diff options
-rw-r--r-- | fr-fr/objective-c-fr.html.markdown | 527 | ||||
-rw-r--r-- | ru-ru/julia-ru.html.markdown | 749 |
2 files changed, 1276 insertions, 0 deletions
diff --git a/fr-fr/objective-c-fr.html.markdown b/fr-fr/objective-c-fr.html.markdown new file mode 100644 index 00000000..b14b3a52 --- /dev/null +++ b/fr-fr/objective-c-fr.html.markdown @@ -0,0 +1,527 @@ +--- + +language: Objective-C +contributors: + - ["Eugene Yagrushkin", "www.about.me/yagrushkin"] + - ["Yannick Loriot", "https://github.com/YannickL"] + - ["Levi Bostian", "https://github.com/levibostian"] +translators: + - ["Yannick Loriot", "https://github.com/YannickL"] +filename: LearnObjectiveC.m + +--- + +L'Objective-C est un langage de programmation orienté objet réflexif principalement utilisé par Apple pour les systèmes d'exploitations Mac OS X et iOS et leurs frameworks respectifs, Cocoa et Cocoa Touch. + +```objective-c +// Les commentaires sur une seule ligne commencent par // + +/* +Les +commentaires +multi-lignes +ressemblent +à +ceci +*/ + +// #import permet d'importer les en-têtes d'autres fichiers +// Utilisez <> pour importer des fichiers globaux (en général des frameworks) +// Utilisez "" pour importer des fichiers locaux (du projet) +#import <Foundation/Foundation.h> +#import "MaClasse.h" + +// Si vous activez les modules dans les projets iOS >= 7 ou Mac OS X >= 10.9 +// dans Xcode 5, vous pouvez importer les frameworks comme cela : +@import Foundation; + +// Le point d'entrée de votre programme est une fonction qui s'appelle main +// et qui retourne un entier comme type +int main (int argc, const char * argv[]) +{ + // Créer un groupe de libération automatique de la mémoire pour l'ensemble + // du programme + NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; + // Si vous utilisez le comptage de référence automatique (ARC), utilisez + // @autoreleasepool à la place : + @autoreleasepool { + + // NSLog() permet d'afficher une chaine de caractères dans la console + // Affiche la chaine de caractères "Bonjour Tous Le Monde !" + NSLog(@"Bonjour tous le Monde !"); + + /////////////////////////////////////// + // Les Types & Les Variables + /////////////////////////////////////// + + // La déclaration de primitive + int maPrimitive1 = 1; + long maPrimitive2 = 234554664565; + + // La déclaration d'objet + // Il faut mettre un astérisque devant la déclaration d'objet fortement typé + MaClasse *monObject1 = nil; // Typage fort + id monObject2 = nil; // Typage faible + // 'description' est une méthode qui permet de retourner un aperçut de l'objet sous forme textuelle + // La méthode 'description' est appelée par défaut quand on utilise le paramètre '%@' + NSLog(@"%@ and %@", monObject1, [monObject2 description]); // Affiche "(null) et (null)" + + // Les chaines de caractères + NSString *chaineMonde = @"Monde"; + NSLog(@"Bonjour tous le %@ !", chaineMonde); // affiche => "Bonjour Tous Le Monde !" + // NSMutableString est une chaine mutable + NSMutableString *chaineMutable = [NSMutableString stringWithString:@"Bonjour tous le"]; + [chaineMutable appendString:@" Monde !"]; + NSLog(@"%@", chaineMutable); // affiche => "Bonjour Tous Le Monde !" + + // Les caractères + NSNumber *laLettreZSousFormeDeNombre = @'Z'; + char laLettreZ = [laLettreZSousFormeDeNombre charValue]; // ou 'Z' + NSLog(@"%c", laLettreZ); + + // Les nombres + NSNumber *nombreQuaranteDeux = @42; + int quaranteDeux = [nombreQuaranteDeux intValue]; // ou 42 + NSLog(@"%i", quaranteDeux); + + NSNumber *nombreQuaranteDeuxnonSigne = @42U; + unsigned int quaranteDeuxnonSigne = [nombreQuaranteDeuxnonSigne unsignedIntValue]; + NSLog(@"%u", fortyTwoUnsigned); + + NSNumber *nombreQuaranteDeuxCourt = [NSNumber numberWithShort:42]; + short quaranteDeuxCourt = [nombreQuaranteDeuxCourt shortValue]; // ou 42 + NSLog(@"%hi", fortyTwoShort); + + NSNumber *nombreQuaranteDeuxLong = @42L; + long quaranteDeuxLong = [nombreQuaranteDeuxLong longValue]; // ou 42 + NSLog(@"%li", fortyTwoLong); + + // Les nombres flottants + NSNumber *nombrePiFlottant = @3.141592654F; + float piFlottant = [nombrePiFlottant floatValue]; // ou 3.141592654f + NSLog(@"%f", piFlottant); // affiche => 3.141592654 + NSLog(@"%5.2f", piFlottant); // affiche => " 3.14" + + NSNumber *nombrePiDouble = @3.1415926535; + double piDouble = [nombrePiDouble doubleValue]; // ou 3.1415926535 + NSLog(@"%f", piDouble); + NSLog(@"%4.2f", piDouble); // affiche => "3.14" + + // NSDecimalNumber est une classe pour avoir plus de précision sur les nombres + // flottants et les doubles + NSDecimalNumber *decNumUn = [NSDecimalNumber decimalNumberWithString:@"10.99"]; + NSDecimalNumber *decNumDeux = [NSDecimalNumber decimalNumberWithString:@"5.002"]; + // NSDecimalNumber ne permet pas d'utiliser les opérations standards (+, -, *, /) + // Il faut utiliser les méthodes suivantes à la place : + [decNumUn decimalNumberByAdding:decNumDeux]; + [decNumUn decimalNumberBySubtracting:decNumDeux]; + [decNumUn decimalNumberByMultiplyingBy:decNumDeux]; + [decNumUn decimalNumberByDividingBy:decNumDeux]; + NSLog(@"%@", decNumUn); // affiche => 10.99 comme NSDecimalNumber est immuable + + // Les booléens + NSNumber *ouiNumber = @YES; + NSNumber *nonNumber = @NO; + // ou + BOOL ouiBool = YES; + BOOL nonBool = NO; + NSLog(@"%i", ouiBool); // affiche => 1 + + // Les listes + // Une liste peut contenir uniquement des objets + NSArray *uneListe = @[@1, @2, @3, @4]; + NSNumber *troisiemeNombre = uneListe[2]; + NSLog(@"Troisième nombre = %@", troisiemeNombre); // affiche "Troisième nombre = 3" + // NSMutableArray est une version mutable de NSArray + // Cela permet de modifier la liste en ajoutant de nouveaux éléments et en supprimant ou + // changeant de place des objets déjà présent + // C'est très pratique, mais pas aussi performant que l'utilisation de la classe NSArray + NSMutableArray *listeMutable = [NSMutableArray arrayWithCapacity:2]; + [listeMutable addObject:@"Bonjour tous le"]; + [listeMutable addObject:@"Monde"]; + [listeMutable removeObjectAtIndex:0]; + NSLog(@"%@", [listeMutable objectAtIndex:0]); // affiche => "Monde" + + // Les dictionnaires + // Un dictionnaire est un ensemble de clés : valeurs + NSDictionary *unDictionnaire = @{ @"cle1" : @"valeur1", @"cle2" : @"valeur2" }; + NSObject *valeur = unDictionnaire[@"Une clé"]; + NSLog(@"Objet = %@", valeur); // affiche "Objet = (null)" + // NSMutableDictionary est un dictionnaire mutable, c-à-d que l'on peut modifier + NSMutableDictionary *dictionnaireMutable = [NSMutableDictionary dictionaryWithCapacity:2]; + [dictionnaireMutable setObject:@"valeur1" forKey:@"cle1"]; + [dictionnaireMutable setObject:@"valeur2" forKey:@"cle2"]; + [dictionnaireMutable removeObjectForKey:@"cle1"]; + + // Les ensembles + // Un ensemble ne peut contenir de duplicatas contrairement aux NSArray + NSSet *ensemble = [NSSet setWithObjects:@"Salut", @"Salut", @"Monde", nil]; + NSLog(@"%@", ensemble); // affiche => {(Salut, Monde)} (Pas forcément dans le même ordre) + // NSMutableSet est un ensemble mutable + NSMutableSet *ensembleMutable = [NSMutableSet setWithCapacity:2]; + [ensembleMutable addObject:@"Salut"]; + [ensembleMutable addObject:@"Salut"]; + NSLog(@"%@", ensembleMutable); // affiche => {(Salut)} + + /////////////////////////////////////// + // Les Operateurs + /////////////////////////////////////// + + // Les opérateurs sont pareil qu'en C + // Par exemple : + 2 + 5; // => 7 + 4.2f + 5.1f; // => 9.3f + 3 == 2; // => 0 (NO) + 3 != 2; // => 1 (YES) + 1 && 1; // => 1 (et logique) + 0 || 1; // => 1 (ou logique) + ~0x0F; // => 0xF0 (négation bit à bit) + 0x0F & 0xF0; // => 0x00 (et bit à bit) + 0x01 << 1; // => 0x02 (décalage à gauche (par 1)) + + /////////////////////////////////////// + // Les Structures de Contrôle + /////////////////////////////////////// + + // Structure "Si-Sinon" (If-Else) + if (NO) + { + NSLog(@"Je ne suis jamais affiché"); + } else if (0) + { + NSLog(@"Je ne suis jamais affiché aussi"); + } else + { + NSLog(@"Je suis affiché"); + } + + // Structure "Selon" (Switch) + switch (2) + { + case 0: + { + NSLog(@"Je ne suis jamais affiché"); + } break; + case 1: + { + NSLog(@"Je ne suis jamais affiché aussi"); + } break; + default: + { + NSLog(@"Je suis affiché"); + } break; + } + + // Structure de boucle "Tant Que" (While) + int ii = 0; + while (ii < 4) + { + NSLog(@"%d,", ii++); // ii++ incrémente ii après avoir utilisé sa valeur + } // => affiche "0," + // "1," + // "2," + // "3," + + // Structure de boucle "Pour" (For) + int jj; + for (jj=0; jj < 4; jj++) + { + NSLog(@"%d,", jj); + } // => affiche "0," + // "1," + // "2," + // "3," + + // Structure de boucle "Pour Chaque" (Foreach) + NSArray *valeurs = @[@0, @1, @2, @3]; + for (NSNumber *valeur in valeurs) + { + NSLog(@"%@,", valeur); + } // => affiche "0," + // "1," + // "2," + // "3," + + // Structure "Essayer-Attraper-Finalement" (Try-Catch-Finally) + @try + { + @throw [NSException exceptionWithName:@"FileNotFoundException" + reason:@"Fichier non trouvé" userInfo:nil]; + } @catch (NSException * e) + { + NSLog(@"Une exception est survenue : %@", e); + } @finally + { + NSLog(@"Finalement"); + } // => affiche "Une exception est survenue : Fichier non trouvé" + // "Finalement" + + /////////////////////////////////////// + // Les Objets + /////////////////////////////////////// + + // Définis et créé une instance d'objet en allouant un espace mémoire puis en + // l'initialisant. Un objet n'est pas complétement fonctionnel tant que les deux + // étapes précédentes ne sont pas terminées + MaClass *monObjet = [[MaClass alloc] init]; + + // L'Objet en Objective-C est basé sur le principe d'envoie de message et non sur + // celui d'appel de méthode comme la plupart des autres langages + // C'est un détail important car cela veut dire que l'on peut envoyer un message + // à un objet qui ne possède pas la méthode demandée sans aucune incidence sur le + // fonctionnement du programme (aucune exception ne sera levée) + [myObject instanceMethodWithParameter:@"Steve Jobs"]; + + // Nettoie la mémoire qui a été utilisée dans le programme + [pool drain]; + + // Fin de l'@autoreleasepool + } + + // Fin du programme + return 0; +} + +/////////////////////////////////////// +// Les Classes et Les Fonctions +/////////////////////////////////////// + +// Déclaration d'une classe dans un en-tête de fichier (MaClasse.h) : +// La déclaration d'une classe en Objective-C commence par la déclaration de son interface : +// @interface NomDeLaClasse : NomDeLaClasseParent <ListeDesProtocoles> +// { +// type nom; // Déclaration d'une variable; +// } +// @property type nom; // Déclaration d'une propriété +// -/+ (type)nomDeLaMethode; // Déclaration d'une methode +// @end // Termine la déclaration +// NSObject est la classe de base (super classe) en Objective-C +@interface MaClasse : NSObject <MonProtocole> +{ + int nombre; // Accès protégé par défaut (équivalent à '@protected int nombre;') + @private id donnee; // Accès privé (il est plus pratique de le faire dans l'implémentation) + NSString *nom; +} +// Les propriétés permettent de générer les accésseurs/affecteurs publiques à la compilation +// Par défaut, le nom de l'affecteur est la chaine 'set' suivi par le nom de la @property +@property int propInt; // Nom de l'affecteur = 'setPropInt' +@property (copy) id copyId; // (copy) => Copie l'objet pendant l'affectation +// (readonly) => Ne peut pas affecté la variable en dehors de l'@interface +// Il faut utiliser le mot clé '@synthesize' dans l'@implementation pour créer l'accésseur +@property (readonly) NSString *roString; +// Vous pouvez aussi personnaliser les noms des accésseurs ou des affecteurs +@property (getter=longeurGet, setter=longeurSet:) int longeur; + +// Methodes ++/- (TypeDeRetour)signatureDeLaMethode:(TypeDuParametre *)nomDuParametre; + +// '+' signifie que c'est une méthode de classe (statique) : ++ (NSString *)methodeDeClasse; ++ (MaClasse *)maClasseDepuisLaHauteur:(NSNumber *)hauteurParDefaut; + +// '-' pour les méthodes d'instances : +- (NSString *)methodeInstanceAvecUnParametre:(NSString *)string; +- (NSNumber *)methodeInstanceAvecUnParametre:(NSString*)string puisUnDeuxieme:(NSNumber *)number; + +// Contructeur avec des arguments : +- (id)initAvecDistance:(int)distanceParDefault; +// Les méthodes en Objective-C sont très descriptives + +@end // Fin de l'interface + + +// Voici un exemple d'utilisation de MaClasse +MaClasse *maClasse = [[MaClasse alloc] init]; // créer une instance de MaClasse +[maClasse setNombre:10]; +NSLog(@"%d", [maClasse nombre]); // affiche => 10 +[myClass longeurSet:32]; +NSLog(@"%i", [maClasse longeurGet]); // affiche => 32 +// Pour des raisons pratiques vous pouvez aussi utiliser la notation en point pour accéder aux +// variables d'instances : +maClasse.nombre = 45; +NSLog(@"%i", maClasse.nombre); // maClasse => 45 + +// Pour appeler une méthode de classe : +NSString *s1 = [MaClasse methodeDeClasse]; +MaClasse *m2 = [MaClasse maClasseDepuisLaHauteur:38]; + +// Pour appeler une méthode d'instance : +MaClasse *maClasse = [[MaClasse alloc] init]; // Créer une instance de MaClasse +NSString *stringDepuisUneInstanceDeMethode = [maClasse methodeInstanceAvecUnParametre:@"Salut"]; + +// Les sélecteurs sont un moyen de décrire les méthodes dynamiquement +// Ils sont utilisés pour appeler des méthodes de classe et avoir des pointeurs de fonctions +// facilement manipulable +// SEL est un type de donnée et @selector retourne un selecteur à partir d'un nom de methode +SEL selecteur = @selector(methodeInstanceAvecUnParametre:puisUnDeuxieme:); +if ([maClasse respondsToSelector:selecteur]) { // Vérifie si la classe possède la méthode + // Met les arguments de la méthode dans un seul objet pour l'envoyer via la fonction + // performSelector:withObject: + NSArray *arguments = [NSArray arrayWithObjects:@"Hello", @4, nil]; + [myClass performSelector:selectorVar withObject:arguments]; // Appele la méthode via le sélecteur +} +else { + // NSStringFromSelector() retourne une chaine de caractères à partir d'un sélecteur + NSLog(@"MaClasse ne possède pas de méthode : %@", NSStringFromSelector(selecteur)); +} + +// Le fichier d'implémentation de la classe MaClasse (MaClasse.m) doit commencer comme ceci : +@implementation MaClasse { + long distance; // Variable d'instance privée (équivalent à @private dans l'interface) + NSNumber hauteur; +} + +// Pour accéder à une variable depuis l'implémentation on peut utiliser le _ (tiret bas) devant le nom +// de la variable : +_nombre = 5; +// Accès d'une variable définie dans le fichier d'implémentation : +distance = 18; +// Pour utiliser la variable définie par l'intermédiaire de @property, il faut utiliser @synthesize +// qui permet de créer les affecteurs et les accésseurs correspondants : +@synthesize roString = _roString; // _roString est maintenant disponible dans l'implementation + +// A l'inverse dela méthode 'init' qui est appelée lors de la création d'un objet, la fonction +// 'dealloc' est appelée quand l'objet est supprimé +- (void)dealloc +{ + [hauteur release]; // Si vous n'utilisez pas ARC, pensez bien à supprimer l'objet + [super dealloc]; // et à appeler la méthode 'dealloc' de la classe parent +} + +// Les constructeurs sont des fonctions qui permettent d'instancier un objet +// 'init' est le constructeur par défaut en Objective-C +- (id)init +{ + if ((self = [super init])) // 'super' est utilisé pour appeler la méthode de la classe parent + { + self.count = 1; // 'self' permet d'appeler la méthode de l'instance courante + } + return self; +} + +// Vous pouvez aussi créer des constructeurs avec des arguments +// Attention : chaque nom de constructeur doit absolument commencer par 'init' +- (id)initAvecUneDistance:(int)distanceParDefault +{ + if ((self = [super init])) + { + distance = distanceParDefault; + return self; + } +} + +// Implémentation d'une méthode de classe ++ (NSString *)methodDeClasse +{ + return [[self alloc] init]; +} + ++ (MaClasse *)maClasseDepuisUneHauteur:(NSNumber *)hauteurParDefaut +{ + hauteur = hauteurParDefaut; + return [[self alloc] init]; +} + +// Implémentation d'une méthode d'instance +- (NSString *)methodeInstanceAvecUnParametre:(NSString *)string +{ + return @"Ma chaine de caractère"; +} + +- (NSNumber *)methodeInstanceAvecUnParametre:(NSString*)string puisUnDeuxieme:(NSNumber *)number +{ + return @42; +} + +// Pour créer une méthode privée, il faut la définir dans l'implementation et non pas dans +// l'interface +- (NSNumber *)methodePrivee +{ + return @72; +} + +[self methodePrivee]; // Appel de la méthode privée + +// Implémentation d'une méthode qui est déclarée dans <MonProtocole> +- (void)methodeDuProtocole +{ + // expressions +} + +@end // Fin de l'implémentation + +/* + * Un protocole déclare des méthodes et propriétés que chaque implémentation doit avoir afin de se + * conformer à celui-ci + * Un protocole n'est pas une classe, c'est juste une interface + */ +@protocol MonProtocole + - (void)methodeDuProtocole; +@end + + +/////////////////////////////////////// +// Gestion de la mémoire +/////////////////////////////////////// +/* +À chaque fois qu'un objet est créé dans l'application, un bloc mémoire doit être alloué. +Quand l'application en a fini avec cet objet, la mémoire doit être libérée afin d'éviter les fuites +mémoires +Il n'y a pas de ramasse-miettes en Objective-C contrairement à Java par exemple. La gestion de la +mémoire repose sur le comptage de référence qui, pour chaque objet, assigne un compteur qui permet +de connaitre le nombre de référence qui l'utilise. + +Le principe est le suivant : +Lorsque l'objet est créé, le compteur est initialisé à 1. Quand une instance détient un objet, le +compteur est incrémenté de un. Quand l'objet est libéré, le compteur est décrémenté de un. Au moment +où le compteur arrive à zéro, l'objet est supprimé de la mémoire + +Une bonne pratique à suivre quand on travaille avec des objets est la suivante : +(1) créer un objet, (2) utiliser l'objet, (3) supprimer l'objet de la mémoire +*/ + +MaClasse *classeVar = [MyClass alloc]; // 'alloc' incrémente le compteur de référence +[classeVar release]; // Décrémente le compteur de rérence +// 'retain' incrémente le compteur de référence +// Si 'classeVar' est libéré, l'objet reste en mémoire car le compteur de référence est non nul +MaClasse *nouvelleVar = [classVar retain]; +[classeVar autorelease]; // Supprime l'appartenance de l'objet à la fin du bloc + +// Les @property peuvent utiliser 'retain' et 'assign' +@property (retain) MaClasse *instance; // Libère l'ancienne valeur et retient la nouvelle +@property (assign) NSSet *set; // Pointeur vers la valeur sans retenir/libérer l'ancienne valeur + +// Automatic Reference Counting (ARC) +// La gestion de la mémoire étant pénible, depuis iOS 4 et Xcode 4.2, Apple a introduit le comptage de +// référence automatique (Automatic Reference Counting en anglais) +// ARC est une fonctionnalité du compilateur qui permet d'ajouter les 'retain', 'release' et 'autorelease' +// automatiquement. Cela veut dire que lorsque vous utilisez ARC vous ne devez plus utiliser ces mot-clés +MaClasse *arcMaClasse = [[MaClasse alloc] init]; +// ... code utilisant arcMaClasse +// Sans ARC, vous auriez dû appeler [arcMaClasse release] après avoir utilisé l'objet. Mais avec ARC +// activé il n'est plus nécessaire de le faire car le compilateur ajoutera l'expréssion automatiquement +// pour vous + +// Les mots clés 'assign' et 'retain', avec ARC sont respectivement remplacé par 'weak' et 'strong' +@property (weak) MaClasse *weakVar; // 'weak' ne retient pas l'objet. Si le compteur de référence +// descend à zero, weakVar sera automatiquement mis à nil +@property (strong) MaClasse *strongVar; // 'strong' prend possession de l'objet comme le ferait avec +// le mot-clé 'retain' + +// Pour l'instanciation des variables (en dehors de @property), vous pouvez utiliser les instructions +// suivantes : +__strong NSString *strongString; // Par défaut. La variable est retenue en mémoire jusqu'à la fin +// de sa portée +__weak NSSet *weakSet; // Maintient une référence vers l'objet sans incrémenter son compteur de référence : +// Lorsque l'objet sera supprimé, weakSet sera mis à nil automatiquement +__unsafe_unretained NSArray *unsafeArray; // Comme __weak, mais la variable n'est pas mis à nil quand +// l'objet est supprimé + +``` +## Lectures Complémentaires + +[La Page Wikipedia de l'Objective-C](http://fr.wikipedia.org/wiki/Objective-C) + +[iOS pour les écoliers : Votre première app iOS](http://www.raywenderlich.com/fr/39272/ios-pour-les-ecoliers-votre-premiere-app-ios-partie-12) + +[Programming with Objective-C. Apple PDF book](https://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/ProgrammingWithObjectiveC.pdf)
\ No newline at end of file diff --git a/ru-ru/julia-ru.html.markdown b/ru-ru/julia-ru.html.markdown new file mode 100644 index 00000000..51654cfe --- /dev/null +++ b/ru-ru/julia-ru.html.markdown @@ -0,0 +1,749 @@ +--- +language: julia +contributors: + - ["Leah Hanson", "http://leahhanson.us"] +translators: + - ["Sergey Skovorodkin", "https://github.com/skovorodkin"] +filename: learnjulia.jl +--- + +Julia — гомоиконный функциональный язык программирования для технических расчётов. +Несмотря на полную поддержку гомоиконных макросов, функций первого класса и конструкций управления низкого уровня, этот язык так же прост в изучении и применении, как и Python. + +Документ описывает текущую dev-версию Julia от 18-о октября 2013 года. + +```ruby + +# Однострочные комментарии начинаются со знака решётки. + +#################################################### +## 1. Примитивные типы данных и операторы +#################################################### + +# Всё в Julia — выражение. + +# Простые численные типы +3 #=> 3 (Int64) +3.2 #=> 3.2 (Float64) +2 + 1im #=> 2 + 1im (Complex{Int64}) +2//3 #=> 2//3 (Rational{Int64}) + +# Доступны все привычные инфиксные операторы +1 + 1 #=> 2 +8 - 1 #=> 7 +10 * 2 #=> 20 +35 / 5 #=> 7.0 +5 / 2 #=> 2.5 # деление Int на Int всегда возвращает Float +div(5, 2) #=> 2 # для округления к нулю используется div +5 \ 35 #=> 7.0 +2 ^ 2 #=> 4 # возведение в степень +12 % 10 #=> 2 + +# С помощью скобок можно изменить приоритет операций +(1 + 3) * 2 #=> 8 + +# Побитовые операторы +~2 #=> -3 # НЕ (NOT) +3 & 5 #=> 1 # И (AND) +2 | 4 #=> 6 # ИЛИ (OR) +2 $ 4 #=> 6 # сложение по модулю 2 (XOR) +2 >>> 1 #=> 1 # логический сдвиг вправо +2 >> 1 #=> 1 # арифметический сдвиг вправо +2 << 1 #=> 4 # логический/арифметический сдвиг влево + +# Функция bits возвращает бинарное представление числа +bits(12345) +#=> "0000000000000000000000000000000000000000000000000011000000111001" +bits(12345.0) +#=> "0100000011001000000111001000000000000000000000000000000000000000" + +# Логические значения являются примитивами +true +false + +# Булевы операторы +!true #=> false +!false #=> true +1 == 1 #=> true +2 == 1 #=> false +1 != 1 #=> false +2 != 1 #=> true +1 < 10 #=> true +1 > 10 #=> false +2 <= 2 #=> true +2 >= 2 #=> true +# Сравнения можно объединять цепочкой +1 < 2 < 3 #=> true +2 < 3 < 2 #=> false + +# Строки объявляются с помощью двойных кавычек — " +"This is a string." + +# Символьные литералы создаются с помощью одинарных кавычек — ' +'a' + +# Строки индексируются как массивы символов +"This is a string"[1] #=> 'T' # Индексы начинаются с единицы +# Индексирование не всегда правильно работает для UTF8-строк, +# поэтому рекомендуется использовать итерирование (map, for-циклы и т.п.). + +# Для строковой интерполяции используется знак доллара ($): +"2 + 2 = $(2 + 2)" #=> "2 + 2 = 4" +# В скобках можно использовать любое выражение языка. + +# Другой способ форматирования строк — макрос printf +@printf "%d is less than %f" 4.5 5.3 # 5 is less than 5.300000 + +#################################################### +## 2. Переменные и коллекции +#################################################### + +# Вывод +println("I'm Julia. Nice to meet you!") + +# Переменные инициализируются без предварительного объявления +some_var = 5 #=> 5 +some_var #=> 5 + +# Попытка доступа к переменной до инициализации вызывает ошибку +try + some_other_var #=> ERROR: some_other_var not defined +catch e + println(e) +end + +# Имена переменных начинаются с букв. +# После первого символа можно использовать буквы, цифры, +# символы подчёркивания и восклицательные знаки. +SomeOtherVar123! = 6 #=> 6 + +# Допустимо использование unicode-символов +☃ = 8 #=> 8 +# Это особенно удобно для математических обозначений +2 * π #=> 6.283185307179586 + +# Рекомендации по именованию: +# * имена переменных в нижнем регистре, слова разделяются символом +# подчёркивания ('\_'); +# +# * для имён типов используется CamelCase; +# +# * имена функций и макросов в нижнем регистре +# без разделения слов символом подчёркивания; +# +# * имя функции, изменяющей переданные ей аргументы (in-place function), +# оканчивается восклицательным знаком. + +# Массив хранит последовательность значений, индексируемых с единицы до n: +a = Int64[] #=> пустой массив Int64-элементов + +# Одномерный массив объявляется разделёнными запятой значениями. +b = [4, 5, 6] #=> массив из трёх Int64-элементов: [4, 5, 6] +b[1] #=> 4 +b[end] #=> 6 + +# Строки двумерного массива разделяются точкой с запятой. +# Элементы строк разделяются пробелами. +matrix = [1 2; 3 4] #=> 2x2 Int64 Array: [1 2; 3 4] + +# push! и append! добавляют в список новые элементы +push!(a,1) #=> [1] +push!(a,2) #=> [1,2] +push!(a,4) #=> [1,2,4] +push!(a,3) #=> [1,2,4,3] +append!(a,b) #=> [1,2,4,3,4,5,6] + +# pop! удаляет из списка последний элемент +pop!(b) #=> возвращает 6; массив b снова равен [4,5] + +# Вернём 6 обратно +push!(b,6) # b снова [4,5,6]. + +a[1] #=> 1 # индексы начинаются с единицы! + +# Последний элемент можно получить с помощью end +a[end] #=> 6 + +# Операции сдвига +shift!(a) #=> 1 and a is now [2,4,3,4,5,6] +unshift!(a,7) #=> [7,2,4,3,4,5,6] + +# Восклицательный знак на конце названия функции означает, +# что функция изменяет переданные ей аргументы. +arr = [5,4,6] #=> массив из 3 Int64-элементов: [5,4,6] +sort(arr) #=> [4,5,6]; но arr равен [5,4,6] +sort!(arr) #=> [4,5,6]; а теперь arr — [4,5,6] + +# Попытка доступа за пределами массива выбрасывает BoundsError +try + a[0] #=> ERROR: BoundsError() in getindex at array.jl:270 + a[end+1] #=> ERROR: BoundsError() in getindex at array.jl:270 +catch e + println(e) +end + +# Вывод ошибок содержит строку и файл, где произошла ошибка, +# даже если это случилось в стандартной библиотеке. +# Если вы собрали Julia из исходных кодов, +# то найти эти файлы можно в директории base. + +# Создавать массивы можно из последовательности +a = [1:5] #=> массив из 5 Int64-элементов: [1,2,3,4,5] + +# Срезы +a[1:3] #=> [1, 2, 3] +a[2:] #=> [2, 3, 4, 5] +a[2:end] #=> [2, 3, 4, 5] + +# splice! удаляет элемент из массива +# Remove elements from an array by index with splice! +arr = [3,4,5] +splice!(arr,2) #=> 4 ; arr теперь равен [3,5] + +# append! объединяет списки +b = [1,2,3] +append!(a,b) # теперь a равен [1, 2, 3, 4, 5, 1, 2, 3] + +# Проверка на вхождение +in(1, a) #=> true + +# Длина списка +length(a) #=> 8 + +# Кортеж — неизменяемая структура. +tup = (1, 2, 3) #=> (1,2,3) # кортеж (Int64,Int64,Int64). +tup[1] #=> 1 +try: + tup[1] = 3 #=> ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64) +catch e + println(e) +end + +# Многие функции над списками работают и для кортежей +length(tup) #=> 3 +tup[1:2] #=> (1,2) +in(2, tup) #=> true + +# Кортежи можно распаковывать в переменные +a, b, c = (1, 2, 3) #=> (1,2,3) # a = 1, b = 2 и c = 3 + +# Скобки из предыдущего примера можно опустить +d, e, f = 4, 5, 6 #=> (4,5,6) + +# Кортеж из одного элемента не равен значению этого элемента +(1,) == 1 #=> false +(1) == 1 #=> true + +# Обмен значений +e, d = d, e #=> (5,4) # d = 5, e = 4 + + +# Словари содержат ассоциативные массивы +empty_dict = Dict() #=> Dict{Any,Any}() + +# Для создания словаря можно использовать литерал +filled_dict = ["one"=> 1, "two"=> 2, "three"=> 3] +# => Dict{ASCIIString,Int64} + +# Значения ищутся по ключу с помощью оператора [] +filled_dict["one"] #=> 1 + +# Получить все ключи +keys(filled_dict) +#=> KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2]) +# Заметьте, словарь не запоминает порядок, в котором добавляются ключи. + +# Получить все значения. +values(filled_dict) +#=> ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2]) +# То же касается и порядка значений. + +# Проверка вхождения ключа в словарь +in(("one", 1), filled_dict) #=> true +in(("two", 3), filled_dict) #=> false +haskey(filled_dict, "one") #=> true +haskey(filled_dict, 1) #=> false + +# Попытка обратиться к несуществующему ключу выбросит ошибку +try + filled_dict["four"] #=> ERROR: key not found: four in getindex at dict.jl:489 +catch e + println(e) +end + +# Используйте метод get со значением по умолчанию, чтобы избежать этой ошибки +# get(dictionary,key,default_value) +get(filled_dict,"one",4) #=> 1 +get(filled_dict,"four",4) #=> 4 + +# Для коллекций неотсортированных уникальных элементов используйте Set +empty_set = Set() #=> Set{Any}() +# Инициализация множества +filled_set = Set(1,2,2,3,4) #=> Set{Int64}(1,2,3,4) + +# Добавление элементов +push!(filled_set,5) #=> Set{Int64}(5,4,2,3,1) + +# Проверка вхождения элементов во множество +in(2, filled_set) #=> true +in(10, filled_set) #=> false + +# Функции для получения пересечения, объединения и разницы. +other_set = Set(3, 4, 5, 6) #=> Set{Int64}(6,4,5,3) +intersect(filled_set, other_set) #=> Set{Int64}(3,4,5) +union(filled_set, other_set) #=> Set{Int64}(1,2,3,4,5,6) +setdiff(Set(1,2,3,4),Set(2,3,5)) #=> Set{Int64}(1,4) + + +#################################################### +## 3. Поток управления +#################################################### + +# Создадим переменную +some_var = 5 + +# Выражение if. Отступы не имеют значения. +if some_var > 10 + println("some_var is totally bigger than 10.") +elseif some_var < 10 # Необязательная ветка elseif. + println("some_var is smaller than 10.") +else # else-ветка также опциональна. + println("some_var is indeed 10.") +end +#=> prints "some var is smaller than 10" + + +# Цикл for проходит по итерируемым объектам +# Примеры итерируемых типов: Range, Array, Set, Dict и String. +for animal=["dog", "cat", "mouse"] + println("$animal is a mammal") + # Для вставки значения переменной или выражения в строку используется $ +end +# Выведет: +# dog is a mammal +# cat is a mammal +# mouse is a mammal + +# Другой вариант записи. +for animal in ["dog", "cat", "mouse"] + println("$animal is a mammal") +end +# Выведет: +# dog is a mammal +# cat is a mammal +# mouse is a mammal + +for a in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"] + println("$(a[1]) is a $(a[2])") +end +# Выведет: +# dog is a mammal +# cat is a mammal +# mouse is a mammal + +for (k,v) in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"] + println("$k is a $v") +end +# Выведет: +# dog is a mammal +# cat is a mammal +# mouse is a mammal + +# Цикл while выполняется до тех пор, пока верно условие +x = 0 +while x < 4 + println(x) + x += 1 # Короткая запись x = x + 1 +end +# Выведет: +# 0 +# 1 +# 2 +# 3 + +# Обработка исключений +try + error("help") +catch e + println("caught it $e") +end +#=> caught it ErrorException("help") + + +#################################################### +## 4. Функции +#################################################### + +# Для определения новой функции используется ключевое слово 'function' +#function имя(аргументы) +# тело... +#end +function add(x, y) + println("x is $x and y is $y") + + # Функция возвращает значение последнего выражения + x + y +end + +add(5, 6) #=> Вернёт 11, напечатав "x is 5 and y is 6" + +# Функция может принимать переменное количество позиционных аргументов. +function varargs(args...) + return args + # для возвращения из функции в любом месте используется 'return' +end +#=> varargs (generic function with 1 method) + +varargs(1,2,3) #=> (1,2,3) + +# Многоточие (...) — это splat. +# Мы только что воспользовались им в определении функции. +# Также его можно использовать при вызове функции, +# где он преобразует содержимое массива или кортежа в список аргументов. +Set([1,2,3]) #=> Set{Array{Int64,1}}([1,2,3]) # формирует множество массивов +Set([1,2,3]...) #=> Set{Int64}(1,2,3) # эквивалентно Set(1,2,3) + +x = (1,2,3) #=> (1,2,3) +Set(x) #=> Set{(Int64,Int64,Int64)}((1,2,3)) # множество кортежей +Set(x...) #=> Set{Int64}(2,3,1) + + +# Опциональные позиционные аргументы +function defaults(a,b,x=5,y=6) + return "$a $b and $x $y" +end + +defaults('h','g') #=> "h g and 5 6" +defaults('h','g','j') #=> "h g and j 6" +defaults('h','g','j','k') #=> "h g and j k" +try + defaults('h') #=> ERROR: no method defaults(Char,) + defaults() #=> ERROR: no methods defaults() +catch e + println(e) +end + +# Именованные аргументы +function keyword_args(;k1=4,name2="hello") # обратите внимание на ; + return ["k1"=>k1,"name2"=>name2] +end + +keyword_args(name2="ness") #=> ["name2"=>"ness","k1"=>4] +keyword_args(k1="mine") #=> ["k1"=>"mine","name2"=>"hello"] +keyword_args() #=> ["name2"=>"hello","k2"=>4] + +# В одной функции можно совмещать все виды аргументов +function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo") + println("normal arg: $normal_arg") + println("optional arg: $optional_positional_arg") + println("keyword arg: $keyword_arg") +end + +all_the_args(1, 3, keyword_arg=4) +# Выведет: +# normal arg: 1 +# optional arg: 3 +# keyword arg: 4 + +# Функции в Julia первого класса +function create_adder(x) + adder = function (y) + return x + y + end + return adder +end + +# Анонимная функция +(x -> x > 2)(3) #=> true + +# Эта функция идентичная предыдущей версии create_adder +function create_adder(x) + y -> x + y +end + +# Если есть желание, можно воспользоваться полным вариантом +function create_adder(x) + function adder(y) + x + y + end + adder +end + +add_10 = create_adder(10) +add_10(3) #=> 13 + + +# Встроенные функции высшего порядка +map(add_10, [1,2,3]) #=> [11, 12, 13] +filter(x -> x > 5, [3, 4, 5, 6, 7]) #=> [6, 7] + +# Списковые сборки +[add_10(i) for i=[1, 2, 3]] #=> [11, 12, 13] +[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13] + +#################################################### +## 5. Типы +#################################################### + +# Julia has a type system. +# Каждое значение имеет тип, но переменные не определяют тип значения. +# Функция `typeof` возвращает тип значения. +typeof(5) #=> Int64 + +# Types are first-class values +# Типы являются значениями первого класса +typeof(Int64) #=> DataType +typeof(DataType) #=> DataType +# Тип DataType представляет типы, включая себя самого. + +# Типы используются в качестве документации, для оптимизации и организации. +# Статически типы не проверяются. + +# Пользователь может определять свои типы +# Типы похожи на структуры в других языках +# Новые типы определяются с помощью ключевого слова `type` + +# type Name +# field::OptionalType +# ... +# end +type Tiger + taillength::Float64 + coatcolor # отсутствие типа равносильно `::Any` +end + +# Аргументы конструктора по умолчанию — свойства типа +# в порядке их определения. +tigger = Tiger(3.5,"orange") #=> Tiger(3.5,"orange") + +# Тип объекта по сути является конструктором значений такого типа +sherekhan = typeof(tigger)(5.6,"fire") #=> Tiger(5.6,"fire") + +# Эти типы, похожие на структуры, называются конкретными. +# Можно создавать объекты таких типов, но не их подтипы. +# Другой вид типов — абстрактные типы. + +# abstract Name +abstract Cat # просто имя и точка в иерархии типов + +# Объекты абстрактных типов создавать нельзя, +# но зато от них можно наследовать подтипы. +# Например, Number — это абстрактный тип. +subtypes(Number) #=> 6 элементов в массиве Array{Any,1}: + # Complex{Float16} + # Complex{Float32} + # Complex{Float64} + # Complex{T<:Real} + # ImaginaryUnit + # Real +subtypes(Cat) #=> пустой массив Array{Any,1} + +# У всех типов есть супертип. Для его определения есть функция `super`. +typeof(5) #=> Int64 +super(Int64) #=> Signed +super(Signed) #=> Real +super(Real) #=> Number +super(Number) #=> Any +super(super(Signed)) #=> Number +super(Any) #=> Any +# Все эти типы, за исключением Int64, абстрактные. + +# Для создания подтипа используется оператор <: +type Lion <: Cat # Lion — это подтип Cat + mane_color + roar::String +end + +# У типа может быть несколько конструкторов. +# Для создания нового определите функцию с именем, как у типа, +# и вызовите имеющийся конструктор. +Lion(roar::String) = Lion("green",roar) +# Мы создали внешний (т.к. он находится вне определения типа) конструктор. + +type Panther <: Cat # Panther — это тоже подтип Cat + eye_color + + # Определим свой конструктор вместо конструктора по умолчанию + Panther() = new("green") +end +# Использование внутренних конструкторов позволяет +# определять, как будут создаваться объекты типов. +# Но по возможности стоит пользоваться внешними конструкторами. + +#################################################### +## 6. Мультиметоды +#################################################### + +# Все именованные функции являются generic-функциями, +# т.е. все они состоят из разных методов. +# Каждый конструктор типа Lion — это метод generic-функции Lion. + +# Приведём пример без использования конструкторов, создадим функцию meow + +# Определения Lion, Panther и Tiger +function meow(animal::Lion) + animal.roar # доступ к свойству типа через точку +end + +function meow(animal::Panther) + "grrr" +end + +function meow(animal::Tiger) + "rawwwr" +end + +# Проверка +meow(tigger) #=> "rawwr" +meow(Lion("brown","ROAAR")) #=> "ROAAR" +meow(Panther()) #=> "grrr" + +# Вспомним иерархию типов +issubtype(Tiger,Cat) #=> false +issubtype(Lion,Cat) #=> true +issubtype(Panther,Cat) #=> true + +# Определим функцию, принимающую на вход объекты типа Cat +function pet_cat(cat::Cat) + println("The cat says $(meow(cat))") +end + +pet_cat(Lion("42")) #=> выведет "The cat says 42" +try + pet_cat(tigger) #=> ERROR: no method pet_cat(Tiger,) +catch e + println(e) +end + +# В объектно-ориентированных языках распространена одиночная диспетчеризация — +# подходящий метод выбирается на основе типа первого аргумента. +# В Julia все аргументы участвуют в выборе нужного метода. + +# Чтобы понять разницу, определим функцию с несколькими аргументами. +function fight(t::Tiger,c::Cat) + println("The $(t.coatcolor) tiger wins!") +end +#=> fight (generic function with 1 method) + +fight(tigger,Panther()) #=> выведет The orange tiger wins! +fight(tigger,Lion("ROAR")) #=> выведет The orange tiger wins! + +# Переопределим поведение функции, если Cat-объект является Lion-объектом +fight(t::Tiger,l::Lion) = println("The $(l.mane_color)-maned lion wins!") +#=> fight (generic function with 2 methods) + +fight(tigger,Panther()) #=> выведет The orange tiger wins! +fight(tigger,Lion("ROAR")) #=> выведет The green-maned lion wins! + +# Драться можно не только с тиграми! +fight(l::Lion,c::Cat) = println("The victorious cat says $(meow(c))") +#=> fight (generic function with 3 methods) + +fight(Lion("balooga!"),Panther()) #=> выведет The victorious cat says grrr +try + fight(Panther(),Lion("RAWR")) #=> ERROR: no method fight(Panther,Lion) +catch +end + +# Вообще, пускай кошачьи могут первыми проявлять агрессию +fight(c::Cat,l::Lion) = println("The cat beats the Lion") +#=> Warning: New definition +# fight(Cat,Lion) at none:1 +# is ambiguous with +# fight(Lion,Cat) at none:2. +# Make sure +# fight(Lion,Lion) +# is defined first. +#fight (generic function with 4 methods) + +# Предупреждение говорит, что неясно, какой из методов вызывать: +fight(Lion("RAR"),Lion("brown","rarrr")) #=> выведет The victorious cat says rarrr +# Результат может оказаться разным в разных версиях Julia + +fight(l::Lion,l2::Lion) = println("The lions come to a tie") +fight(Lion("RAR"),Lion("brown","rarrr")) #=> выведет The lions come to a tie + + +# Под капотом +# Язык позволяет посмотреть на сгенерированные ассемблерный и LLVM-код. + +square_area(l) = l * l # square_area (generic function with 1 method) + +square_area(5) #25 + +# Что происходит, когда мы передаём функции square_area целое число? +code_native(square_area, (Int32,)) + # .section __TEXT,__text,regular,pure_instructions + # Filename: none + # Source line: 1 # Вводная часть + # push RBP + # mov RBP, RSP + # Source line: 1 + # movsxd RAX, EDI # + # imul RAX, RAX # + # pop RBP # + # ret # + +code_native(square_area, (Float32,)) + # .section __TEXT,__text,regular,pure_instructions + # Filename: none + # Source line: 1 + # push RBP + # mov RBP, RSP + # Source line: 1 + # vmulss XMM0, XMM0, XMM0 # Произведение чисел одинарной точности (AVX) + # pop RBP + # ret + +code_native(square_area, (Float64,)) + # .section __TEXT,__text,regular,pure_instructions + # Filename: none + # Source line: 1 + # push RBP + # mov RBP, RSP + # Source line: 1 + # vmulsd XMM0, XMM0, XMM0 # Произведение чисел двойной точности (AVX) + # pop RBP + # ret + # +# Если хотя бы один из аргументов является числом с плавающей запятой, +# то Julia будет использовать соответствующие инструкции. +# Вычислим площать круга +circle_area(r) = pi * r * r # circle_area (generic function with 1 method) +circle_area(5) # 78.53981633974483 + +code_native(circle_area, (Int32,)) + # .section __TEXT,__text,regular,pure_instructions + # Filename: none + # Source line: 1 + # push RBP + # mov RBP, RSP + # Source line: 1 + # vcvtsi2sd XMM0, XMM0, EDI # Загрузить целое число (r) + # movabs RAX, 4593140240 # Загрузить pi + # vmulsd XMM1, XMM0, QWORD PTR [RAX] # pi * r + # vmulsd XMM0, XMM0, XMM1 # (pi * r) * r + # pop RBP + # ret + # + +code_native(circle_area, (Float64,)) + # .section __TEXT,__text,regular,pure_instructions + # Filename: none + # Source line: 1 + # push RBP + # mov RBP, RSP + # movabs RAX, 4593140496 + # Source line: 1 + # vmulsd XMM1, XMM0, QWORD PTR [RAX] + # vmulsd XMM0, XMM1, XMM0 + # pop RBP + # ret + # +``` + +## Что дальше? + +Для более подробной информации читайте [документацию по языку](http://docs.julialang.org/en/latest/manual/) + +Если вам нужна помощь, задавайте вопросы в [списке рассылки](https://groups.google.com/forum/#!forum/julia-users). |