diff options
| -rw-r--r-- | julia.html.markdown | 154 | 
1 files changed, 77 insertions, 77 deletions
| diff --git a/julia.html.markdown b/julia.html.markdown index 15c09da4..839e414d 100644 --- a/julia.html.markdown +++ b/julia.html.markdown @@ -114,12 +114,12 @@ println("I'm Julia. Nice to meet you!") # => I'm Julia. Nice to meet you!  ####################################################  # You don't declare variables before assigning to them. -some_var = 5  # => 5 -some_var  # => 5 +someVar = 5  # => 5 +someVar  # => 5  # Accessing a previously unassigned variable is an error  try -    some_other_var  # => ERROR: UndefVarError: some_other_var not defined +    someOtherVar  # => ERROR: UndefVarError: someOtherVar not defined  catch e      println(e)  end @@ -286,62 +286,62 @@ d # => 5  e # => 4  # Dictionaries store mappings -empty_dict = Dict()  # => Dict{Any,Any} with 0 entries +emptyDict = Dict()  # => Dict{Any,Any} with 0 entries  # You can create a dictionary using a literal -filled_dict = Dict("one" => 1, "two" => 2, "three" => 3) +filledDict = Dict("one" => 1, "two" => 2, "three" => 3)  # => Dict{String,Int64} with 3 entries:  # =>  "two" => 2, "one" => 1, "three" => 3  # Look up values with [] -filled_dict["one"]  # => 1 +filledDict["one"]  # => 1  # Get all keys -keys(filled_dict) +keys(filledDict)  # => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys:  # =>  "two", "one", "three"  # Note - dictionary keys are not sorted or in the order you inserted them.  # Get all values -values(filled_dict) +values(filledDict)  # => Base.ValueIterator for a Dict{String,Int64} with 3 entries. Values:   # =>  2, 1, 3  # Note - Same as above regarding key ordering.  # Check for existence of keys in a dictionary with in, haskey -in(("one" => 1), filled_dict)  # => true -in(("two" => 3), filled_dict)  # => false -haskey(filled_dict, "one")     # => true -haskey(filled_dict, 1)         # => false +in(("one" => 1), filledDict)  # => true +in(("two" => 3), filledDict)  # => false +haskey(filledDict, "one")     # => true +haskey(filledDict, 1)         # => false  # Trying to look up a non-existent key will raise an error  try -    filled_dict["four"]  # => ERROR: KeyError: key "four" not found +    filledDict["four"]  # => ERROR: KeyError: key "four" not found  catch e      println(e)  end  # Use the get method to avoid that error by providing a default value -# get(dictionary, key, default_value) -get(filled_dict, "one", 4)   # => 1 -get(filled_dict, "four", 4)  # => 4 +# get(dictionary, key, defaultValue) +get(filledDict, "one", 4)   # => 1 +get(filledDict, "four", 4)  # => 4  # Use Sets to represent collections of unordered, unique values -empty_set = Set()  # => Set(Any[]) +emptySet = Set()  # => Set(Any[])  # Initialize a set with values -filled_set = Set([1, 2, 2, 3, 4])  # => Set([4, 2, 3, 1]) +filledSet = Set([1, 2, 2, 3, 4])  # => Set([4, 2, 3, 1])  # Add more values to a set -push!(filled_set, 5)  # => Set([4, 2, 3, 5, 1]) +push!(filledSet, 5)  # => Set([4, 2, 3, 5, 1])  # Check if the values are in the set -in(2, filled_set)   # => true -in(10, filled_set)  # => false +in(2, filledSet)   # => true +in(10, filledSet)  # => false  # There are functions for set intersection, union, and difference. -other_set = Set([3, 4, 5, 6])         # => Set([4, 3, 5, 6]) -intersect(filled_set, other_set)      # => Set([4, 3, 5]) -union(filled_set, other_set)          # => Set([4, 2, 3, 5, 6, 1]) +otherSet = Set([3, 4, 5, 6])         # => Set([4, 3, 5, 6]) +intersect(filledSet, otherSet)      # => Set([4, 3, 5]) +union(filledSet, otherSet)          # => Set([4, 2, 3, 5, 6, 1])  setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])  #################################################### @@ -349,15 +349,15 @@ setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])  ####################################################  # Let's make a variable -some_var = 5 +someVar = 5  # Here is an if statement. Indentation is not meaningful in Julia. -if some_var > 10 -    println("some_var is totally bigger than 10.") -elseif some_var < 10    # This elseif clause is optional. -    println("some_var is smaller than 10.") +if someVar > 10 +    println("someVar is totally bigger than 10.") +elseif someVar < 10    # This elseif clause is optional. +    println("someVar is smaller than 10.")  else                    # The else clause is optional too. -    println("some_var is indeed 10.") +    println("someVar is indeed 10.")  end  # => prints "some var is smaller than 10" @@ -434,8 +434,8 @@ add(5, 6)  # => 11  # Compact assignment of functions -f_add(x, y) = x + y  # => f_add (generic function with 1 method) -f_add(3, 4)  # => 7 +fAdd(x, y) = x + y  # => fAdd (generic function with 1 method) +fAdd(3, 4)  # => 7  # Function can also return multiple values as tuple  fn(x, y) = x + y, x - y # => fn (generic function with 1 method) @@ -478,67 +478,67 @@ catch e  end  # You can define functions that take keyword arguments -function keyword_args(;k1=4, name2="hello")  # note the ; +function keywordArgs(;k1=4, name2="hello")  # note the ;      return Dict("k1" => k1, "name2" => name2)  end -# => keyword_args (generic function with 1 method) +# => keywordArgs (generic function with 1 method) -keyword_args(name2="ness")  # => ["name2"=>"ness", "k1"=>4] -keyword_args(k1="mine")     # => ["name2"=>"hello", "k1"=>"mine"] -keyword_args()              # => ["name2"=>"hello", "k1"=>4] +keywordArgs(name2="ness")  # => ["name2"=>"ness", "k1"=>4] +keywordArgs(k1="mine")     # => ["name2"=>"hello", "k1"=>"mine"] +keywordArgs()              # => ["name2"=>"hello", "k1"=>4]  # You can combine all kinds of arguments in the same function -function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo") -    println("normal arg: $normal_arg") -    println("optional arg: $optional_positional_arg") -    println("keyword arg: $keyword_arg") +function allTheArgs(normalArg, optionalPositionalArg=2; keywordArg="foo") +    println("normal arg: $normalArg") +    println("optional arg: $optionalPositionalArg") +    println("keyword arg: $keywordArg")  end -# => all_the_args (generic function with 2 methods) +# => allTheArgs (generic function with 2 methods) -all_the_args(1, 3, keyword_arg=4) +allAheArgs(1, 3, keywordArg=4)  # => normal arg: 1  # => optional arg: 3  # => keyword arg: 4  # Julia has first class functions -function create_adder(x) +function createAdder(x)      adder = function (y)          return x + y      end      return adder  end -# => create_adder (generic function with 1 method) +# => createAdder (generic function with 1 method)  # This is "stabby lambda syntax" for creating anonymous functions  (x -> x > 2)(3)  # => true -# This function is identical to create_adder implementation above. -function create_adder(x) +# This function is identical to createAdder implementation above. +function createAdder(x)      y -> x + y  end -# => create_adder (generic function with 1 method) +# => createAdder (generic function with 1 method)  # You can also name the internal function, if you want -function create_adder(x) +function createAdder(x)      function adder(y)          x + y      end      adder  end -# => create_adder (generic function with 1 method) +# => createAdder (generic function with 1 method) -add_10 = create_adder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})  +add10 = createAdder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})                             # (generic function with 1 method) -add_10(3) # => 13 +add10(3) # => 13  # There are built-in higher order functions -map(add_10, [1,2,3])  # => [11, 12, 13] +map(add10, [1,2,3])  # => [11, 12, 13]  filter(x -> x > 5, [3, 4, 5, 6, 7])  # => [6, 7]  # We can use list comprehensions -[add_10(i) for i = [1, 2, 3]]   # => [11, 12, 13] -[add_10(i) for i in [1, 2, 3]]  # => [11, 12, 13] +[add10(i) for i = [1, 2, 3]]   # => [11, 12, 13] +[add10(i) for i in [1, 2, 3]]  # => [11, 12, 13]  [x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]  #################################################### @@ -616,7 +616,7 @@ supertype(SubString)  # => AbstractString  # <: is the subtyping operator  struct Lion <: Cat  # Lion is a subtype of Cat -    mane_color +    maneColor      roar::AbstractString  end @@ -627,7 +627,7 @@ Lion(roar::AbstractString) = Lion("green", roar)  # This is an outer constructor because it's outside the type definition  struct Panther <: Cat  # Panther is also a subtype of Cat -    eye_color +    eyeColor      Panther() = new("green")      # Panthers will only have this constructor, and no default constructor.  end @@ -669,14 +669,14 @@ Lion    <: Cat  # => true  Panther <: Cat  # => true  # Defining a function that takes Cats -function pet_cat(cat::Cat) +function petCat(cat::Cat)      println("The cat says $(meow(cat))")  end -# => pet_cat (generic function with 1 method) +# => petCat (generic function with 1 method) -pet_cat(Lion("42")) # => The cat says 42 +petCat(Lion("42")) # => The cat says 42  try -    pet_cat(tigger) # => ERROR: MethodError: no method matching pet_cat(::Tiger) +    petCat(tigger) # => ERROR: MethodError: no method matching petCat(::Tiger)  catch e      println(e)  end @@ -695,7 +695,7 @@ fight(tigger, Panther())  # => The orange tiger wins!  fight(tigger, Lion("ROAR")) # => The orange tiger wins!  # Let's change the behavior when the Cat is specifically a Lion -fight(t::Tiger, l::Lion) = println("The $(l.mane_color)-maned lion wins!") +fight(t::Tiger, l::Lion) = println("The $(l.maneColor)-maned lion wins!")  # => fight (generic function with 2 methods)  fight(tigger, Panther())  # => The orange tiger wins! @@ -744,14 +744,14 @@ fight(Lion("RAR"), Lion("brown", "rarrr"))  # => The lions come to a tie  # Under the hood  # You can take a look at the llvm  and the assembly code generated. -square_area(l) = l * l  # square_area (generic function with 1 method) +squareArea(l) = l * l  # squareArea (generic function with 1 method) -square_area(5)  # => 25 +squareArea(5)  # => 25 -# What happens when we feed square_area an integer? -code_native(square_area, (Int32,), syntax = :intel) +# What happens when we feed squareArea an integer? +codeNative(squareArea, (Int32,), syntax = :intel)  	#         .text -	# ; Function square_area { +	# ; Function squareArea {  	# ; Location: REPL[116]:1       # Prologue  	#         push    rbp  	#         mov     rbp, rsp @@ -765,9 +765,9 @@ code_native(square_area, (Int32,), syntax = :intel)  	#         nop     dword ptr [rax + rax]  	# ;} -code_native(square_area, (Float32,), syntax = :intel) +codeNative(squareArea, (Float32,), syntax = :intel)      #         .text -    # ; Function square_area { +    # ; Function squareArea {      # ; Location: REPL[116]:1      #         push    rbp      #         mov     rbp, rsp @@ -780,9 +780,9 @@ code_native(square_area, (Float32,), syntax = :intel)      #         nop     word ptr [rax + rax]      # ;} -code_native(square_area, (Float64,), syntax = :intel) +codeNative(squareArea, (Float64,), syntax = :intel)      #         .text -    # ; Function square_area { +    # ; Function squareArea {      # ; Location: REPL[116]:1      #         push    rbp      #         mov     rbp, rsp @@ -798,12 +798,12 @@ code_native(square_area, (Float64,), syntax = :intel)  # Note that julia will use floating point instructions if any of the  # arguments are floats.  # Let's calculate the area of a circle -circle_area(r) = pi * r * r     # circle_area (generic function with 1 method) -circle_area(5)  # 78.53981633974483 +circleArea(r) = pi * r * r     # circleArea (generic function with 1 method) +circleArea(5)  # 78.53981633974483 -code_native(circle_area, (Int32,), syntax = :intel) +codeNative(circleArea, (Int32,), syntax = :intel)      #         .text -    # ; Function circle_area { +    # ; Function circleArea {      # ; Location: REPL[121]:1      #         push    rbp      #         mov     rbp, rsp @@ -832,9 +832,9 @@ code_native(circle_area, (Int32,), syntax = :intel)      #         nop     dword ptr [rax]      # ;} -code_native(circle_area, (Float64,), syntax = :intel) +codeNative(circleArea, (Float64,), syntax = :intel)      #         .text -    # ; Function circle_area { +    # ; Function circleArea {      # ; Location: REPL[121]:1      #         push    rbp      #         mov     rbp, rsp | 
