 7
+10 * 2 # => 20
+35 / 5 # => 7.0 # dividir un Int por un Int siempre resulta
+ # en un Float
+5 / 2 # => 2.5
+div(5, 2) # => 2 # para un resultado truncado, usa la función div
+5 \ 35 # => 7.0
+2 ^ 2 # => 4 # exponente, no es XOR
+12 % 10 # => 2
+
+# Refuerza la precedencia con paréntesis.
+(1 + 3) * 2 # => 8
+
+# Operadores a nivel de bit.
+~2 # => -3 # bitwise NOT
+3 & 5 # => 1 # bitwise AND
+2 | 4 # => 6 # bitwise OR
+2 $ 4 # => 6 # bitwise XOR
+2 >>> 1 # => 1 # desplazamiento lógico hacia la derecha
+2 >> 1 # => 1 # desplazamiento aritmético hacia la derecha
+2 << 1 # => 4 # desplazamiento lógico/aritmético hacia la izquierda
+
+# Se puede utilizar la función bits para ver la representación
+# binaria de un número.
bits(12345)
# => "0000000000000000000000000000000000000000000000000011000000111001"
+
bits(12345.0)
# => "0100000011001000000111001000000000000000000000000000000000000000"
-# Valores 'boolean' (booleanos) son primitivos
-true
-false
-
-# Operadores Boolean (booleanos)
-!true # => false
-!false # => true
-1 == 1 # => true
-2 == 1 # => false
-1 != 1 # => false
-2 != 1 # => true
-1 < 10 # => true
-1 > 10 # => false
-2 <= 2 # => true
-2 >= 2 # => true
+# Los valores booleanos (Bool) son primitivos.
+true # => true
+false # => false
+
+# Operadores booleanos.
+!true # => false
+!false # => true
+1 == 1 # => true
+2 == 1 # => false
+1 != 1 # => false
+2 != 1 # => true
+1 < 10 # => true
+1 > 10 # => false
+2 <= 2 # => true
+2 >= 2 # => true
+
# ¡Las comparaciones pueden ser concatenadas!
-1 < 2 < 3 # => true
-2 < 3 < 2 # => false
+1 < 2 < 3 # => true
+2 < 3 < 2 # => false
-# Strings se crean con "
-"Esto es un string."
+# Los literales de cadenas (String) se crean con la comilla doble: "
+"Esto es una cadena."
-# Literales de caracteres se escriben con '
+# Los literales de caracteres (Char) se crean con la comilla simple: '
'a'
-# Una string puede ser indexado como una array de caracteres
-"Esto es un string."[1] # => 'E' # Índices en Julia empiezen del 1
-# Sin embargo, esto no va a funcionar bien para strings UTF8,
+# Una cadena puede ser indexada como una arreglo de caracteres.
+"Esto es un string."[1] # => 'E' # Los índices en Julia comienzan en: 1
+
+# Sin embargo, esto no va a funcionar bien para las cadenas UTF8 (UTF8String),
# Lo que se recomienda es la iteración (map, for, etc).
-# $ puede ser utilizado para la interpolación de strings:
-"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
-# Se puede poner cualquier expresión de Julia dentro los paréntesis.
+# $ puede ser utilizado para la interpolación de cadenas, se puede poner
+# cualquier expresión de Julia dentro los paréntesis.
+"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
+
+# Otra forma para formatear cadenas es usando el macro printf.
+@printf "%d es menor de %f\n" 4.5 5.3 # 5 es menor de 5.300000
-# Otro forma de formatear strings es el macro printf
-@printf "%d es menor de %f" 4.5 5.3 # 5 es menor de 5.300000
+# ¡Imprimir es muy fácil!
+println("¡Hola Julia!") # ¡Hola Julia!
-# Imprimir es muy fácil
-println("Soy Julia. ¡Encantado de conocerte!")
-####################################################
-## 2. Variables y Colecciones
-####################################################
+##############################
+# 2. Variables y Colecciones #
+##############################
# No hay necesidad de declarar las variables antes de asignarlas.
-una_variable = 5 # => 5
-una_variable # => 5
+una_variable = 5 # => 5
+una_variable # => 5
-# Acceder a variables no asignadas previamente es una excepción.
+# Acceder a una variable no asignada previamente es una excepción.
try
- otra_variable # => ERROR: some_other_var not defined
+ otra_variable # ERROR: otra_variable not defined
catch e
- println(e)
+ println(e) # UndefVarError(:otra_variable)
end
-# Los nombres de variables comienzan con una letra.
-# Después de eso, puedes utilizar letras, dígitos, guiones y signos de
+# Los nombres de variables comienzan con una letra o guion bajo: _.
+# Después de eso, puedes utilizar letras, dígitos, guiones bajos y signos de
# exclamación.
-OtraVariable123! = 6 # => 6
+otraVariable_123! = 6 # => 6
+
+# También puedes utilizar caracteres Unicode.
+☃ = 8 # => 8
-# También puede utilizar caracteres unicode
-☃ = 8 # => 8
# Estos son especialmente útiles para la notación matemática
-2 * π # => 6.283185307179586
-
-# Una nota sobre las convenciones de nomenclatura de Julia:
-#
-# * Los nombres de las variables aparecen en minúsculas, con separación de
-# palabra indicado por underscore ('\ _').
-#
-# * Los nombres de los tipos comienzan con una letra mayúscula y separación de
-# palabras se muestra con CamelCase en vez de underscore.
-#
-# * Los nombres de las funciones y los macros están en minúsculas, sin
-# underscore.
-#
-# * Funciones que modifican sus inputs tienen nombres que terminan en!. Estos
-# funciones a veces se llaman mutating functions o in-place functions.
-
-# Los Arrays almacenan una secuencia de valores indexados entre 1 hasta n
-a = Int64[] # => 0-element Int64 Array
-
-# Literales de arrays 1-dimensionales se pueden escribir con valores separados
-# por comas.
-b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6]
-b[1] # => 4
-b[end] # => 6
-
-# Los arrays 2-dimensionales usan valores separados por espacios y filas
-# separados por punto y coma.
-matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
-
-# Añadir cosas a la final de una lista con push! y append!
-push!(a,1) # => [1]
-push!(a,2) # => [1,2]
-push!(a,4) # => [1,2,4]
-push!(a,3) # => [1,2,4,3]
-append!(a,b) # => [1,2,4,3,4,5,6]
-
-# Eliminar de la final con pop
-pop!(b) # => 6 y b ahora es [4,5]
-
-# Vamos a ponerlo de nuevo
-push!(b, 6) # b es ahora [4,5,6] de nuevo.
-
-a[1] # => 1 # recuerdan que los índices de Julia empiezan desde 1, no desde 0!
-
-# end es una abreviatura para el último índice. Se puede utilizar en cualquier
-# expresión de indexación
-a[end] # => 6
-
-# tambien hay shift y unshift
-shift!(a) # => 1 y a es ahora [2,4,3,4,5,6]
-unshift!(a,7) # => [7,2,4,3,4,5,6]
-
-# Nombres de funciónes que terminan en exclamaciones indican que modifican
-# su argumento.
-arr = [5,4,6] # => 3-element Int64 Array: [5,4,6]
-sort(arr) # => [4,5,6]; arr es todavía [5,4,6]
-sort!(arr) # => [4,5,6]; arr es ahora [4,5,6]
-
-# Buscando fuera de límites es un BoundsError
+# (multiplicación implicita).
+2π # => 6.283185307179586
+
+#=
+ Una nota sobre las convenciones de nomenclatura de Julia:
+
+ * Los nombres de las variables aparecen en minúsculas, con separación de
+ palabra indicado por un guion bajo:
+
+ otra_variable
+
+ * Los nombres de los tipos comienzan con una letra mayúscula y separación de
+ palabras se muestra con CamelCase en vez de guion bajo:
+
+ OtroTipo
+
+ * Los nombres de las funciones y los macros están en minúsculas, sin
+ underscore:
+
+ otromacro
+
+ * Funciones que modifican sus entradas tienen nombres que terminan en: !.
+ Estas funciones a veces se les llaman funciones transformadoras o
+ funciones in situ:
+
+ otra_funcion!
+=#
+
+# Los arreglos (Array) almacenan una secuencia de valores indexados de entre 1 hasta n.
+a = Int64[] # => 0-element Array{Int64,1}
+
+# Los literales de arregos unidimensionales se pueden escribir con valores
+# separados por comas.
+b = [4, 5, 6]
+#=
+ => 3-element Array{Int64,1}:
+ 4
+ 5
+ 6
+=#
+b[1] # => 4
+b[end] # => 6
+
+# Los arreglos bidimensionales usan valores separados por espacios y filas
+# separadas por punto y coma.
+matrix = [1 2; 3 4]
+#=
+ => 2x2 Array{Int64,2}:
+ 1 2
+ 3 4
+=#
+
+# Añadir cosas a la final de un arreglo con push! y append!.
+push!(a, 1) # => [1]
+push!(a, 2) # => [1,2]
+push!(a, 4) # => [1,2,4]
+push!(a, 3) # => [1,2,4,3]
+append!(a, b) # => [1,2,4,3,4,5,6]
+
+# Eliminar del final con pop!.
+pop!(b) # => 6 y b ahora es: [4,5]
+
+# Vamos a ponerlo de nuevo.
+push!(b, 6) # b es ahora [4,5,6] de nuevo
+
+a[1] # => 1 # recuerda, los índices de Julia empiezan desde 1, no desde 0!
+
+# end es una abreviatura para el último índice. Se puede utilizar en cualquier
+# expresión de indexación.
+a[end] # => 6
+
+# También hay shift! y unshift!.
+shift!(a) # => 1 y a es ahora: [2,4,3,4,5,6]
+unshift!(a, 7) # => [7,2,4,3,4,5,6]
+
+# Los nombres de funciónes que terminan en exclamaciones indican que modifican
+# su o sus argumentos de entrada.
+arr = [5, 4, 6] # => 3-element Array{Int64,1}: [5,4,6]
+sort(arr) # => [4,5,6] y arr es todavía: [5,4,6]
+sort!(arr) # => [4,5,6] y arr es ahora: [4,5,6]
+
+# Buscando fuera de límites es un BoundsError.
try
- a[0] # => ERROR: BoundsError() in getindex at array.jl:270
- a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270
+ a[0] # ERROR: BoundsError() in getindex at array.jl:270
+ a[end+1] # ERROR: BoundsError() in getindex at array.jl:270
catch e
- println(e)
+ println(e) # BoundsError()
end
-# Errors dan la línea y el archivo de su procedencia, aunque sea en el standard
-# library. Si construyes Julia de source, puedes buscar en el source para
-# encontrar estos archivos.
+# Las excepciones y los errores dan la línea y el archivo de su procedencia,
+# aunque provenga de la librería estándar. Si compilas Julia del código fuente,
+# puedes buscar en el código para encontrar estos archivos.
+
+# Se puede inicializar un arreglo con un rango (Range).
+a = [1:5] # => 5-element Array{Int64,1}: [1,2,3,4,5]
-# Se puede inicializar arrays de un range
-a = [1:5] # => 5-element Int64 Array: [1,2,3,4,5]
+# Puedes mirar en los rangos con la sintaxis de rebanada.
+a[1:3] # => [1,2,3]
+a[2:end] # => [2,3,4,5]
-# Puedes mirar en ranges con sintaxis slice.
-a[1:3] # => [1, 2, 3]
-a[2:end] # => [2, 3, 4, 5]
+# Eliminar elementos de un arreglo por índice con splice!
+arr = [3, 4, 5]
+splice!(arr, 2) # => 4 y arr es ahora: [3,5]
-# Eliminar elementos de una array por índice con splice!
-arr = [3,4,5]
-splice!(arr,2) # => 4 ; arr es ahora [3,5]
+# Concatenar arreglos con append!
+b = [1, 2, 3]
+append!(a, b) # a ahora es: [1,2,3,4,5,1,2,3]
-# Concatenar listas con append!
-b = [1,2,3]
-append!(a,b) # ahroa a es [1, 2, 3, 4, 5, 1, 2, 3]
+# Comprueba la existencia de un elemento en un arreglo con in.
+in(1, a) # => true
-# Comprueba la existencia en una lista con in
-in(1, a) # => true
+# Examina la longitud con length.
+length(a) # => 8
-# Examina la longitud con length
-length(a) # => 8
+# Las tuplas (Tuple) son inmutables.
+tup = (1, 2, 3) # => (1,2,3) # una tupla tipo (Int64,Int64,Int64)
+tup[1] # => 1
-# Tuples son immutable.
-tup = (1, 2, 3) # => (1,2,3) # un (Int64,Int64,Int64) tuple.
-tup[1] # => 1
try:
- tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
+ tup[1] = 3 # ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
catch e
- println(e)
+ println(e) # MethodError(setindex!,(:tup,3,1))
end
-# Muchas funciones de lista también trabajan en las tuples
-length(tup) # => 3
-tup[1:2] # => (1,2)
-in(2, tup) # => true
+# Muchas funciones de arreglos también trabajan en con las tuplas.
+length(tup) # => 3
+tup[1:2] # => (1,2)
+in(2, tup) # => true
-# Se puede desempacar tuples en variables
-a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3
+# Se pueden desempacar las tuplas en variables individuales.
+a, b, c = (1, 2, 3) # => (1,2,3) # ahora a es 1, b es 2 y c es 3
-# Los tuples se crean, incluso si se omite el paréntesis
-d, e, f = 4, 5, 6 # => (4,5,6)
+# Los tuplas se crean, incluso si se omiten los paréntesis.
+d, e, f = 4, 5, 6 # => (4,5,6)
-# Un tuple 1-elemento es distinto del valor que contiene
-(1,) == 1 # => false
-(1) == 1 # => true
+# Una tupla de un elemento es distinta del valor que contiene.
+(1,) == 1 # => false
+(1) == 1 # => true
-# Mira que fácil es cambiar dos valores
-e, d = d, e # => (5,4) # d is now 5 and e is now 4
+# Mira que fácil es cambiar dos valores!
+e, d = d, e # => (5,4) # ahora d es 5 y e es 4
+# Los diccionarios (Dict) son arreglos asociativos.
+dicc_vacio = Dict() # => Dict{Any,Any} with 0 entries
-# Dictionaries almanecan mapeos
-dict_vacio = Dict() # => Dict{Any,Any}()
+# Se puede crear un diccionario usando una literal.
+dicc_lleno = ["uno" => 1, "dos" => 2, "tres" => 3]
+#=
+ => Dict{ASCIIString,Int64} with 3 entries:
+ "tres" => 3
+ "dos" => 2
+ "uno" => 1
+=#
+
+# Busca valores con: [].
+dicc_lleno["uno"] # => 1
+
+# Obtén todas las claves con.
+keys(dicc_lleno)
+#=
+ => KeyIterator for a Dict{ASCIIString,Int64} with 3 entries. Keys:
+ "tres"
+ "dos"
+ "uno"
+=#
-# Se puede crear un dictionary usando un literal
-dict_lleno = ["one"=> 1, "two"=> 2, "three"=> 3]
-# => Dict{ASCIIString,Int64}
+# Nota: los elementos del diccionario no están ordenados y no se guarda el orden
+# en que se insertan.
-# Busca valores con []
-dict_lleno["one"] # => 1
+# Obtén todos los valores.
+values(dicc_lleno)
+#=
+ => ValueIterator for a Dict{ASCIIString,Int64} with 3 entries. Values:
+ 3
+ 2
+ 1
+=#
-# Obtén todas las claves
-keys(dict_lleno)
-# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
-# Nota - claves del dictionary no están ordenados ni en el orden en que se
-# insertan.
+# Nota: igual que el anterior en cuanto a ordenamiento de los elementos.
-# Obtén todos los valores
-values(dict_lleno)
-# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
-# Nota - Igual que el anterior en cuanto a ordenamiento de claves.
+# Comprueba si una clave existe en un diccionario con in y haskey.
+in(("uno", 1), dicc_lleno) # => true
+in(("tres", 3), dicc_lleno) # => false
-# Compruebe si hay existencia de claves en un dictionary con in y haskey
-in(("uno", 1), dict_lleno) # => true
-in(("tres", 3), dict_lleno) # => false
-haskey(dict_lleno, "one") # => true
-haskey(dict_lleno, 1) # => false
+haskey(dicc_lleno, "uno") # => true
+haskey(dicc_lleno, 1) # => false
-# Tratando de buscar una clave que no existe producirá un error
+# Tratar de obtener un valor con una clave que no existe producirá un error.
try
- dict_lleno["dos"] # => ERROR: key not found: dos in getindex at dict.jl:489
+ # ERROR: key not found: cuatro in getindex at dict.jl:489
+ dicc_lleno["cuatro"]
catch e
- println(e)
+ println(e) # KeyError("cuatro")
end
-# Utilice el método get para evitar ese error proporcionando un valor
-# predeterminado
-# get(dictionary,key,default_value)
-get(dict_lleno,"one",4) # => 1
-get(dict_lleno,"four",4) # => 4
+# Utiliza el método get para evitar este error proporcionando un valor
+# predeterminado: get(diccionario, clave, valor_predeterminado).
+get(dicc_lleno, "uno", 4) # => 1
+get(dicc_lleno, "cuatro", 4) # => 4
+
+# Usa conjuntos (Set) para representar colecciones de valores únicos, no
+# ordenados.
+conjunto_vacio = Set() # => Set{Any}({})
-# Usa Sets para representar colecciones (conjuntos) de valores únicos, no
-# ordenadas
-conjunto_vacio = Set() # => Set{Any}()
-# Iniciar una set de valores
-conjunto_lleno = Set(1,2,2,3,4) # => Set{Int64}(1,2,3,4)
+# Iniciar una conjunto de valores.
+conjunto_lleno = Set(1, 2, 2, 3, 4) # => Set{Int64}({4,2,3,1})
-# Añadir más valores a un conjunto
-push!(conjunto_lleno,5) # => Set{Int64}(5,4,2,3,1)
-push!(conjunto_lleno,5) # => Set{Int64}(5,4,2,3,1)
+# Añadir más valores a un conjunto.
+push!(conjunto_lleno, 5) # => Set{Int64}({4,2,3,5,1})
+push!(conjunto_lleno, 5) # => Set{Int64}({4,2,3,5,1})
-# Compruebe si los valores están en el conjunto
-in(2, conjunto_lleno) # => true
-in(10, conjunto_lleno) # => false
+# Comprobar si los valores están en el conjunto.
+in(2, conjunto_lleno) # => true
+in(10, conjunto_lleno) # => false
-# Hay funciones de intersección de conjuntos, la unión, y la diferencia.
-conjunto_otro= Set(3, 4, 5, 6) # => Set{Int64}(6,4,5,3)
-intersect(conjunto_lleno, conjunto_otro) # => Set{Int64}(3,4,5)
-union(conjunto_lleno, conjunto_otro) # => Set{Int64}(1,2,3,4,5,6)
-setdiff(Set(1,2,3,4),Set(2,3,5)) # => Set{Int64}(1,4)
+# Hay funciones de intersección, unión y diferencia de conjuntos.
+otro_conjunto = Set(3, 4, 5, 6) # => Set{Int64}({6,4,5,3})
+intersect(conjunto_lleno, otro_conjunto) # => Set{Int64}({3,4,5})
+union(conjunto_lleno, otro_conjunto) # => Set{Int64}({1,2,3,4,5,6})
+setdiff(Set(1, 2, 3, 4), Set(2, 3, 5)) # => Set{Int64}({1,4})
-####################################################
-## 3. Control de Flujo
-####################################################
+#######################
+# 3. Control de Flujo #
+#######################
-# Hagamos una variable
+# Hagamos una variable.
una_variable = 5
-# Aquí está una declaración de un 'if'. La indentación no es significativa en
-# Julia
+# Aquí está la declaración de un if. La indentación no es significativa en
+# Julia.
if una_variable > 10
- println("una_variable es completamente mas grande que 10.")
-elseif una_variable < 10 # Este condición 'elseif' es opcional.
- println("una_variable es mas chica que 10.")
-else # Esto también es opcional.
- println("una_variable es de hecho 10.")
+ println("una_variable es completamente mayor que 10.")
+elseif una_variable < 10 # esta condición elseif es opcional
+ println("una_variable es menor que 10.")
+else # esto también es opcional
+ println("De echo una_variable es 10.")
end
-# => imprime "una_variable es mas chica que 10."
+# imprime: una_variable es menor que 10.
-# For itera sobre tipos iterables
-# Tipos iterables incluyen Range, Array, Set, Dict, y String.
-for animal=["perro", "gato", "raton"]
- println("$animal es un mamifero")
- # Se puede usar $ para interpolar variables o expresiónes en strings
+# El bucle for itera sobre tipos iterables, ie. Range, Array, Set,
+# Dict y String.
+for animal in ["perro", "gato", "ratón"]
+ # Se puede usar $ para interpolar variables o expresiones en ls cadenas.
+ println("$animal es un mamífero.")
end
-# imprime:
-# perro es un mamifero
-# gato es un mamifero
-# raton es un mamifero
+#=
+ imprime:
+ perro es un mamífero.
+ gato es un mamífero.
+ ratón es un mamífero.
+=#
-for a in ["perro"=>"mamifero","gato"=>"mamifero","raton"=>"mamifero"]
- println("$(a[1]) es un $(a[2])")
+for a in ["perro" => "mamífero", "gato" => "mamífero", "ratón" => "mamífero"]
+ println("$(a[1]) es un $(a[2]).")
end
-# imprime:
-# perro es un mamifero
-# gato es un mamifero
-# raton es un mamifero
+#=
+ imprime:
+ perro es un mamífero.
+ gato es un mamífero.
+ ratón es un mamífero.
+=#
-for (k,v) in ["perro"=>"mamifero", "gato"=>"mamifero", "raton"=>"mamifero"]
- println("$k es un $v")
+for (k,v) in ["perro"=>"mamífero", "gato"=>"mamífero", "ratón"=>"mamífero"]
+ println("$k es un $v.")
end
-# imprime:
-# perro es un mamifero
-# gato es un mamifero
-# raton es un mamifero
+#=
+ imprime:
+ perro es un mamífero.
+ gato es un mamífero.
+ ratón es un mamífero.
+=#
-# While itera hasta que una condición no se cumple.
+# El bucle while itera hasta que una condición se deje de cumplir.
x = 0
while x < 4
println(x)
- x += 1 # versión corta de x = x + 1
+ x += 1 # versión corta de: x = x + 1
end
-# imprime:
-# 0
-# 1
-# 2
-# 3
+#=
+imprime:
+ 0
+ 1
+ 2
+ 3
+=#
-# Maneja excepciones con un bloque try/catch
-try
- error("ayuda")
+# Maneja excepciones con un bloque try/catch.
+try # intentar
+ error("Ooops!")
catch e
- println("capturando $e")
+ println("capturando: $e") # capturando: ErrorException("Ooops!")
end
-# => capturando ErrorException("ayuda")
-####################################################
-## 4. Funciones
-####################################################
+################
+# 4. Funciones #
+################
-# Usa 'function' para crear nuevas funciones
+# Usa function para crear nuevas funciones.
-#function nombre(arglist)
-# cuerpo...
-#end
+#=
+ function nombre(arglist)
+ cuerpo...
+ end
+=#
function suma(x, y)
println("x es $x e y es $y")
- # Las funciones devuelven el valor de su última declaración
+ # las funciones devuelven el valor de su última expresión
x + y
end
+# => suma (generic function with 1 method)
-suma(5, 6) # => 11 # después de imprimir "x es 5 e y es de 6"
+suma(5, 6) # => 11 # después de imprimir: x es 5 e y es 6
+
+# También puedes usar esta otra sintaxis para definir funciones!
+resta(x, y) = x - y # => resta (generic function with 1 method)
# Puedes definir funciones que toman un número variable de
-# argumentos posicionales
+# argumentos posicionales (el ... se llama un splat).
function varargs(args...)
+ # Usa la palabra clave return para regresar desde cualquier
+ # lugar de la función.
return args
- # Usa la palabra clave return para devolver en cualquier lugar de la función
end
# => varargs (generic function with 1 method)
-varargs(1,2,3) # => (1,2,3)
+varargs(1, 2, 3) # => (1,2,3)
+varargs([1, 2, 3]) # => ([1,2,3],)
-# El ... se llama un splat.
-# Acabamos de utilizar lo en una definición de función.
-# También se puede utilizar en una llamada de función,
-# donde va splat un Array o el contenido de un Tuple en la lista de argumentos.
-Set([1,2,3]) # => Set{Array{Int64,1}}([1,2,3]) # Produce un Set de Arrays
-Set([1,2,3]...) # => Set{Int64}(1,2,3) # esto es equivalente a Set(1,2,3)
+# Acabamos de utilizar el splat (...) en la definición de una función. También
+# se puede utilizar al llamar a una función, donde se esparce un arreglo, tupla
+# o en general una secuencia iterable en la tupla de argumentos.
+varargs([1, 2, 3]...) # => (1,2,3) # igual que: varargs(1, 2, 3)
-x = (1,2,3) # => (1,2,3)
-Set(x) # => Set{(Int64,Int64,Int64)}((1,2,3)) # un Set de Tuples
-Set(x...) # => Set{Int64}(2,3,1)
+x = (1, 2, 3) # => (1,2,3)
+varargs(x) # => ((1,2,3),)
+varargs(x...) # => (1,2,3)
+varargs("abc"...) # => ('a','b','c')
-# Puede definir funciones con argumentos posicionales opcionales
-function defaults(a,b,x=5,y=6)
+# Puedes definir funciones con argumentos posicionales opcionales.
+function defaults(a, b, x=5, y=6)
return "$a $b y $x $y"
end
+# => defaults (generic function with 3 methods)
+
+defaults('h', 'g') # => "h g y 5 6"
+defaults('h', 'g', 'j') # => "h g y j 6"
+defaults('h', 'g', 'j', 'k') # => "h g y j k"
-defaults('h','g') # => "h g y 5 6"
-defaults('h','g','j') # => "h g y j 6"
-defaults('h','g','j','k') # => "h g y j k"
try
- defaults('h') # => ERROR: no method defaults(Char,)
- defaults() # => ERROR: no methods defaults()
+ defaults('h') # ERROR: `defaults` has no method matching defaults(::Char)
+ defaults() # ERROR: `defaults` has no method matching defaults()
catch e
- println(e)
+ println(e) # MethodError(defaults,('h',))
end
-# Puedes definir funciones que toman argumentos de palabra clave
-function args_clave(;k1=4,nombre2="hola") # note the ;
- return ["k1"=>k1,"nombre2"=>nombre2]
+# Puedes definir funciones que tomen argumentos de palabras clave.
+function args_clave(;k1=4, nombre2="hola") # nota el punto y coma: ;
+ return ["k1" => k1, "nombre2" => nombre2]
end
+# => args_clave (generic function with 1 method)
-args_clave(nombre2="ness") # => ["nombre2"=>"ness","k1"=>4]
-args_clave(k1="mine") # => ["k1"=>"mine","nombre2"=>"hola"]
-args_clave() # => ["nombre2"=>"hola","k1"=>4]
+args_clave(nombre2="ness") # => ["nombre2"=>"ness","k1"=>4]
+args_clave(k1="mine") # => ["k1"=>"mine","nombre2"=>"hola"]
+args_clave() # => ["nombre2"=>"hola","k1"=>4]
-# Puedes combinar todo tipo de argumentos en la misma función
-function todos_los_args(arg_normal, arg_posicional_opcional=2; arg_clave="foo")
- println("argumento normal: $arg_normal")
- println("argumento optional: $arg_posicional_opcional")
- println("argumento de clave: $arg_clave")
+# Puedes combinar todo tipo de argumentos en la misma función.
+function todos_los_args(arg_posicional, arg_opcional=2; arg_clave="foo")
+ println("argumento posicional: $arg_posicional")
+ println(" argumento opcional: $arg_opcional")
+ println(" argumento clave: $arg_clave")
end
+# => todos_los_args (generic function with 2 methods)
+# No se necesita punto y coma ; al llamar la función usando un argumento clave,
+# esto solo es necesario en la definición de la función.
todos_los_args(1, 3, arg_clave=4)
-# imprime:
-# argumento normal: 1
-# argumento optional: 3
-# argumento de clave: 4
+#=
+ imprime:
+ argumento posicional: 1
+ argumento opcional: 3
+ argumento clave: 4
+=#
-# Julia tiene funciones de primera clase
+# Julia tiene funciones de primera clase.
function crear_suma(x)
- suma = function (y)
+ suma = function (y) # función anónima
return x + y
end
return suma
end
+# => crear_suma (generic function with 1 method)
-# Esta es el sintaxis "stabby lambda" para crear funciones anónimas
-(x -> x > 2)(3) # => true
+# Esta es otra sintaxis (estilo cálculo lambda), para crear funciones anónimas.
+(x -> x > 2)(3) # => true
# Esta función es idéntica a la crear_suma implementación anterior.
-function crear_suma(x)
- y -> x + y
-end
+crear_suma(x) = y -> x + y
-# También puedes nombrar la función interna, si quieres
+# También puedes nombrar la función interna, si quieres.
function crear_suma(x)
function suma(y)
x + y
end
suma
end
+# => crear_suma (generic function with 1 method)
-suma_10 = crear_suma(10)
-suma_10(3) # => 13
+suma_10 = crear_suma(10) # => suma (generic function with 1 method)
+suma_10(3) # => 13
+# Hay funciones integradas de orden superior.
+map(suma_10, [1, 2, 3]) # => [11,12,13]
+filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6,7]
-# Hay funciones integradas de orden superior
-map(suma_10, [1,2,3]) # => [11, 12, 13]
-filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
+# Se puede pasar un bloque a las funciones cuyo primer argumento posicional
+# es otra función, como en map y filter.
+map([1, 2, 3]) do arr
+ suma_10(arr)
+end
+#=
+ => 3-element Array{Int64,1}:
+ 11
+ 12
+ 13
+=#
+
+filter([3, 4, 5, 6, 7]) do arr
+ (x -> x > 5)(arr)
+end
+#=
+ => 2-element Array{Int64,1}:
+ 6
+ 7
+=#
-# Podemos usar listas por comprensión para mapeos
-[suma_10(i) for i=[1, 2, 3]] # => [11, 12, 13]
-[suma_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
+# Podemos usar comprensiones de listas multidimensionales.
+[suma_10(i) for i = [1, 2, 3]] # => [11, 12, 13] # 1D
+[suma_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
-####################################################
-## 5. Tipos
-####################################################
+[i*j for i = [1:3], j in [1:3]] # 2D
+#=
+ => 3x3 Array{Int64,2}:
+ 1 2 3
+ 2 4 6
+ 3 6 9
+=#
+
+[i*j/k for i = [1:3], j = [1:3], k in [1:3]] # 3D
+#=
+ => 3x3x3 Array{Float64,3}:
+ [:, :, 1] =
+ 1.0 2.0 3.0
+ 2.0 4.0 6.0
+ 3.0 6.0 9.0
+
+ [:, :, 2] =
+ 0.5 1.0 1.5
+ 1.0 2.0 3.0
+ 1.5 3.0 4.5
+
+ [:, :, 3] =
+ 0.333333 0.666667 1.0
+ 0.666667 1.33333 2.0
+ 1.0 2.0 3.0
+=#
+
+
+############
+# 5. Tipos #
+############
-# Julia tiene sistema de tipos.
# Cada valor tiene un tipo y las variables no tienen propios tipos.
-# Se puede utilizar la función `typeof` para obtener el tipo de un valor.
-typeof(5) # => Int64
+# Se puede utilizar la función typeof para obtener el tipo de un valor.
+typeof(5) # => Int64 # en un sistema de 64 bits, de lo contrario: Int32
-# Los tipos son valores de primera clase
-typeof(Int64) # => DataType
-typeof(DataType) # => DataType
-# DataType es el tipo que representa los tipos, incluyéndose a sí mismo.
+# Los tipos son valores de primera clase, DataType es el tipo que representa a
+# los tipos, incluyéndose a sí mismo.
+typeof(Int64) # => DataType
+typeof(DataType) # => DataType
-# Los tipos se usan para la documentación, optimizaciones, y envio.
-# No están comprobados estáticamente.
+# Los tipos se usan para la documentación, para optimizaciones
+# y el despacho múltiple. No están comprobados estáticamente.
-# Los usuarios pueden definir tipos
-# Son como registros o estructuras en otros idiomas.
-# Nuevos tipos se definen utilizado la palabra clave `type`.
+# Los usuarios pueden definir sus propios tipos.
+# Son como registros o estructuras en otros idiomas.
+# Un nuevo tipos se define utilizado la palabra clave type.
# type Nombre
-# field::OptionalType
+# atributo::UnTipo # las anotaciones de tipos son opcionales
# ...
# end
type Tigre
- longituddecola::Float64
- colordelpelaje # no incluyendo una anotación de tipo es el mismo que `::Any`
+ longitud_cola::Float64
+ color_pelaje # sin una anotación de tipo, es lo mismo que `::Any`
end
-# Los argumentos del constructor por default son las propiedades
-# del tipo, en el orden en que están listados en la definición
-tigger = Tigre(3.5,"anaranjado") # => Tiger(3.5,"anaranjado")
+# Los argumentos del constructor por defecto son los atributos
+# del tipo, en el orden en que están listados en la definición.
+tigre = Tigre(3.5, "anaranjado") # => Tigre(3.5,"anaranjado")
-# El tipo funciona como la función constructora de valores de ese tipo
-sherekhan = typeof(tigger)(5.6,"fuego") # => Tiger(5.6,"fuego")
+# El tipo funciona como método constructor para los valores de ese tipo.
+sherekhan = typeof(tigre)(5.6, "fuego") # => Tigre(5.6,"fuego")
-# Este estilo de tipos son llamados tipos concrete
-# Se pueden crear instancias, pero no pueden tener subtipos.
-# La otra clase de tipos es tipos abstractos (abstract types).
+# Este estilo de tipos son llamados tipos concretos.
+# Se pueden crear instancias de estos, pero no pueden tener subtipos.
+# La otra clase de tipos son los tipos abstractos.
# abstract Nombre
-abstract Gato # sólo un nombre y un punto en la jerarquía de tipos
-
-# De los tipos Abstract no se pueden crear instancias, pero pueden tener
-# subtipos. Por ejemplo, Number es un tipo abstracto.
-subtypes(Number) # => 6-element Array{Any,1}:
- # Complex{Float16}
- # Complex{Float32}
- # Complex{Float64}
- # Complex{T<:Real}
- # Real
-subtypes(Gato) # => 0-element Array{Any,1}
-
-# Cada tipo tiene un supertipo, utilice la función `súper` para conseguirlo.
-typeof(5) # => Int64
-super(Int64) # => Signed
-super(Signed) # => Real
-super(Real) # => Number
-super(Number) # => Any
-super(super(Signed)) # => Number
-super(Any) # => Any
-# Todo de estos tipos, a excepción de Int64, son abstractos.
-
-# <: es el operador de subtipos
-type Leon <: Gato # Leon es un subtipo de Gato
- color_de_crin
- rugido::String
-end
+abstract Gato # sólo un nombre y un punto en la jerarquía de tipos
+
+# No se pueden crear instancias de los tipos abstractos, pero pueden tener
+# subtipos. Por ejemplo, Number es un tipo abstracto.
+subtypes(Number)
+#=
+ => 2-element Array{Any,1}:
+ Complex{T<:Real}
+ Real
+=#
+
+subtypes(Gato) # => 0-element Array{Any,1}
+
+# Cada tipo tiene un supertipo, utiliza la función súper para conseguirlo.
+typeof(5) # => Int64
+super(Int64) # => Signed
+super(Signed) # => Integer
+super(Integer) # => Real
+super(Real) # => Number
+super(Number) # => Any
+super(super(Signed)) # => Real
+super(Any) # => Any
-# Se puede definir más constructores para su tipo.
-# Sólo defina una función del mismo nombre que el tipo
-# y llame a un constructor existente para obtener un valor del tipo correcto
-Leon(rugido::String) = Leon("verde",rugido)
-# Este es un constructor externo porque es fuera de la definición del tipo
-
-type Pantera <: Gato # Pantera tambien es un a subtipo de Cat
- color_de_ojos
- Pantera() = new("verde")
- # Panteras sólo tendrán este constructor, y ningún constructor
- # predeterminado.
+# Todos estos tipos, a excepción de Int64, son abstractos.
+
+# <: es el operador de subtipos.
+type Leon <: Gato # Leon es un subtipo de Gato
+ color_crin
+ rugido::String
end
-# Utilizar constructores internos, como Panther hace, te da control sobre cómo
-# se pueden crear valores del tipo. Cuando sea posible, debes utilizar
-# constructores exteriores en lugar de los internos.
-####################################################
-## 6. Envio múltiple
-####################################################
+# Se pueden definir más constructores para un tipo.
+# Sólo define una función del mismo nombre que el tipo y llama al constructor
+# existente para obtener un valor del tipo correcto.
-# En Julia, todas las funciones nombradas son funciones genéricas.
-# Esto significa que se construyen a partir de muchos métodos pequeños
-# Cada constructor de Leon es un método de la función genérica Leon.
+# Este es un constructor externo porque es fuera de la definición del tipo.
+Leon(rugido::String) = Leon("verde", rugido)
-# Por ejemplo, vamos a hacer un maullar función:
+type Pantera <: Gato # Pantera también es un a subtipo de Gato
+ color_ojos
-# Definiciones para Leon, Pantera, y Tigre
-function maullar(animal::Leon)
- animal.rugido # acceso utilizando notación de puntos
+ # Pantera sólo tendrá este constructor, y ningún constructor predeterminado.
+ Pantera() = new("verde")
end
-function maullar(animal::Pantera)
- "grrr"
-end
+# Utilizar constructores internos, como se hace en Pantera, te da control sobre
+# cómo se pueden crear valores de este tipo. Cuando sea posible, debes utilizar
+# constructores externos en lugar de internos.
-function maullar(animal::Tigre)
- "rawwwr"
-end
-# Prueba de la función maullar
-maullar(tigger) # => "rawwr"
-maullar(Leon("cafe","ROAAR")) # => "ROAAR"
-maullar(Pantera()) # => "grrr"
+########################
+# 6. Despacho Múltiple #
+########################
-# Revisar la jerarquía de tipos locales
-issubtype(Tigre,Gato) # => false
-issubtype(Leon,Gato) # => true
-issubtype(Pantera,Gato) # => true
+# En Julia, todas las funciones nombradas son funciones genéricas.
+# Esto significa que se construyen a partir de muchos métodosmás pequeños.
+# Cada constructor de Leon es un método de la función genérica Leon.
-# Definición de una función que toma Gatos
-function mascota(gato::Gato)
- println("El gato dice $(maullar(gato))")
-end
+# Por ejemplo, vamos a hacer métodos para para Leon, Pantera, y Tigre de una
+# función genérica maullar:
+
+# acceso utilizando notación de puntos
+maullar(animal::Leon) = animal.rugido
+# => maullar (generic function with 1 method)
+maullar(animal::Pantera) = "grrr"
+# => maullar (generic function with 2 methods)
+maullar(animal::Tigre) = "rawwwr"
+# => maullar (generic function with 3 methods)
+
+# Se puede obtener una lista de métodos con la función methods.
+methods(maullar)
+#=
+ # 3 methods for generic function "maullar":
+ maullar(animal::Leon) at none:1
+ maullar(animal::Pantera) at none:1
+ maullar(animal::Tigre) at none:1
+=#
+
+# Prueba de la función maullar.
+maullar(tigre) # => "rawwwr"
+maullar(Leon("cafe", "ROAAR")) # => "ROAAR"
+maullar(Pantera()) # => "grrr"
+
+# Revisar la jerarquía de tipos locales.
+issubtype(Tigre, Gato) # => false # igual que: Tigre <: Gato
+issubtype(Leon, Gato) # => true # igual que: Leon <: Gato
+issubtype(Pantera, Gato) # => true
+
+# Definición de una función que acepta argumentos de tipo Gato.
+mascota(gato::Gato) = println("El gato dice $(maullar(gato))")
+
+mascota(Leon("42")) # El gato dice 42
-mascota(Leon("42")) # => imprime "El gato dice 42"
try
- mascota(tigger) # => ERROR: no method mascota(Tigre))
+ mascota(tigre) # ERROR: `mascota` has no method matching mascota(::Tigre)
catch e
- println(e)
+ println(e) # MethodError(mascota,(Tigre(3.5,"anaranjado"),))
end
-# En los lenguajes orientados a objetos, expedición única es común. Esto
-# significa que el método se recogió basándose en el tipo del primer argumento.
-# En Julia, todos los tipos de argumentos contribuyen a seleccionar el mejor
-# método.
+# En los lenguajes orientados a objetos, el despacho simple es común. Esto
+# significa que la implementación del método a llamar se selecciona en base
+# al tipo del primer argumento.
+
+# En Julia, los tipos de todos los argumentos contribuyen a seleccionar método
+# más específico.
# Vamos a definir una función con más argumentos, para que podamos ver la
# diferencia
-function pelear(t::Tigre,c::Gato)
- println("¡El tigre $(t.colordelpelaje) gana!")
-end
+pelear(t::Tigre, c::Gato) = println("¡El tigre $(t.color_pelaje) gana!")
# => pelear (generic function with 1 method)
-pelear(tigger,Pantera()) # => imprime ¡El tigre anaranjado gana!
-pelear(tigger,Leon("ROAR")) # => ¡El tigre anaranjado gana!
+pelear(tigre, Pantera()) # ¡El tigre anaranjado gana!
+pelear(tigre, Leon("ROAR")) # ¡El tigre anaranjado gana!
-# Vamos a cambiar el comportamiento cuando el Gato es específicamente un Leon
-pelear(t::Tigre,l::Leon) = println("El león con melena $(l.color_de_crin) gana")
+# Vamos a cambiar el comportamiento cuando el Gato sea específicamente un Leon.
+pelear(t::Tigre, l::Leon) = println("El león con melena $(l.color_crin) gana.")
# => pelear (generic function with 2 methods)
-pelear(tigger,Pantera()) # => imprime ¡El tigre anaranjado gana!
-pelear(tigger,Leon("ROAR")) # => imprime El león con melena verde gana
+pelear(tigre, Pantera()) # ¡El tigre anaranjado gana!
+pelear(tigre, Leon("ROAR")) # El león con melena verde gana.
-# No necesitamos un tigre para poder luchar
-pelear(l::Leon,c::Gato) = println("El gato victorioso dice $(maullar(c))")
-# => fight (generic function with 3 methods)
+# No necesitamos un tigre para poder luchar.
+pelear(l::Leon, c::Gato) = println("El gato victorioso dice $(maullar(c)).")
+# => pelear (generic function with 3 methods)
+
+methods(pelear)
+#=
+ # 3 methods for generic function "pelear":
+ pelear(t::Tigre,l::Leon) at none:2
+ pelear(t::Tigre,c::Gato) at none:1
+ pelear(l::Leon,c::Gato) at none:2
+=#
-pelear(Leon("balooga!"),Pantera()) # => imprime El gato victorioso dice grrr
+pelear(Leon("balooga!"), Pantera()) # El gato victorioso dice grrr.
try
- pelear(Pantera(),Leon("RAWR")) # => ERROR: no method pelear(Pantera, Leon))
-catch
+ # ERROR: `pelear` has no method matching pelear(::Pantera, ::Leon)
+ pelear(Pantera(),Leon("RAWR"))
+catch # no hacer nada con la excepción atrapada
end
-# Un metodo con el gato primero
+# Un metodo con el tipo Gato primero.
pelear(c::Gato,l::Leon) = println("El gato le gana al León")
-# Warning: New definition
-# pelear(Gato,Leon) at none:1
-# is ambiguous with:
-# pelear(Leon,Gato) at none:1.
-# To fix, define
-# pelear(Leon,Leon)
-# before the new definition.
-# pelear (generic function with 4 methods)
-
-# Esta advertencia se debe a que no está claro que metodo de pelear será llamado
-# en:
-pelear(Leon("RAR"),Leon("cafe","rar")) # => imprime El gato victorioso dice rar
-# El resultado puede ser diferente en otras versiones de Julia
+#=
+ Warning: New definition
+ pelear(Gato,Leon) at none:1
+ is ambiguous with:
+ pelear(Leon,Gato) at none:1.
+ To fix, define
+ pelear(Leon,Leon)
+ before the new definition.
+ pelear (generic function with 4 methods)
+=#
+
+# Esta advertencia se debe a que no está claro que método de pelear
+# será llamado en:
+pelear(Leon("RAR"),Leon("cafe","rar")) # El gato victorioso dice rar.
+# El resultado puede ser diferente en otras versiones de Julia
pelear(l::Leon,l2::Leon) = println("Los leones llegan a un empate")
-pelear(Leon("GR"),Leon("cafe","rar")) # => imprime Los leones llegan a un empate
-
-
-# Un vistazo al nivel bajo
-# Se puede echar un vistazo a la LLVM y el código ensamblador generado.
-
-area_cuadrada(l) = l * l # area_cuadrada (generic function with 1 method)
-
-area_cuadrada(5) # => 25
-
-# ¿Qué sucede cuando damos area_cuadrada diferentes argumentos?
-code_native(area_cuadrada, (Int32,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1 # Prologue
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # movsxd RAX, EDI # Fetch l from memory?
- # imul RAX, RAX # Square l and store the result in RAX
- # pop RBP # Restore old base pointer
- # ret # Result will still be in RAX
-
-code_native(area_cuadrada, (Float32,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # vmulss XMM0, XMM0, XMM0 # Scalar single precision multiply (AVX)
- # pop RBP
- # ret
-
-code_native(area_cuadrada, (Float64,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX)
- # pop RBP
- # ret
- #
-
-# Ten en cuenta que Julia usará instrucciones de "floating point" si alguno de
-# los argumentos son "floats"
-# Vamos a calcular el área de un círculo
-area_circulo(r) = pi * r * r # circle_area (generic function with 1 method)
-area_circulo(5) # 78.53981633974483
+
+pelear(Leon("GR"),Leon("cafe","rar")) # Los leones llegan a un empate
+
+
+################################
+# 7. Un vistazo de bajo nivel. #
+################################
+
+# Se puede echar un vistazo al código IR de LLVM y al código
+# ensamblador generado.
+area_cuadrado(l) = l * l # => area_cuadrado (generic function with 1 method)
+
+area_cuadrado(5) # => 25
+
+# ¿Qué sucede cuando damos area_cuadrada diferentes tipos de argumentos?
+code_native(area_cuadrado, (Int32,))
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1 # prólogo
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ imul RDI, RDI # elevar l al cuadrado
+ mov RAX, RDI # almacenar el resultado en RAX
+ pop RBP # restaurar el puntero base anterior
+ ret # el resultado estará en RAX
+=#
+
+code_native(area_cuadrado, (Float32,))
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ mulss XMM0, XMM0 # multiplicación escalar de presición simple (AVX)
+ pop RBP
+ ret
+=#
+
+code_native(area_cuadrado, (Float64,))
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ mulsd XMM0, XMM0 # multiplicación escalar de presición doble (AVX)
+ pop RBP
+ ret
+=#
+
+# Ten en cuenta que Julia usará instrucciones de punto flotante si el tipo de
+# alguno de los argumentos es flotante.
+
+# Vamos a calcular el área de un círculo.
+area_circulo(r) = π * r * r # area_circulo (generic function with 1 method)
+area_circulo(5) # 78.53981633974483
code_native(area_circulo, (Int32,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # vcvtsi2sd XMM0, XMM0, EDI # Load integer (r) from memory
- # movabs RAX, 4593140240 # Load pi
- # vmulsd XMM1, XMM0, QWORD PTR [RAX] # pi * r
- # vmulsd XMM0, XMM0, XMM1 # (pi * r) * r
- # pop RBP
- # ret
- #
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ cvtsi2sd XMM1, EDI # cargar entero r de la memoria
+ movabs RAX, 4477117456 # cargar constante matemática π
+ movsd XMM0, QWORD PTR [RAX]
+ mulsd XMM0, XMM1 # π * r
+ mulsd XMM0, XMM1 # (π * r) * r
+ pop RBP
+ ret
+=#
code_native(area_circulo, (Float64,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # movabs RAX, 4593140496
- # Source line: 1
- # vmulsd XMM1, XMM0, QWORD PTR [RAX]
- # vmulsd XMM0, XMM1, XMM0
- # pop RBP
- # ret
- #
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ movabs RAX, 4477120336
+ movsd XMM1, QWORD PTR [RAX]
+ Source line: 1
+ mulsd XMM1, XMM0
+ mulsd XMM1, XMM0
+ movaps XMM0, XMM1
+ pop RBP
+ ret
+=#
```
-## ¿Listo para más?
+![Julia-tan](http://www.mechajyo.org/wp/wp-content/uploads/2014/10/3a2c3b7de5dd39aa7f056a707cd4eb59.png)
-Puedes obtener muchos más detalles en [The Julia Manual](http://docs.julialang.org/en/latest/manual/)
+## ¿Listo para más?
-El mejor lugar para obtener ayuda con Julia es el (muy amable) [lista de correos](https://groups.google.com/forum/#!forum/julia-users).
+Para más detalles, lee el [manual de Julia](http://docs.julialang.org/en/release-0.3).
+El mejor lugar para obtener ayuda con Julia, es en su amigable [lista de correos](https://groups.google.com/forum/#!forum/julia-users).
diff --git a/es-es/python-es.html.markdown b/es-es/python-es.html.markdown
index f7a0ec02..4930eebc 100644
--- a/es-es/python-es.html.markdown
+++ b/es-es/python-es.html.markdown
@@ -4,6 +4,7 @@ contributors:
- ["Louie Dinh", "http://ldinh.ca"]
translators:
- ["Camilo Garrido", "http://www.twitter.com/hirohope"]
+ - ["Fabio Souto", "http://fabiosouto.me"]
lang: es-es
filename: learnpython-es.py
---
@@ -30,27 +31,47 @@ Nota: Este artículo aplica a Python 2.7 específicamente, pero debería ser apl
# Tienes números
3 #=> 3
-# Matemática es lo que esperarías
-1 + 1 #=> 2
-8 - 1 #=> 7
-10 * 2 #=> 20
-35 / 5 #=> 7
+# Evidentemente puedes realizar operaciones matemáticas
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+35 / 5 #=> 7
# La división es un poco complicada. Es división entera y toma la parte entera
# de los resultados automáticamente.
-5 / 2 #=> 2
+5 / 2 #=> 2
# Para arreglar la división necesitamos aprender sobre 'floats'
# (números de coma flotante).
2.0 # Esto es un 'float'
-11.0 / 4.0 #=> 2.75 ahhh...mucho mejor
+11.0 / 4.0 #=> 2.75 ahhh...mucho mejor
+
+# Resultado de la división de enteros truncada para positivos y negativos
+5 // 3 # => 1
+5.0 // 3.0 # => 1.0 # funciona con números en coma flotante
+-5 // 3 # => -2
+-5.0 // 3.0 # => -2.0
+
+# El operador módulo devuelve el resto de una división entre enteros
+7 % 3 # => 1
+
+# Exponenciación (x elevado a y)
+2**4 # => 16
# Refuerza la precedencia con paréntesis
-(1 + 3) * 2 #=> 8
+(1 + 3) * 2 #=> 8
+
+# Operadores booleanos
+# Nota: "and" y "or" son sensibles a mayúsculas
+True and False #=> False
+False or True #=> True
-# Valores 'boolean' (booleanos) son primitivos
-True
-False
+# Podemos usar operadores booleanos con números enteros
+0 and 2 #=> 0
+-5 or 0 #=> -5
+0 == False #=> True
+2 == True #=> False
+1 == True #=> True
# Niega con 'not'
not True #=> False
@@ -90,7 +111,7 @@ not False #=> True
# Una forma más reciente de formatear strings es el método 'format'.
# Este método es la forma preferida
"{0} pueden ser {1}".format("strings", "formateados")
-# Puedes usar palabras claves si no quieres contar.
+# Puedes usar palabras clave si no quieres contar.
"{nombre} quiere comer {comida}".format(nombre="Bob", comida="lasaña")
# None es un objeto
@@ -107,8 +128,8 @@ None is None #=> True
# None, 0, y strings/listas vacíos(as) todas se evalúan como False.
# Todos los otros valores son True
-0 == False #=> True
-"" == False #=> True
+bool(0) #=> False
+bool("") #=> False
####################################################
@@ -130,16 +151,16 @@ otra_variable # Levanta un error de nombre
# 'if' puede ser usado como una expresión
"yahoo!" if 3 > 2 else 2 #=> "yahoo!"
-# Listas almacenan secuencias
+# Las listas almacenan secuencias
lista = []
# Puedes empezar con una lista prellenada
otra_lista = [4, 5, 6]
# Añadir cosas al final de una lista con 'append'
-lista.append(1) #lista ahora es [1]
-lista.append(2) #lista ahora es [1, 2]
-lista.append(4) #lista ahora es [1, 2, 4]
-lista.append(3) #lista ahora es [1, 2, 4, 3]
+lista.append(1) # lista ahora es [1]
+lista.append(2) # lista ahora es [1, 2]
+lista.append(4) # lista ahora es [1, 2, 4]
+lista.append(3) # lista ahora es [1, 2, 4, 3]
# Remueve del final de la lista con 'pop'
lista.pop() #=> 3 y lista ahora es [1, 2, 4]
# Pongámoslo de vuelta
@@ -173,11 +194,11 @@ lista.extend(otra_lista) # lista ahora es [1, 2, 3, 4, 5, 6]
# Chequea la existencia en una lista con
1 in lista #=> True
-# Examina el largo de una lista con 'len'
+# Examina el tamaño de una lista con 'len'
len(lista) #=> 6
-# Tuplas son como listas pero son inmutables.
+# Las tuplas son como las listas, pero son inmutables.
tupla = (1, 2, 3)
tupla[0] #=> 1
tupla[0] = 3 # Levanta un error TypeError
@@ -266,7 +287,7 @@ conjunto_lleno | otro_conjunto #=> {1, 2, 3, 4, 5, 6}
# Hagamos sólo una variable
una_variable = 5
-# Aquí está una declaración de un 'if'. ¡La indentación es significativa en Python!
+# Aquí está una declaración de un 'if'. ¡La indentación es importante en Python!
# imprime "una_variable es menor que 10"
if una_variable > 10:
print "una_variable es completamente mas grande que 10."
@@ -400,12 +421,12 @@ class Humano(object):
# Un atributo de clase es compartido por todas las instancias de esta clase
especie = "H. sapiens"
- # Constructor basico
+ # Constructor básico, se llama al instanciar la clase.
def __init__(self, nombre):
# Asigna el argumento al atributo nombre de la instancia
self.nombre = nombre
- # Un metodo de instancia. Todos los metodos toman self como primer argumento
+ # Un método de instancia. Todos los metodos toman self como primer argumento
def decir(self, msg):
return "%s: %s" % (self.nombre, msg)
@@ -470,6 +491,56 @@ import math
dir(math)
+####################################################
+## 7. Avanzado
+####################################################
+
+# Los generadores permiten evaluación perezosa
+def duplicar_numeros(iterable):
+ for i in iterable:
+ yield i + i
+
+# Un generador crea valores sobre la marcha
+# En vez de generar y devolver todos los valores de una vez, crea un valor
+# en cada iteración. En este ejemplo los valores mayores que 15 no serán
+# procesados en duplicar_numeros.
+# Nota: xrange es un generador que hace lo mismo que range.
+# Crear una lista de 1 a 900000000 lleva mucho tiempo y ocupa mucho espacio.
+# xrange crea un generador, mientras que range crea toda la lista.
+# Añadimos un guion bajo a los nombres de variable que coinciden con palabras
+# reservadas de python.
+xrange_ = xrange(1, 900000000)
+
+# duplica todos los números hasta que encuentra un resultado >= 30
+for i in duplicar_numeros(xrange_):
+ print i
+ if i >= 30:
+ break
+
+# Decoradores
+# en este ejemplo pedir rodea a hablar
+# Si por_favor es True se cambiará el mensaje.
+from functools import wraps
+
+
+def pedir(target_function):
+ @wraps(target_function)
+ def wrapper(*args, **kwargs):
+ msg, por_favor = target_function(*args, **kwargs)
+ if por_favor:
+ return "{} {}".format(msg, "¡Por favor! Soy pobre :(")
+ return msg
+
+ return wrapper
+
+
+@pedir
+def hablar(por_favor=False):
+ msg = "¿Me puedes comprar una cerveza?"
+ return msg, por_favor
+
+print hablar() # ¿Me puedes comprar una cerveza?
+print hablar(por_favor=True) # ¿Me puedes comprar una cerveza? ¡Por favor! Soy pobre :(
```
## ¿Listo para más?
@@ -481,6 +552,7 @@ dir(math)
* [The Official Docs](http://docs.python.org/2.6/)
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
* [Python Module of the Week](http://pymotw.com/2/)
+* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182)
### Encuadernados
diff --git a/objective-c.html.markdown b/objective-c.html.markdown
index 56640a87..91b84b47 100644
--- a/objective-c.html.markdown
+++ b/objective-c.html.markdown
@@ -415,7 +415,7 @@ distance = 18; // References "long distance" from MyClass implementation
+ (NSString *)classMethod
{
- return [[self alloc] init];
+ return @"Some string";
}
+ (MyClass *)myClassFromHeight:(NSNumber *)defaultHeight
diff --git a/perl6.html.markdown b/perl6.html.markdown
index de7d2f25..af545793 100644
--- a/perl6.html.markdown
+++ b/perl6.html.markdown
@@ -213,7 +213,7 @@ say $x; #=> 52
# - `if`
# Before talking about `if`, we need to know which values are "Truthy"
# (represent True), and which are "Falsey" (or "Falsy") -- represent False.
-# Only these values are Falsey: (), 0, "", Nil, A type (like `Str` or `Int`),
+# Only these values are Falsey: (), "", Nil, A type (like `Str` or `Int`),
# and of course False itself.
# Every other value is Truthy.
if True {
diff --git a/pt-br/xml-pt.html.markdown b/pt-br/xml-pt.html.markdown
index 40ddbc3a..f347f8ef 100644
--- a/pt-br/xml-pt.html.markdown
+++ b/pt-br/xml-pt.html.markdown
@@ -1,8 +1,8 @@
---
language: xml
-filename: learnxml.xml
+filename: learnxml-pt.xml
contributors:
- - ["João Farias", "https://github.com/JoaoGFarias"]
+ - ["João Farias", "https://github.com/JoaoGFarias"]
translators:
- ["Miguel Araújo", "https://github.com/miguelarauj1o"]
lang: pt-br
@@ -130,4 +130,4 @@ com a adição de definição DTD.-->
<preco>30.00</preco>
</livro>
</livraria>
-``` \ No newline at end of file
+```
diff --git a/red.html.markdown b/red.html.markdown
index 73a13606..f33060c4 100644
--- a/red.html.markdown
+++ b/red.html.markdown
@@ -212,7 +212,9 @@ The source can be found on [github](https://github.com/red/red).
The Red/System language specification can be found [here](http://static.red-lang.org/red-system-specs-light.html).
-To learn more about Rebol and Red join the [chat on StackOverflow](http://chat.stackoverflow.com/rooms/291/rebol-and-red). You will need 20 points to chat but if you ask or answer questions about Red or Rebol we will help you get those points. And if that is not working for you drop a mail to us on the [Red mailing list](mailto: red-langNO_SPAM@googlegroups.com) (remove NO_SPAM).
+To learn more about Rebol and Red join the [chat on Gitter](https://gitter.im/red/red). And if that is not working for you drop a mail to us on the [Red mailing list](mailto: red-langNO_SPAM@googlegroups.com) (remove NO_SPAM).
+
+Browse or ask questions on [Stack Overflow](stackoverflow.com/questions/tagged/red).
Maybe you want to try Red right away? That is possible on the [try Rebol and Red site](http://tryrebol.esperconsultancy.nl).
diff --git a/ro-ro/clojure-ro.html.markdown b/ro-ro/clojure-ro.html.markdown
new file mode 100644
index 00000000..32ba9620
--- /dev/null
+++ b/ro-ro/clojure-ro.html.markdown
@@ -0,0 +1,386 @@
+---
+language: clojure
+contributors:
+ - ["Adam Bard", "http://adambard.com/"]
+translators:
+ - ["Bogdan Paun", "http://twitter.com/bgdnpn"]
+filename: learnclojure-ro.clj
+lang: ro-ro
+---
+
+Clojure este un limbaj din familia Lisp dezvoltat pentru Masina Virtuala Java
+(Java Virtual Machine - JVM). Pune un accent mult mai puternic pe
+[programarea funcionala](https://en.wikipedia.org/wiki/Functional_programming)
+pura decat Common Lisp, dar include utilitare [STM](https://en.wikipedia.org/wiki/Software_transactional_memory)
+pentru a gestiona starea, atunci cand aceasta apare.
+
+Combinatia aceasta ii permite sa gestioneze procese concurente foarte usor,
+de multe ori in mod automat.
+
+(Aveti nevoie deo versiune Clojure 1.2 sau mai noua)
+
+
+```clojure
+; Comentariile incep cu punct si virgula.
+
+; Clojure se scrie in "forme", care nu sunt decat
+; liste de lucruri in interiorul unor paranteze, separate prin spatii.
+;
+; Reader-ul Clojure presupune ca primul lucru este o
+; functie sau un macro de apelat, iar restul sunt argumente.
+
+; Prima apelare intr-un fisier ar trebui sa fie ns, pentru a configura namespace-ul
+(ns learnclojure)
+
+; Mai multe exemple de baza:
+
+; str va crea un string folosint toate argumentele sale
+(str "Hello" " " "World") ; => "Hello World"
+
+; Matematica este simpla
+(+ 1 1) ; => 2
+(- 2 1) ; => 1
+(* 1 2) ; => 2
+(/ 2 1) ; => 2
+
+; Egalitatea este =
+(= 1 1) ; => true
+(= 2 1) ; => false
+
+; Folosim si not pentru logica
+(not true) ; => false
+
+; Formele imbricate functioneaza asa
+(+ 1 (- 3 2)) ; = 1 + (3 - 2) => 2
+
+; Tipuri
+;;;;;;;;;;;;;
+
+; Clojure foloseste sistemul de obiecte Java pentru boolean, string si numere.
+; Folositi `class` pentru a le inspecta.
+(class 1) ; Numere intregi sunt jaba.lang.Long, in mod normal
+(class 1.); Numelere reale sunt java.lang.Double
+(class ""); Sirurile de caractere sunt mere intre apostrofuri duble, si sunt java.lang.String
+(class false) ; Booleanele sunt java.lang.Boolean
+(class nil); Valoarea "null" este numita nil
+
+; Daca doriti sa creati o lista de date literale, folositi ' pentru a preveni
+; evaluarea ei
+'(+ 1 2) ; => (+ 1 2)
+; (prescurtare pentru (quote (+ 1 2)))
+
+; Puteti evalua o lista cu apostrof
+(eval '(+ 1 2)) ; => 3
+
+; Colectii & Secvente
+;;;;;;;;;;;;;;;;;;;
+
+; Listele sunt structuri de date lista-inlantuita, spre deosebire de Vectori
+; Vectorii si Listele sunt si ele clase Java!
+(class [1 2 3]); => clojure.lang.PersistentVector
+(class '(1 2 3)); => clojure.lang.PersistentList
+
+; O liste ar putea fi scrisa direct ca (1 2 3), dar trebuie sa folosim apostrof
+; pentru a preveni reader-ul din a crede ca e o functie.
+; De asemenea, (list 1 2 3) este acelasi lucru cu '(1 2 3)
+
+; "Colectiile" sunt grupuri de date
+; Atat listele cat si vectorii sunt colectii:
+(coll? '(1 2 3)) ; => true
+(coll? [1 2 3]) ; => true
+
+; "Sequences" (seqs) are abstract descriptions of lists of data.
+; Only lists are seqs.
+(seq? '(1 2 3)) ; => true
+(seq? [1 2 3]) ; => false
+
+; O secventa necesita un punct de intrare doar cand este accesata.
+; Deci, secventele, care pot fi "lazy" -- pot defini serii infinite:
+(range 4) ; => (0 1 2 3)
+(range) ; => (0 1 2 3 4 ...) (o serie infinita)
+(take 4 (range)) ; (0 1 2 3)
+
+; Folositi cons pentru a adauga un element la inceputul unei liste sau unui vector
+(cons 4 [1 2 3]) ; => (4 1 2 3)
+(cons 4 '(1 2 3)) ; => (4 1 2 3)
+
+; Conj va adauga un element unei colectii in modul cel mai eficient.
+; Pentru liste, aceastea sunt inserate la inceput. Pentru vectori, sunt inserate la final.
+(conj [1 2 3] 4) ; => [1 2 3 4]
+(conj '(1 2 3) 4) ; => (4 1 2 3)
+
+; Folositi concat pentru a uni liste sau vectori
+(concat [1 2] '(3 4)) ; => (1 2 3 4)
+
+; Folositi filter, map pentru a interactiona cu colectiile
+(map inc [1 2 3]) ; => (2 3 4)
+(filter even? [1 2 3]) ; => (2)
+
+; Folositi reduce pentru a le reduce
+(reduce + [1 2 3 4])
+; = (+ (+ (+ 1 2) 3) 4)
+; => 10
+
+; Reduce poate lua un argument valoare-initiala
+(reduce conj [] '(3 2 1))
+; = (conj (conj (conj [] 3) 2) 1)
+; => [3 2 1]
+
+; Functii
+;;;;;;;;;;;;;;;;;;;;;
+
+; Folositi fn pentru a crea functii noi. O functie returneaza intotdeauna
+; ultima sa instructiune.
+(fn [] "Hello World") ; => fn
+
+; (Necesita paranteze suplimentare pentru a fi apelata)
+((fn [] "Hello World")) ; => "Hello World"
+
+; Puteti crea o variabila folosind def
+(def x 1)
+x ; => 1
+
+; Atribuiti o functie unei variabile
+(def hello-world (fn [] "Hello World"))
+(hello-world) ; => "Hello World"
+
+; Puteti scurta acest proces folosind defn
+(defn hello-world [] "Hello World")
+
+; Elementul [] este lista de argumente a functiei.
+(defn hello [name]
+ (str "Hello " name))
+(hello "Steve") ; => "Hello Steve"
+
+; Puteti, de asemenea, folosi aceasta prescurtare pentru a crea functii:
+(def hello2 #(str "Hello " %1))
+(hello2 "Fanny") ; => "Hello Fanny"
+
+; Puteti avea si functii cu mai multe variabile
+(defn hello3
+ ([] "Hello World")
+ ([name] (str "Hello " name)))
+(hello3 "Jake") ; => "Hello Jake"
+(hello3) ; => "Hello World"
+
+; Functiile pot primi mai mult argumente dintr-o secventa
+(defn count-args [& args]
+ (str "Ati specificat " (count args) " argumente: " args))
+(count-args 1 2 3) ; => "Ati specificat 3 argumente: (1 2 3)"
+
+; Puteti interschimba argumente normale si argumente-secventa
+(defn hello-count [name & args]
+ (str "Salut " name ", ati specificat " (count args) " argumente extra"))
+(hello-count "Finn" 1 2 3)
+; => "Salut Finn, ai specificat 3 argumente extra"
+
+
+; Maps (Dictionare)
+;;;;;;;;;;
+
+; Hash maps si Array maps impart o interfata. Hash maps au cautari mai rapide
+; dar nu retin ordinea cheilor.
+(class {:a 1 :b 2 :c 3}) ; => clojure.lang.PersistentArrayMap
+(class (hash-map :a 1 :b 2 :c 3)) ; => clojure.lang.PersistentHashMap
+
+; Arraymaps de vin automat hashmaps prin majoritatea operatiilor
+; daca sunt suficient de mari, asa ca nu trebuie sa va preocupe acest aspect.
+
+; Dictionarele pot folosi orice tip hashable ca si cheie, dar cuvintele cheie
+; (keywords) sunt, de obicei, cele mai indicate. Cuvintele cheie sunt ca niste
+; siruri de caractere cu un plus de eficienta
+(class :a) ; => clojure.lang.Keyword
+
+(def stringmap {"a" 1, "b" 2, "c" 3})
+stringmap ; => {"a" 1, "b" 2, "c" 3}
+
+(def keymap {:a 1, :b 2, :c 3})
+keymap ; => {:a 1, :c 3, :b 2}
+
+; Apropo, virgulele sunt intotdeauna considerate echivalente cu spatiile.
+
+; Apelati un dictionar (map) ca pe o functie pentru a primi o valoare anume
+(stringmap "a") ; => 1
+(keymap :a) ; => 1
+
+; Cuvintele cheie pot fi folosite si ele pentru a "cere" dictionarului valorile lor!
+(:b keymap) ; => 2
+
+; Nu incercati asta cu siruri de caractere.
+;("a" stringmap)
+; => Exception: java.lang.String cannot be cast to clojure.lang.IFn
+
+; Recuperarea unei chei inexistente returneaza nil
+(stringmap "d") ; => nil
+
+; Folositi assoc pentru a adauga nou chei unui ductionar
+(def newkeymap (assoc keymap :d 4))
+newkeymap ; => {:a 1, :b 2, :c 3, :d 4}
+
+; Dar retineti ca tipurile sunt imuabile in clojure
+keymap ; => {:a 1, :b 2, :c 3}
+
+; Folositi dissoc pentru a elimina chei
+(dissoc keymap :a :b) ; => {:c 3}
+
+; Seturi (multimi)
+;;;;;;
+
+(class #{1 2 3}) ; => clojure.lang.PersistentHashSet
+(set [1 2 3 1 2 3 3 2 1 3 2 1]) ; => #{1 2 3}
+
+; Adaugati un membru cu conj
+(conj #{1 2 3} 4) ; => #{1 2 3 4}
+
+; Eliminati unul cu disj
+(disj #{1 2 3} 1) ; => #{2 3}
+
+; Testati existenta unuia folosing setul ca o functie:
+(#{1 2 3} 1) ; => 1
+(#{1 2 3} 4) ; => nil
+
+; Exista mai multe functii in namespace-ul clojure.sets.
+
+; Forme utile
+;;;;;;;;;;;;;;;;;
+
+; In Clojure constructiile logice sunt macro-uri, si arata ca
+; oricare alta forma
+(if false "a" "b") ; => "b"
+(if false "a") ; => nil
+
+; Folositi let pentru a crea atribuiri temporare
+(let [a 1 b 2]
+ (> a b)) ; => false
+
+; Grupati instructiuni impreuna folosind do
+(do
+ (print "Hello")
+ "World") ; => "World" (prints "Hello")
+
+; Functiile contin un do implicit
+(defn print-and-say-hello [name]
+ (print "Saying hello to " name)
+ (str "Hello " name))
+(print-and-say-hello "Jeff") ;=> "Hello Jeff" (prints "Saying hello to Jeff")
+
+; Asemanator pentru let
+(let [name "Urkel"]
+ (print "Saying hello to " name)
+ (str "Hello " name)) ; => "Hello Urkel" (prints "Saying hello to Urkel")
+
+; Module
+;;;;;;;;;;;;;;;
+
+; Folositi "use" pentru a recupera toate functiile dintr-un modul
+(use 'clojure.set)
+
+; Acum putem folosi operatiuni pe seturi
+(intersection #{1 2 3} #{2 3 4}) ; => #{2 3}
+(difference #{1 2 3} #{2 3 4}) ; => #{1}
+
+; Puteri de asemenea alege un subset al functiilor de importat
+(use '[clojure.set :only [intersection]])
+
+; Folositi require pentru a importa un modul
+(require 'clojure.string)
+
+; Folositi / pentru a apela functii dintr-un modul
+; In acest caz, modulul este clojure.string, iar functia este blank?
+(clojure.string/blank? "") ; => true
+
+; Puteti atribui un nume mai scurt unui modul in momentul importului
+(require '[clojure.string :as str])
+(str/replace "Acesta este un test." #"[a-o]" str/upper-case) ; => "ACEstA EstE un tEst."
+; (#"" denota o expresie regulata)
+
+; Puteti folsi require (sau use, contraindicat) dintr-un namespace folosind :require.
+; Nu trebuie sa folositi apostrof pentru module daca procedati astfel.
+(ns test
+ (:require
+ [clojure.string :as str]
+ [clojure.set :as set]))
+
+; Java
+;;;;;;;;;;;;;;;;;
+
+; Java are o biblioteca standard imensa si folositoare, deci
+; ar fi util sa stiti cum sa o folositi.
+
+; Folositi import pentru a incarca un modul Java
+(import java.util.Date)
+
+; Puteti importa si dintr-un namesopace.
+(ns test
+ (:import java.util.Date
+ java.util.Calendar))
+
+; Folositi numele clasei cu "." la final pentru a crea o noua instanta
+(Date.) ; <a date object>
+
+; Folositi . pentru a apela metode. Pe scurt, folositi ".method"
+(. (Date.) getTime) ; <a timestamp>
+(.getTime (Date.)) ; exact acelasi lucru.
+
+; Folositi / pentru a apela metode statice
+(System/currentTimeMillis) ; <a timestamp> (System este prezent intotdeauna)
+
+; Folositi doto pentru a gestiona clase (mutable) mai usor
+(import java.util.Calendar)
+(doto (Calendar/getInstance)
+ (.set 2000 1 1 0 0 0)
+ .getTime) ; => A Date. set to 2000-01-01 00:00:00
+
+; STM
+;;;;;;;;;;;;;;;;;
+
+; Software Transactional Memory este un mecanism folost de Clojure pentru
+; a gestiona stari persistente. Sunt putine instante in care este folosit.
+
+; Un atom este cel mai simplu exemplu. Dati-i o valoare initiala
+(def my-atom (atom {}))
+
+; Modificati-l cu swap!.
+; swap! primeste o functie si o apeleaza cu valoarea actuala a atomului
+; ca prim argument si orice argumente suplimentare ca al doilea
+(swap! my-atom assoc :a 1) ; Atomul ia valoarea rezultata din (assoc {} :a 1)
+(swap! my-atom assoc :b 2) ; Atomul ia valoarea rezultata din (assoc {:a 1} :b 2)
+
+; Folositi '@' pentru a dereferentia atomul si a-i recupera valoarea
+my-atom ;=> Atom<#...> (Returmeaza obiectul Atom)
+@my-atom ; => {:a 1 :b 2}
+
+; Aici avem un contor simplu care foloseste un atom
+(def counter (atom 0))
+(defn inc-counter []
+ (swap! counter inc))
+
+(inc-counter)
+(inc-counter)
+(inc-counter)
+(inc-counter)
+(inc-counter)
+
+@counter ; => 5
+
+; Alte utilizari ale STM sunt referintele (refs) si agentii (agents).
+; Refs: http://clojure.org/refs
+; Agents: http://clojure.org/agents
+```
+
+### Lectura suplimentara
+
+Lista nu este in niciun caz exhaustiva, dar speram ca este suficienta pentru
+a va oferi un inceput bun in Clojure.
+
+Clojure.org contine multe articole:
+[http://clojure.org/](http://clojure.org/)
+
+Clojuredocs.org contine documentatie cu exemple pentru majoritatea functiilor de baza:
+[http://clojuredocs.org/quickref/Clojure%20Core](http://clojuredocs.org/quickref/Clojure%20Core)
+
+4Clojure este o metoda excelenta pentru a exersa Clojure/FP (Programarea Functionala):
+[http://www.4clojure.com/](http://www.4clojure.com/)
+
+Clojure-doc.org are un numar de article pentru incepatori:
+[http://clojure-doc.org/](http://clojure-doc.org/)
diff --git a/ru-ru/brainfuck-ru.html.markdown b/ru-ru/brainfuck-ru.html.markdown
index 500ac010..fcee185f 100644
--- a/ru-ru/brainfuck-ru.html.markdown
+++ b/ru-ru/brainfuck-ru.html.markdown
@@ -11,6 +11,8 @@ lang: ru-ru
Brainfuck (пишется маленькими буквами, кроме начала предложения) - это очень
маленький Тьюринг-полный язык программирования лишь с 8 командами.
+Вы можете испытать brainfuck в вашем браузере с помощью [brainfuck-визуализатора](http://fatiherikli.github.io/brainfuck-visualizer/).
+
```
Любой символ, кроме "><+-.,[]", игнорируется, за исключением кавычек.
diff --git a/ru-ru/objective-c-ru.html.markdown b/ru-ru/objective-c-ru.html.markdown
index 3246de82..ddff2e5c 100644
--- a/ru-ru/objective-c-ru.html.markdown
+++ b/ru-ru/objective-c-ru.html.markdown
@@ -1,106 +1,171 @@
---
language: Objective-C
-filename: LearnObjectiveC.m
+filename: LearnObjectiveC-ru.m
contributors:
- ["Eugene Yagrushkin", "www.about.me/yagrushkin"]
- ["Yannick Loriot", "https://github.com/YannickL"]
+ - ["Levi Bostian", "https://github.com/levibostian"]
translators:
- ["Evlogy Sutormin", "http://evlogii.com"]
+ - ["Dmitry Bessonov", "https://github.com/TheDmitry"]
lang: ru-ru
---
-Objective-C — компилируемый объектно-ориентированный язык программирования, используемый корпорацией Apple,
-построенный на основе языка Си и парадигм Smalltalk.
-В частности, объектная модель построена в стиле Smalltalk — то есть объектам посылаются сообщения.
+Objective-C — основной язык программирования, используемый корпорацией Apple
+для операционных систем OS X и iOS и их соответствующих фреймворках Cocoa и
+Cocoa Touch.
+Он является объектно-ориентированным языком программирования общего назначения,
+который добавляет обмен сообщениями в Smalltalk-стиле к языку программирования C.
```objective_c
-// Однострочный комментарий
+// Однострочные комментарии начинаются с //
/*
-Многострочный
-комментарий
+Так выглядят многострочные комментарии
*/
-// Импорт файлов фреймворка Foundation с помощью #import
+// Импорт заголовочных файлов фреймворка Foundation с помощью #import
+// Используйте <>, чтобы импортировать глобальные файлы (обычно фреймворки)
+// Используйте "", чтобы импортировать локальные файлы (из проекта)
#import <Foundation/Foundation.h>
#import "MyClass.h"
-// Точка входа в программу это функция main,
-// которая возвращает целый тип integer
+// Если вы включили модули для iOS >= 7.0 или OS X >= 10.9 проектов в
+// Xcode 5, вы можете импортировать фреймворки подобным образом:
+@import Foundation;
+
+// Точка входа в программу - это функция main,
+// которая возвращает целый тип
int main (int argc, const char * argv[])
{
- // Создание autorelease pool для управления памятью
+ // Создание autorelease pool для управления памятью в программе
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
-
+ // В место этого воспользуйтесь @autoreleasepool, если вы используете
+ // автоматический подсчет ссылок (ARC)
+ @autoreleasepool {
+
// Используйте NSLog для печати в консоль
- NSLog(@"Hello World!"); // Напечатает строку "Hello World!"
+ NSLog(@"Привет Мир!"); // Напечатает строку "Привет Мир!"
///////////////////////////////////////
// Типы и переменные
///////////////////////////////////////
- // Простое объявление
+ // Объявление простых типов
int myPrimitive1 = 1;
long myPrimitive2 = 234554664565;
+ // Объявление объектов
// Помещайте * в начало названия объекта для строго типизированного объявления
MyClass *myObject1 = nil; // Строгая типизация
id myObject2 = nil; // Слабая типизация
-
- NSLog(@"%@ and %@", myObject1, [myObject2 description]); // напечатает "(null) and (null)"
// %@ – это объект
- // 'description' это общий для всех объектов метод вывода данных
+ // 'description' - это общий для всех объектов метод вывода данных
+ NSLog(@"%@ and %@", myObject1, [myObject2 description]); // напечатает "(null) and (null)"
// Строка
- NSString *worldString = @"World";
- NSLog(@"Hello %@!", worldString); // напечатает "Hello World!"
+ NSString *worldString = @"Мир";
+ NSLog(@"Привет %@!", worldString); // напечатает "Привет Мир!"
+ // NSMutableString - это изменяемая версия NSString-объекта
+ NSMutableString *mutableString = [NSMutableString stringWithString:@"Привет"];
+ [mutableString appendString:@" Мир!"];
+ NSLog(@"%@", mutableString); // напечатает => "Привет Мир!"
// Символьные литералы
NSNumber *theLetterZNumber = @'Z';
- char theLetterZ = [theLetterZNumber charValue];
+ char theLetterZ = [theLetterZNumber charValue]; // или 'Z'
NSLog(@"%c", theLetterZ);
- // Целочисленный литералы
+ // Целочисленные литералы
NSNumber *fortyTwoNumber = @42;
- int fortyTwo = [fortyTwoNumber intValue];
+ int fortyTwo = [fortyTwoNumber intValue]; // или '42'
NSLog(@"%i", fortyTwo);
// Беззнаковый целочисленный литерал
NSNumber *fortyTwoUnsignedNumber = @42U;
- unsigned int fortyTwoUnsigned = [fortyTwoUnsignedNumber unsignedIntValue];
+ unsigned int fortyTwoUnsigned = [fortyTwoUnsignedNumber unsignedIntValue]; // или 42
NSLog(@"%u", fortyTwoUnsigned);
NSNumber *fortyTwoShortNumber = [NSNumber numberWithShort:42];
- short fortyTwoShort = [fortyTwoShortNumber shortValue];
+ short fortyTwoShort = [fortyTwoShortNumber shortValue]; // или 42
NSLog(@"%hi", fortyTwoShort);
+ NSNumber *fortyOneShortNumber = [NSNumber numberWithShort:41];
+ unsigned short fortyOneUnsigned = [fortyOneShortNumber unsignedShortValue]; // или 41
+ NSLog(@"%u", fortyOneUnsigned);
+
NSNumber *fortyTwoLongNumber = @42L;
- long fortyTwoLong = [fortyTwoLongNumber longValue];
+ long fortyTwoLong = [fortyTwoLongNumber longValue]; // или 42
NSLog(@"%li", fortyTwoLong);
+
+ NSNumber *fiftyThreeLongNumber = @53L;
+ unsigned long fiftyThreeUnsigned = [fiftyThreeLongNumber unsignedLongValue]; // или 53
+ NSLog(@"%lu", fiftyThreeUnsigned);
// Вещественный литерал
NSNumber *piFloatNumber = @3.141592654F;
- float piFloat = [piFloatNumber floatValue];
- NSLog(@"%f", piFloat);
+ float piFloat = [piFloatNumber floatValue]; // или 3.141592654f
+ NSLog(@"%f", piFloat); // напечатает 3.141592654
+ NSLog(@"%5.2f", piFloat); // напечатает " 3.14"
NSNumber *piDoubleNumber = @3.1415926535;
- double piDouble = [piDoubleNumber doubleValue];
+ double piDouble = [piDoubleNumber doubleValue]; // или 3.1415926535
NSLog(@"%f", piDouble);
-
+ NSLog(@"%4.2f", piDouble); // напечатает "3.14"
+
+ // NSDecimalNumber - это класс с фиксированной точкой, который является
+ // более точным, чем float или double
+ NSDecimalNumber *oneDecNum = [NSDecimalNumber decimalNumberWithString:@"10.99"];
+ NSDecimalNumber *twoDecNum = [NSDecimalNumber decimalNumberWithString:@"5.002"];
+ // NSDecimalNumber не способен использовать стандартные +, -, *, / операторы,
+ // поэтому он предоставляет свои собственные:
+ [oneDecNum decimalNumberByAdding:twoDecNum];
+ [oneDecNum decimalNumberBySubtracting:twoDecNum];
+ [oneDecNum decimalNumberByMultiplyingBy:twoDecNum];
+ [oneDecNum decimalNumberByDividingBy:twoDecNum];
+ NSLog(@"%@", oneDecNum); // напечатает "10.99", т.к. NSDecimalNumber - изменяемый
+
// BOOL (булевый) литерал
NSNumber *yesNumber = @YES;
NSNumber *noNumber = @NO;
-
+ // или
+ BOOL yesBool = YES;
+ BOOL noBool = NO;
+ NSLog(@"%i", yesBool); // напечатает 1
+
// Массив
+ // Может содержать различные типы данных, но должен быть объектом Objective-C
NSArray *anArray = @[@1, @2, @3, @4];
NSNumber *thirdNumber = anArray[2];
- NSLog(@"Third number = %@", thirdNumber); // Print "Third number = 3"
+ NSLog(@"Третье число = %@", thirdNumber); // Напечатает "Третье число = 3"
+ // NSMutableArray - это изменяемая версия NSArray, допускающая вам изменять
+ // элементы в массиве и расширять или сокращать массив.
+ // Удобный, но не эффективный как NSArray.
+ NSMutableArray *mutableArray = [NSMutableArray arrayWithCapacity:2];
+ [mutableArray addObject:@"Привет"];
+ [mutableArray addObject:@"Мир"];
+ [mutableArray removeObjectAtIndex:0];
+ NSLog(@"%@", [mutableArray objectAtIndex:0]); // напечатает "Мир"
// Словарь
- NSDictionary *aDictionary = @{ @"key1" : @"value1", @"key2" : @"value2" };
- NSObject *valueObject = aDictionary[@"A Key"];
- NSLog(@"Object = %@", valueObject); // Напечатает "Object = (null)"
-
+ NSDictionary *aDictionary = @{ @"ключ1" : @"значение1", @"ключ2" : @"значение2" };
+ NSObject *valueObject = aDictionary[@"Ключ"];
+ NSLog(@"Объект = %@", valueObject); // Напечатает "Объект = (null)"
+ // NSMutableDictionary тоже доступен, как изменяемый словарь
+ NSMutableDictionary *mutableDictionary = [NSMutableDictionary dictionaryWithCapacity:2];
+ [mutableDictionary setObject:@"значение1" forKey:@"ключ1"];
+ [mutableDictionary setObject:@"значение2" forKey:@"ключ2"];
+ [mutableDictionary removeObjectForKey:@"ключ1"];
+
+ // Множество
+ NSSet *set = [NSSet setWithObjects:@"Привет", @"Привет", @"Мир", nil];
+ NSLog(@"%@", set); // напечатает {(Hello, World)} (порядок может отличаться)
+ // NSMutableSet тоже доступен, как изменяемое множество
+ NSMutableSet *mutableSet = [NSMutableSet setWithCapacity:2];
+ [mutableSet addObject:@"Привет"];
+ [mutableSet addObject:@"Привет"];
+ NSLog(@"%@", mutableSet); // напечатает => {(Привет)}
+
///////////////////////////////////////
// Операторы
///////////////////////////////////////
@@ -124,13 +189,13 @@ int main (int argc, const char * argv[])
// Условный оператор
if (NO)
{
- NSLog(@"I am never run");
+ NSLog(@"Я никогда не выполнюсь");
} else if (0)
{
- NSLog(@"I am also never run");
+ NSLog(@"Я тоже никогда не выполнюсь");
} else
{
- NSLog(@"I print");
+ NSLog(@"Я напечатаюсь");
}
// Ветвление с множественным выбором
@@ -138,15 +203,15 @@ int main (int argc, const char * argv[])
{
case 0:
{
- NSLog(@"I am never run");
+ NSLog(@"Я никогда не выполнюсь");
} break;
case 1:
{
- NSLog(@"I am also never run");
+ NSLog(@"Я тоже никогда не выполнюсь");
} break;
default:
{
- NSLog(@"I print");
+ NSLog(@"Я напечатаюсь");
} break;
}
@@ -170,7 +235,7 @@ int main (int argc, const char * argv[])
// "2,"
// "3,"
- // // Цикл просмотра
+ // Цикл просмотра
NSArray *values = @[@0, @1, @2, @3];
for (NSNumber *value in values)
{
@@ -180,20 +245,32 @@ int main (int argc, const char * argv[])
// "2,"
// "3,"
+ // Цикл for для объектов. Может использоваться с любым объектом Objective-C
+ for (id item in values) {
+ NSLog(@"%@,", item);
+ } // напечатает => "0,"
+ // "1,"
+ // "2,"
+ // "3,"
+
// Обработка исключений
@try
{
// Ваше исключение здесь
@throw [NSException exceptionWithName:@"FileNotFoundException"
- reason:@"File Not Found on System" userInfo:nil];
+ reason:@"Файл не найден в системе" userInfo:nil];
} @catch (NSException * e)
{
- NSLog(@"Exception: %@", e);
+ NSLog(@"Исключение: %@", e);
} @finally
{
- NSLog(@"Finally");
- } // => напечатает "Exception: File Not Found on System"
- // "Finally"
+ NSLog(@"В конце отводится время для очистки.");
+ } // => напечатает "Исключение: Файл не найден в системе"
+ // "В конце отводится время для очистки."
+
+ // NSError - это полезные объекты для аргументов функции, чтобы заполнить их
+ // пользовательскими ошибками.
+ NSError *error = [NSError errorWithDomain:@"Неправильный эл. адрес." code:4 userInfo:nil];
///////////////////////////////////////
// Объекты
@@ -203,13 +280,16 @@ int main (int argc, const char * argv[])
// Объект не является полнофункциональным пока обе части не выполнятся.
MyClass *myObject = [[MyClass alloc] init];
- // В Objective-C можель ООП базируется на передаче сообщений.
+ // В Objective-C модель ООП базируется на передаче сообщений.
// В Objective-C Вы не просто вызваете метод; вы посылаете сообщение.
- [myObject instanceMethodWithParameter:@"Steve Jobs"];
+ [myObject instanceMethodWithParameter:@"Стив Джобс"];
// Очищайте память, перед завершением работы программы.
[pool drain];
+ // Конец @autoreleasepool
+ }
+
// Конец программы.
return 0;
}
@@ -222,63 +302,144 @@ int main (int argc, const char * argv[])
// Синтаксис объявления:
// @interface ИмяКласса : ИмяКлассаРодителя <ИмплементируемыеПротоколы>
// {
-// Объявление переменных;
+// тип имя; <= Объявление переменных;
// }
+// @property тип имя; <= объявление свойств
// -/+ (тип) Объявление метода(ов).
// @end
-
-
-@interface MyClass : NSObject <MyProtocol>
+@interface MyClass : NSObject <MyProtocol> // NSObject - это базовый класс в Objective-C.
{
- int count;
- id data;
+ // Объявления экземпляров переменных (может существовать в файлах интерфейса или реализвации)
+ int count; // По умолчанию защищенный доступ.
+ @private id data; // Приватный доступ (Намного удобнее объявлять в файле реализации)
NSString *name;
}
-// При объявлении свойств сразу генерируются геттер и сеттер
-@property int count;
-@property (copy) NSString *name; // Скопировать объект в ходе присвоения.
-@property (readonly) id data; // Генерация только геттера
+// Удобное обозначение для переменных с открытым (public) доступом
+// автоматически генерируется сеттер-метод
+// По умолчанию название сеттер-метода начинается с 'set' с последующим именем
+// переменной из @property
+@property int propInt; // Имя сеттер-метода = 'setPropInt'
+@property (copy) id copyId; // (copy) => Скопировать объект в ходе присвоения.
+// (readonly) => Не позволяет установить значение вне @interface
+@property (readonly) NSString *roString; // Используйте @synthesize
+ // в @implementation, чтобы создать аксессор
+// Вы можете настроить геттер и сеттер имена вместо используемого 'set'-имени по умолчанию:
+@property (getter=lengthGet, setter=lengthSet:) int length;
// Методы
-+/- (return type)methodSignature:(Parameter Type *)parameterName;
++/- (возвращаемый тип)сигнатураМетода:(Параметр типа *)имяПараметра;
// + для методов класса
+ (NSString *)classMethod;
++ (MyClass *)myClassFromHeight:(NSNumber *)defaultHeight;
-// - для метода объекта
+// - для методов объекта
- (NSString *)instanceMethodWithParameter:(NSString *)string;
- (NSNumber *)methodAParameterAsString:(NSString*)string andAParameterAsNumber:(NSNumber *)number;
-@end
+// Методы-конструктор с аргументом:
+- (id)initWithDistance:(int)defaultDistance;
+// В Objective-C имена методов очень описательные. Всегда имена методов соответствуют своим аргументам
+
+@end // Устанавливает конец интерфейса (interface)
+
+
+// Чтобы обратиться к открытым (public) переменным из файла реализации, @property генерирует сеттер-метод
+// автоматически. Название метода - это 'set' с последующим именем переменной из @property:
+MyClass *myClass = [[MyClass alloc] init]; // создает экземпляр объекта класса MyClass
+[myClass setCount:10];
+NSLog(@"%d", [myClass count]); // напечатает => 10
+// Или используйте свой геттер и сеттер методы, которые определены в @interface:
+[myClass lengthSet:32];
+NSLog(@"%i", [myClass lengthGet]); // напечатает => 32
+// Для удобства вы можете использовать точечную нотацию,
+// чтобы установить и получить доступ к переменным объекта:
+myClass.count = 45;
+NSLog(@"%i", myClass.count); // напечатает => 45
+
+// Вызов методов класса:
+NSString *classMethodString = [MyClass classMethod];
+MyClass *classFromName = [MyClass myClassFromName:@"Привет"];
+
+// Вызов методов экземпляра:
+MyClass *myClass = [[MyClass alloc] init]; // Создает экземпляр объекта MyClass
+NSString *stringFromInstanceMethod = [myClass instanceMethodWithParameter:@"Привет"];
+
+// Селекторы
+// Это способ динамически представить методы. Используйте для вызова методов класса, передайте методы
+// через функции, чтобы сказать другим классам, что они должны вызвать их и сохранить методы
+// как переменные
+// SEL - это тип данных. @selector() вернет селектор из предоставленного имени метода
+// methodAParameterAsString:andAParameterAsNumber: - это название метода в MyClass
+SEL selectorVar = @selector(methodAParameterAsString:andAParameterAsNumber:);
+if ([myClass respondsToSelector:selectorVar]) { // Проверяет содержит ли класс метод
+ // Необходимо установить все аргументы метода в один объект, что отправить его в performSelector-функцию
+ NSArray *arguments = [NSArray arrayWithObjects:@"Привет", @4, nil];
+ [myClass performSelector:selectorVar withObject:arguments]; // Вызывает метод
+} else {
+ // NSStringFromSelector() вернет NSString название метода полученного селектором
+ NSLog(@"MyClass не содержит метод: %@", NSStringFromSelector(selectedVar));
+}
// Имплементируйте методы в файле МойКласс.m:
+@implementation MyClass {
+ long distance; // Переменная экземпляра с закрытым (private) доступом
+ NSNumber height;
+}
-@implementation MyClass
+// To access a public variable from the interface file, use '_' followed by variable name:
+_count = 5; // References "int count" from MyClass interface
+// Access variables defined in implementation file:
+distance = 18; // References "long distance" from MyClass implementation
+// To use @property variable in implementation, use @synthesize to create accessor variable:
+@synthesize roString = _roString; // _roString available now in @implementation
+
+// Called before calling any class methods or instantiating any objects
++ (void)initialize
+{
+ if (self == [MyClass class]) {
+ distance = 0;
+ }
+}
// Вызывается при высвобождении памяти под объектом
- (void)dealloc
{
+ [height release]; // Если не используется ARC, убедитесь в освобождении переменных объекта класса
+ [super dealloc]; // and call parent class dealloc
}
-// Конструкторы – это способ осздания объектов класса.
-// Это обычный конструктор вызываемый при создании объекта клсааа.
+// Конструкторы – это способ создания объектов класса.
+// Это конструктор по умолчанию, который вызывается, когда объект инициализируется.
- (id)init
{
- if ((self = [super init]))
+ if ((self = [super init])) // 'super' используется для того, чтобы обратиться к методам родительского класса
{
- self.count = 1;
+ self.count = 1; // 'self' используется для вызова самого себя
}
return self;
}
+// Можно создать конструкторы, которые содержат аргументы:
+- (id)initWithDistance:(int)defaultDistance
+{
+ distance = defaultDistance;
+ return self;
+}
+ (NSString *)classMethod
{
return [[self alloc] init];
}
++ (MyClass *)myClassFromHeight:(NSNumber *)defaultHeight
+{
+ height = defaultHeight;
+ return [[self alloc] init];
+}
+
- (NSString *)instanceMethodWithParameter:(NSString *)string
{
- return @"New string";
+ return @"Новая строка";
}
- (NSNumber *)methodAParameterAsString:(NSString*)string andAParameterAsNumber:(NSNumber *)number
@@ -286,23 +447,364 @@ int main (int argc, const char * argv[])
return @42;
}
+// Objective-C не содержит объявление приватных методов, но вы можете имитировать их.
+// Чтобы сымитировать приватный метод, создайте метод в @implementation, но не в @interface.
+- (NSNumber *)secretPrivateMethod {
+ return @72;
+}
+[self secretPrivateMethod]; // Вызывает приватный метод
+
// Методы объявленные в МyProtocol (см. далее)
- (void)myProtocolMethod
{
- // имплементация
+ // операторы
}
+@end // Устанавливает конец реализации (implementation)
+
+///////////////////////////////////////
+// Категории
+///////////////////////////////////////
+// Категория - это группа методов предназначенные для того, чтобы расширить класс. Они позволяют вам добавить новые методы
+// к существующему классу для организационных целей. Это не стоит путать с подклассами.
+// Подклассы предназначены для ИЗМЕНЕНИЯ функциональности объекта пока как категории ДОБАВЛЯЮТ
+// функциональность в объект.
+// Категории позволяют вам:
+// -- Добавлять методы в существующий класс для организационных целей.
+// -- Допускает вам расширять объекты Objective-C классов (напр.: NSString) добавить ваши собственные методы.
+// -- Добавляет возможность создать защищенные и закрытые методы классов.
+// ПРИМЕЧАНИЕ: Не переопределяйте методы базового класса в категории даже если у вас есть возможность это сделать
+// to. Переопределение методов может привести к ошибкам компиляции позднее между различными категориями и это
+// нарушает цель категорий, чтобы добавлять только функциональность. Вместо этого подклассы переопределяют методы.
+
+// Здесь простой базовый класс Car.
+@interface Car : NSObject
+
+@property NSString *make;
+@property NSString *color;
+
+- (void)turnOn;
+- (void)accelerate;
+
@end
-/*
- * Протокол объявляет методы которые должны быть имплементированы
- * Протокол не является классом. Он просто определяет интерфейс,
- * который должен быть имплементирован.
- */
+// И реализация базового класса Car:
+#import "Car.h"
+
+@implementation Car
+
+@synthesize make = _make;
+@synthesize color = _color;
+
+- (void)turnOn {
+ NSLog(@"Машина заведена.");
+}
+- (void)accelerate {
+ NSLog(@"Ускорение.");
+}
-@protocol MyProtocol
- - (void)myProtocolMethod;
@end
+
+// Теперь, если мы хотели создать грузовой объект, мы должны вместо создания подкласса класса Car, как это будет
+// изменять функциональность Car чтобы вести себя подобно грузовику. Но давайте посмотрим, если мы хотим только добавить
+// функциональность в существующий Car. Хороший пример должен быть чистить автомобиль. Итак мы создадим
+// категорию для добавления его очистительных методов:
+// @interface ИмяФайла: Car+Clean.h (ИмяБазовогоКласса+ИмяКатегории.h)
+#import "Car.h" // Убедитесь в том, что базовый класс импортирован для расширения.
+
+@interface Car (Clean) // Имя категории внутри (), следующие после имени базового класса.
+
+- (void)washWindows; // Названия новых методов, которые мы добавляем в наш объект Car.
+- (void)wax;
+
+@end
+
+// @implementation имя файла: Car+Clean.m (ИмяБазовогоКласса+ИмяКатегории.m)
+#import "Car+Clean.h" // Импортируйте Очистку файл @interface категории.
+
+@implementation Car (Clean)
+
+- (void)washWindows {
+ NSLog(@"Окна промыли.");
+}
+- (void)wax {
+ NSLog(@"Воском натерли.");
+}
+
+@end
+
+// Любой экземпляр объекта Car имеет возможность воспользоваться категорией. Все, что нужно сделать, это импортировать ее:
+#import "Car+Clean.h" // Импортировать как множество различных категорий, как вы хотите использовать.
+#import "Car.h" // Кроме того, необходимо импортировать базовый класс для использования его оригинальные функциональные возможности.
+
+int main (int argc, const char * argv[]) {
+ @autoreleasepool {
+ Car *mustang = [[Car alloc] init];
+ mustang.color = @"Красный";
+ mustang.make = @"Форд";
+
+ [mustang turnOn]; // Используйте методы из базового класса Car.
+ [mustang washWindows]; // Используйте методы категории Clean из класса Car.
+ }
+ return 0;
+}
+
+// Objective-C не поддерживает объявление защищенных методов, но вы можете имитировать их.
+// Создайте категорию, содержащую все защищенные методы, затем импортируйте ее только в
+// @implementation-файле класса, относящегося к классу Car:
+@interface Car (Protected) // Наименование категории с помощью 'Protected'
+// дает знать, что методы защищенные.
+
+- (void)lockCar; // Здесь перечисляются методы, которые должны быть созданы
+// только с помощью объектов класса Car.
+
+@end
+// Чтобы воспользоваться защищенными методами, импортируйте категорию, затем реализуйте методы:
+#import "Car+Protected.h" // Запомните, делайте импорт только в файле с @implementation.
+
+@implementation Car
+
+- (void)lockCar {
+ NSLog(@"Машина закрыта."); // Экземпляры класса Car не могут использовать
+// метод lockCar, потому что он объявлен не в @interface.
+}
+
+@end
+
+///////////////////////////////////////
+// Расширения
+///////////////////////////////////////
+// Расширения позволяют вам переопределять атрибуты свойств и методов
+// с открытым доступом в @interface.
+// @interface имя файла: Shape.h
+@interface Shape : NSObject // Расширение базового класса Shape переопределяет
+ // свои поля ниже.
+
+@property (readonly) NSNumber *numOfSides;
+
+- (int)getNumOfSides;
+
+@end
+// Вы можете переопределить numOfSides-переменную или getNumOfSides-метод
+// Внесение изменений с помощью расширения делается следующим образом:
+// @implementation имя файла: Shape.m
+#import "Shape.h"
+// Расширения "живут" в том же файле, где и @implementation класса.
+@interface Shape () // После имени базового класса скобки () объявляют расширение.
+
+@property (copy) NSNumber *numOfSides; // Делает numOfSides-свойство
+ // копирующим (copy) вместо свойства только для чтения (readonly).
+-(NSNumber)getNumOfSides; // Изменяет метод getNumOfSides так,
+ // чтобы он возвращал объект NSNumber вместо типа int.
+-(void)privateMethod; // Вы также можете создать новый закрытый метод
+ // внутри расширения.
+
+@end
+// Главный @implementation:
+@implementation Shape
+
+@synthesize numOfSides = _numOfSides;
+
+-(NSNumber)getNumOfSides { // Все операторы внутри расширения
+ // должны быть в @implementation.
+ return _numOfSides;
+}
+-(void)privateMethod {
+ NSLog(@"Закрытый метод созданный с помощью расширения.");
+ NSLog(@"Экземпляр Shape не может вызвать этот метод.");
+}
+
+@end
+
+///////////////////////////////////////
+// Протоколы
+///////////////////////////////////////
+// Протокол объявляет методы, которые могут быть реализованы с помощью
+// любого класса. Протоколы сами по себе не являются классами. Они просто
+// определяют интерфейс, который должен быть реализован другими объектами.
+// @protocol имя файла: "CarUtilities.h"
+@protocol CarUtilities <NSObject> // <NSObject> => Имя другого протокола,
+// который включен в этот протокол.
+ @property BOOL engineOn; // Адаптирующий класс должен определить
+// все @synthesize для @property и
+ - (void)turnOnEngine; // определить все методы.
+@end
+// Ниже пример класса, реализующий протокол.
+#import "CarUtilities.h" // Импорт файла с @protocol.
+
+@interface Car : NSObject <CarUtilities> // Внутри <> имя протокола
+// Здесь вам не нужно указывать @property или имена методов для CarUtilities.
+// Они нужны только для @implementation.
+- (void)turnOnEngineWithUtilities:(id <CarUtilities>)car; // Вы также можете
+// указать тип протоколов.
+@end
+// В @implementation нужно реализовать все @property и методы для протокола.
+@implementation Car : NSObject <CarUtilities>
+
+@synthesize engineOn = _engineOn; // Создайте @synthesize-оператор
+// для "@property engineOn".
+
+- (void)turnOnEngine { // Реализуйте turnOnEngine как вам угодно. Протоколы
+// не определят,
+ _engineOn = YES; // как вам реализовать метод, он только требует,
+// чтобы вы реализовали его.
+}
+// Вы можете использовать протокол как данные, если вы знаете, что он реализует
+// методы и переменные.
+- (void)turnOnEngineWithCarUtilities:(id <CarUtilities>)objectOfSomeKind {
+ [objectOfSomeKind engineOn]; // У вас есть доступ к переменным объекта
+ [objectOfSomeKind turnOnEngine]; // и методам.
+ [objectOfSomeKind engineOn]; // Может или не может быть значение YES. Класс
+// реализует как нужно.
+}
+
+@end
+// Экземпляры класса Car сейчас имеют доступ к протоколу.
+Car *carInstance = [[Car alloc] init];
+[carInstance setEngineOn:NO];
+[carInstance turnOnEngine];
+if ([carInstance engineOn]) {
+ NSLog(@"Двигатель запущен."); // напечатает => "Двигатель запущен."
+}
+// Убедитись в том, что объект типа 'id' реализует протокол перед вызовом методов протокола:
+if ([myClass conformsToProtocol:@protocol(CarUtilities)]) {
+ NSLog(@"Не работает, т.к. класс MyClass не реализует протокол CarUtilities.");
+} else if ([carInstance conformsToProtocol:@protocol(CarUtilities)]) {
+ NSLog(@"Работает как класс Car, который реализует протокол CarUtilities.");
+}
+// Категории тоже могут реализовать протоколы:
+// @interface Car (CarCategory) <CarUtilities>
+// Вы можете реализовать много протоколов:
+// @interface Car : NSObject <CarUtilities, CarCleaning>
+// ЗАМЕЧАНИЕ: Если два или более протоколов полагаются друг на друга,
+// убедитесь, что они ранее объявлены:
+#import "Brother.h"
+
+@protocol Brother; // Оператор раннего объявления. Без него компилятор
+// выдаст ошибку.
+
+@protocol Sister <NSObject>
+
+- (void)beNiceToBrother:(id <Brother>)brother;
+
+@end
+
+// Рассмотрите проблему, где протокол Sister полагается на протокол Brother,
+// а Brother полагается на Sister.
+#import "Sister.h"
+
+@protocol Sister; // Эти строки предотвращают рекурсию, решая этим проблему.
+
+@protocol Brother <NSObject>
+
+- (void)beNiceToSister:(id <Sister>)sister;
+
+@end
+
+
+///////////////////////////////////////
+// Блоки
+///////////////////////////////////////
+// Блоки - это операторы кода, наподобие функции, которую возможно использовать
+// как данные.
+// Ниже простой блок с целочисленным аргументом, и возвращает аргумент плюс 4.
+int (^addUp)(int n); // Объявите переменную, чтобы сохранить блок.
+void (^noParameterBlockVar)(void); // Пример объявления блока-переменной
+// без аргументов.
+// Блоки имею доступ к переменным в той же области видимости. Но переменные
+// будут только для чтения, и значения переданных в блок станут значением
+// переменной, когда блок создастся.
+int outsideVar = 17; // Если мы редактируем outsideVar после объявления addUp,
+// outsideVar остается равным 17.
+__block long mutableVar = 3; // __block делают переменные перезаписываемыми
+// в блоках, в отличие от outsideVar.
+addUp = ^(int n) { // Удалите (int n) в блоке, чтобы не принимать
+// какие-либо параметры.
+ NSLog(@"Вы можете иметь столько строк в блоке, сколько вы хотели.");
+ NSSet *blockSet; // Также вы можете объявить локальные переменные.
+ mutableVar = 32; // Присвоить новое значение к __block-переменной.
+ return n + outsideVar; // Необязательный оператор возврата.
+}
+int addUp = add(10 + 16); // Вызывает блок кода с аргументами.
+// Блоки часто используются как аргументы функции, чтобы позже их вызвать, или
+// как функции обратного вызова (callbacks).
+@implementation BlockExample : NSObject
+
+- (void)runBlock:(void (^)(NSString))block {
+ NSLog(@"В аргументе блок ничего не возвращает и принимает NSString-объект.");
+ block(@"Аргумент передан блоку на исполнение."); // Вызов блока.
+}
+
+@end
+
+
+///////////////////////////////////////
+// Управление памятью
+///////////////////////////////////////
+/*
+Для каждого объекта, используемого в приложении, должна быть выделена память
+для таких объектов. Когда приложение прекращает использование объекта, память
+должна быть освобождена, чтобы гарантировать эффективность приложения.
+Objective-C не использует сборщик мусора, а вместо этого применяет подсчет ссылок.
+Пока существует по крайней мере одна ссылка на объект (также называется
+"владение" объектом), то объект будет доступен к использованию (еще известно
+как "право владения").
+
+Когда экземпляр владеет объектом, его ссылка увеличивается на один. Когда
+объекта освобождается, счетчик ссылки уменьшается на один. Когда счетчик ссылки
+равен нулю, объект удаляется из памяти.
+
+Над всеми объектами взаимодействуют, следуя паттерну:
+(1) создание объекта, (2) использование объекта, (3) затем освобождение объекта из памяти.
+*/
+
+MyClass *classVar = [MyClass alloc]; // 'alloc' устанавливает счетчик ссылки
+// объекта classVar на 1 и возвращает указатель на объект.
+[classVar release]; // Уменьшает счетчик ссылки объекта classVar
+// 'retain' заявляет право собственности на существующий экземпляр объекта
+// и увеличивает счетчик ссылки. Затем вернет указатель на объект.
+MyClass *newVar = [classVar retain]; // Если classVar освободится, объект
+// останется в памяти, потому что newVar - владелец
+[classVar autorelease]; // Удалит право на владение объектом
+// в конце @autoreleasepool блока. Вернет указатель на объект.
+
+// @property может использовать 'retain' и 'assign' тоже для маленького
+// удобного определения
+@property (retain) MyClass *instance; // Освободит старое значение и сохранит
+// одно новое (строгая ссылка)
+@property (assign) NSSet *set; // Укажет на новое значение
+// без сохранения/освобождения старого значения (слабая ссылка)
+
+// Автоматический подсчет ссылок (ARC)
+// Управление памятью может быть трудным, поэтому в Xcode 4.2 и iOS 4 введен
+// автоматический подсчет ссылок (ARC).
+// ARC - это особенность компилятора, который помещает "retain", "release"
+// и "autorelease" автоматически за вас тогда, когда используется ARC,
+// вам не нужно больше обращаться к "retain", "relase" или "autorelease"
+MyClass *arcMyClass = [[MyClass alloc] init];
+// ... код, использующий объект arcMyClass
+// Без ARC, вам нужно было бы вызвать: [arcMyClass release] после того, как вы
+// завершите работу с объектом arcMyClass. Но с ARC,
+// теперь этого не нужно делать. Он будет помещать release-вызов за вас
+
+// Что касается 'assign' и 'retain' @property атрибутов, в ARC вы должны
+// использовать 'weak' и 'strong'
+@property (weak) MyClass *weakVar; // 'weak' не принимает право на владение
+// объектом. Если исходный счетчик ссылки экземпляра обнуляется,
+// weakVar-свойство автоматически примет значение nil,
+// во избежание падения приложения
+@property (strong) MyClass *strongVar; // 'strong' принимает право на владение
+// объектом. Гарантирует, что объект останится в памяти для использования
+
+// Для обычных переменных (не объявленных с помощью @property), используйте
+// следующий способ:
+__strong NSString *strongString; // По умолчанию. Переменная сохраняется в памяти,
+// пока она не покинет область видимости
+__weak NSSet *weakSet; // Слабая ссылка на существующий объект. Когда существующий
+// объект освобождается, weakSet принимает nil
+__unsafe_unretained NSArray *unsafeArray; // Похож на __weak, но unsafeArray
+// не принимает nil, когда существующий объект освобождается
+
```
## На почитать
diff --git a/ruby.html.markdown b/ruby.html.markdown
index 66a0774d..7bd28d86 100644
--- a/ruby.html.markdown
+++ b/ruby.html.markdown
@@ -173,6 +173,8 @@ array[1..3] #=> [2, 3, 4]
# Add to an array like this
array << 6 #=> [1, 2, 3, 4, 5, 6]
+# Or like this
+array.push(6) #=> [1, 2, 3, 4, 5, 6]
# Check if an item exists in an array
array.include?(1) #=> true
diff --git a/tcl.html.markdown b/tcl.html.markdown
index 198f675e..9ca32f1e 100755..100644
--- a/tcl.html.markdown
+++ b/tcl.html.markdown
@@ -121,7 +121,8 @@ puts lots\nof\n\n\n\n\n\nnewlines
# A word enclosed in braces is not subject to any special interpretation or
-# substitutions, except that a backslash before a brace is not counted when look#ing for the closing brace
+# substitutions, except that a backslash before a brace is not counted when
+# looking for the closing brace
set somevar {
This is a literal $ sign, and this \} escaped
brace remains uninterpreted
@@ -163,7 +164,7 @@ set greeting "Hello, $person(name)"
# A namespace holds commands and variables
namespace eval people {
namespace eval person1 {
- set name Neo
+ variable name Neo
}
}
@@ -189,7 +190,10 @@ set greeting "Hello $people::person1::name"
namespace delete ::
-# Because of name resolution behaviour, it's safer to use the "variable" command to declare or to assign a value to a namespace.
+# Because of name resolution behaviour, it's safer to use the "variable" command to
+# declare or to assign a value to a namespace. If a variable called "name" already
+# exists in the global namespace, using "set" here will assign a value to the global variable
+# instead of creating a new variable in the local namespace.
namespace eval people {
namespace eval person1 {
variable name Neo
@@ -256,7 +260,7 @@ proc greet greeting\ name return\ \"Hello,\ \$name!
proc fold {cmd args} {
set res 0
foreach arg $args {
- set res [cmd $res $arg]
+ set res [$cmd $res $arg]
}
}
fold ::tcl::mathop::* 5 3 3 ;# -> 45