diff options
| -rw-r--r-- | c.html.markdown | 629 | 
1 files changed, 356 insertions, 273 deletions
| diff --git a/c.html.markdown b/c.html.markdown index 2b50efa0..ac6c7ab4 100644 --- a/c.html.markdown +++ b/c.html.markdown @@ -5,19 +5,20 @@ language: c  filename: learnc.c  contributors:      - ["Adam Bard", "http://adambard.com/"] +    - ["Árpád Goretity", "http://twitter.com/h2co3_ios"]  --- -Ah, C. Still the language of modern high-performance computing. +Ah, C. Still **the** language of modern high-performance computing.  C is the lowest-level language most programmers will ever use, but  it more than makes up for it with raw speed. Just be aware of its manual  memory management and C will take you as far as you need to go.  ```c -// Single-line comments start with // +// Single-line comments start with // - only available in C99 and later.  /* -Multi-line comments look like this. +Multi-line comments look like this. They work in C89 as well.  */  // Import headers with #include @@ -25,6 +26,11 @@ Multi-line comments look like this.  #include <stdio.h>  #include <string.h> +// file names between <angle brackets> are headers from the C standard library. +// They are searched for by the preprocessor in the system include paths +// (usually /usr/lib on Unices, can be controlled with the -I<dir> option if you are using GCC or clang.) +// For your +  // Declare function signatures in advance in a .h file, or at the top of  // your .c file.  void function_1(); @@ -33,264 +39,317 @@ void function_2();  // Your program's entry point is a function called  // main with an integer return type.  int main() { - -// print output using printf, for "print formatted" -// %d is an integer, \n is a newline -printf("%d\n", 0); // => Prints 0 -// All statements must end with a semicolon - -/////////////////////////////////////// -// Types -/////////////////////////////////////// - -// You have to declare variables before using them. A variable declaration -// requires you to specify its type; a variable's type determines its size -// in bytes. - -// ints are usually 4 bytes  -int x_int = 0; - -// shorts are usually 2 bytes -short x_short = 0; - -// chars are guaranteed to be 1 byte -char x_char = 0; -char y_char = 'y'; // Char literals are quoted with '' - -// longs are often 4 to 8 bytes; long longs are guaranteed to be at least -// 64 bits -long x_long = 0; -long long x_long_long = 0;  - -// floats are usually 32-bit floating point numbers -float x_float = 0.0; - -// doubles are usually 64-bit floating-point numbers -double x_double = 0.0; - -// Integral types may be unsigned. This means they can't be negative, but -// the maximum value of an unsigned variable is greater than the maximum -// signed value of the same size. -unsigned char ux_char; -unsigned short ux_short; -unsigned int ux_int; -unsigned long long ux_long_long; - -// Other than char, which is always 1 byte, these types vary in size depending -// on your machine. sizeof(T) gives you the size of a variable with type T in  -// bytes so you can express the size of these types in a portable way. -// For example, -printf("%lu\n", sizeof(int)); // => 4 (on machines with 4-byte words) - -// Arrays must be initialized with a concrete size. -char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes -int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes -                      // (assuming 4-byte words) - - -// You can initialize an array to 0 thusly: -char my_array[20] = {0}; - -// Indexing an array is like other languages -- or, -// rather, other languages are like C -my_array[0]; // => 0 - -// Arrays are mutable; it's just memory! -my_array[1] = 2; -printf("%d\n", my_array[1]); // => 2 - -// Strings are just arrays of chars terminated by a NUL (0x00) byte, -// represented in strings as the special character '\0'. -// (We don't have to include the NUL byte in string literals; the compiler -//  inserts it at the end of the array for us.) -char a_string[20] = "This is a string"; -printf("%s\n", a_string); // %s formats a string - -/* -You may have noticed that a_string is only 16 chars long. -Char #17 is the NUL byte.  -Chars #18, 19 and 20 have undefined values. -*/ - -printf("%d\n", a_string[16]); // => 0 - -/////////////////////////////////////// -// Operators -/////////////////////////////////////// - -int i1 = 1, i2 = 2; // Shorthand for multiple declaration -float f1 = 1.0, f2 = 2.0; - -// Arithmetic is straightforward -i1 + i2; // => 3 -i2 - i1; // => 1 -i2 * i1; // => 2 -i1 / i2; // => 0 (0.5, but truncated towards 0) - -f1 / f2; // => 0.5, plus or minus epsilon - -// Modulo is there as well -11 % 3; // => 2 - -// Comparison operators are probably familiar, but -// there is no boolean type in c. We use ints instead. -// 0 is false, anything else is true. (The comparison  -// operators always return 0 or 1.) -3 == 2; // => 0 (false) -3 != 2; // => 1 (true) -3 > 2; // => 1 -3 < 2; // => 0 -2 <= 2; // => 1 -2 >= 2; // => 1 - -// Logic works on ints -!3; // => 0 (Logical not) -!0; // => 1 -1 && 1; // => 1 (Logical and) -0 && 1; // => 0 -0 || 1; // => 1 (Logical or) -0 || 0; // => 0 - -// Bitwise operators! -~0x0F; // => 0xF0 (bitwise negation) -0x0F & 0xF0; // => 0x00 (bitwise AND) -0x0F | 0xF0; // => 0xFF (bitwise OR) -0x04 ^ 0x0F; // => 0x0B (bitwise XOR) -0x01 << 1; // => 0x02 (bitwise left shift (by 1)) -0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) - -/////////////////////////////////////// -// Control Structures -/////////////////////////////////////// - -if (0) { -  printf("I am never run\n"); -} else if (0) { -  printf("I am also never run\n"); -} else { -  printf("I print\n"); -} - -// While loops exist -int ii = 0; -while (ii < 10) { -    printf("%d, ", ii++); // ii++ increments ii in-place, after using its value. -} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -printf("\n"); - -int kk = 0; -do { -    printf("%d, ", kk); -} while (++kk < 10); // ++kk increments kk in-place, before using its value -// => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -printf("\n"); - -// For loops too -int jj; -for (jj=0; jj < 10; jj++) { -    printf("%d, ", jj); -} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -printf("\n"); - -/////////////////////////////////////// -// Typecasting -/////////////////////////////////////// - -// Every value in C has a type, but you can cast one value into another type -// if you want. - -int x_hex = 0x01; // You can assign vars with hex literals - -// Casting between types will attempt to preserve their numeric values -printf("%d\n", x_hex); // => Prints 1 -printf("%d\n", (short) x_hex); // => Prints 1 -printf("%d\n", (char) x_hex); // => Prints 1 - -// Types will overflow without warning -printf("%d\n", (char) 257); // => 1 (Max char = 255) - -// Integral types can be cast to floating-point types, and vice-versa. -printf("%f\n", (float)100); // %f formats a float -printf("%lf\n", (double)100); // %lf formats a double -printf("%d\n", (char)100.0); - -/////////////////////////////////////// -// Pointers -/////////////////////////////////////// - -// A pointer is a variable declared to store a memory address. Its declaration will -// also tell you the type of data it points to. You can retrieve the memory address  -// of your variables, then mess with them. - -int x = 0; -printf("%p\n", &x); // Use & to retrieve the address of a variable -// (%p formats a pointer) -// => Prints some address in memory; - - -// Pointers start with * in their declaration -int *px, not_a_pointer; // px is a pointer to an int -px = &x; // Stores the address of x in px -printf("%p\n", px); // => Prints some address in memory -printf("%d, %d\n", (int)sizeof(px), (int)sizeof(not_a_pointer)); -// => Prints "8, 4" on 64-bit system - -// To retreive the value at the address a pointer is pointing to, -// put * in front to de-reference it. -printf("%d\n", *px); // => Prints 0, the value of x, which is what px is pointing to the address of - -// You can also change the value the pointer is pointing to. -// We'll have to wrap the de-reference in parenthesis because -// ++ has a higher precedence than *. -(*px)++; // Increment the value px is pointing to by 1 -printf("%d\n", *px); // => Prints 1 -printf("%d\n", x); // => Prints 1 - -int x_array[20]; // Arrays are a good way to allocate a contiguous block of memory -int xx; -for (xx=0; xx<20; xx++) { -    x_array[xx] = 20 - xx; -} // Initialize x_array to 20, 19, 18,... 2, 1 - -// Declare a pointer of type int and initialize it to point to x_array -int* x_ptr = x_array; -// x_ptr now points to the first element in the array (the integer 20).  -// This works because arrays are actually just pointers to their first element. - -// Arrays are pointers to their first element -printf("%d\n", *(x_ptr)); // => Prints 20 -printf("%d\n", x_array[0]); // => Prints 20 - -// Pointers are incremented and decremented based on their type -printf("%d\n", *(x_ptr + 1)); // => Prints 19 -printf("%d\n", x_array[1]); // => Prints 19 - -// You can also dynamically allocate contiguous blocks of memory with the -// standard library function malloc, which takes one integer argument  -// representing the number of bytes to allocate from the heap. -int* my_ptr = (int*) malloc(sizeof(int) * 20); -for (xx=0; xx<20; xx++) { -    *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx would also work here -} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) - -// Dereferencing memory that you haven't allocated gives -// unpredictable results -printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? - -// When you're done with a malloc'd block of memory, you need to free it,  -// or else no one else can use it until your program terminates -free(my_ptr); - -// Strings can be char arrays, but are usually represented as char -// pointers: -char* my_str = "This is my very own string"; - -printf("%c\n", *my_str); // => 'T' - -function_1(); +    // print output using printf, for "print formatted" +    // %d is an integer, \n is a newline +    printf("%d\n", 0); // => Prints 0 +    // All statements must end with a semicolon +     +    /////////////////////////////////////// +    // Types +    /////////////////////////////////////// +     +    // You have to declare variables before using them. A variable declaration +    // requires you to specify its type; a variable's type determines its size +    // in bytes. +     +    // ints are usually 4 bytes  +    int x_int = 0; +     +    // shorts are usually 2 bytes +    short x_short = 0; +     +    // chars are guaranteed to be 1 byte +    char x_char = 0; +    char y_char = 'y'; // Char literals are quoted with '' +     +    // longs are often 4 to 8 bytes; long longs are guaranteed to be at least +    // 64 bits +    long x_long = 0; +    long long x_long_long = 0;  +     +    // floats are usually 32-bit floating point numbers +    float x_float = 0.0; +     +    // doubles are usually 64-bit floating-point numbers +    double x_double = 0.0; +     +    // Integral types may be unsigned. This means they can't be negative, but +    // the maximum value of an unsigned variable is greater than the maximum +    // signed value of the same size. +    unsigned char ux_char; +    unsigned short ux_short; +    unsigned int ux_int; +    unsigned long long ux_long_long; +     +    // Other than char, which is always 1 byte (but not necessarily 8 bits!), +    // these types vary in size depending on your machine and compiler. +    // sizeof(T) gives you the size of a variable with type T in  +    // bytes so you can express the size of these types in a portable way. +    // sizeof(obj) yields the size of an actual expression (variable, literal, etc.). +    // For example, +    printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words) +     +     +    // It's worth noting that if the argument of the `sizeof` operator is not a type but an expression, +    // then its argument is not evaluated except VLAs (see below). Also, `sizeof()` is an operator, not a function, +    // furthermore, the value it yields is a compile-time constant (except when used on VLAs, again.) +    int a = 1; +    size_t size = sizeof(a++); // a++ is not evaluated +    printf("sizeof(a++) = %zu where a = %d\n", size, a); +    // the above code prints "sizeof(a++) = 4 where a = 1" (on a usual 32-bit architecture) +     +    // Arrays must be initialized with a concrete size. +    char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes +    int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes +                          // (assuming 4-byte words) +     +     +    // You can initialize an array to 0 thusly: +    char my_array[20] = {0}; +     +    // Indexing an array is like other languages -- or, +    // rather, other languages are like C +    my_array[0]; // => 0 +     +    // Arrays are mutable; it's just memory! +    my_array[1] = 2; +    printf("%d\n", my_array[1]); // => 2 +     +    // In C99 (and as an optional feature in C11), variable-length arrays (VLAs) can be declared as well. +    // The size of such an array need not be a compile time constant: +    printf("Enter the array size: "); // ask the user for an array size +    char buf[0x100]; +    fgets(buf, sizeof buf, stdin); +    size_t size = strtoul(buf, NULL, 10); // strtoul parses a string to an unsigned integer +    int var_length_array[size]; // declare the VLA +    printf("sizeof array = %zu\n", sizeof var_length_array); +     +    // A possible outcome of this program may be: +    Enter the array size: 10 +    sizeof array = 40 +     +    // Strings are just arrays of chars terminated by a NUL (0x00) byte, +    // represented in strings as the special character '\0'. +    // (We don't have to include the NUL byte in string literals; the compiler +    //  inserts it at the end of the array for us.) +    char a_string[20] = "This is a string"; +    printf("%s\n", a_string); // %s formats a string +     +    /* +     You may have noticed that a_string is only 16 chars long. +     Char #17 is the NUL byte.  +     Chars #18, 19 and 20 are 0 as well - if an initializer list (in this case, the string literal) +     has less elements than the array it is initializing, then excess array elements are implicitly +     initialized to zero. This is why int ar[10] = { 0 } works as expected intuitively. +    */ +     +    printf("%d\n", a_string[16]); // => 0 +     +    // So string literals are strings enclosed within double quotes, but if we have characters +    // between single quotes, that's a character literal. +    // It's of type `int`, and *not* `char` (for hystorical reasons). +    int cha = 'a'; // fine +    char chb = 'a'; // fine too (implicit conversion from int to char - truncation) +     +    /////////////////////////////////////// +    // Operators +    /////////////////////////////////////// +     +    int i1 = 1, i2 = 2; // Shorthand for multiple declaration +    float f1 = 1.0, f2 = 2.0; +     +    // Arithmetic is straightforward +    i1 + i2; // => 3 +    i2 - i1; // => 1 +    i2 * i1; // => 2 +    i1 / i2; // => 0 (0.5, but truncated towards 0) +     +    f1 / f2; // => 0.5, plus or minus epsilon - floating-point numbers and calculations are not exact +     +    // Modulo is there as well +    11 % 3; // => 2 +     +    // Comparison operators are probably familiar, but +    // there is no boolean type in c. We use ints instead. +    // 0 is false, anything else is true. (The comparison  +    // operators always yield 0 or 1.) +    3 == 2; // => 0 (false) +    3 != 2; // => 1 (true) +    3 > 2; // => 1 +    3 < 2; // => 0 +    2 <= 2; // => 1 +    2 >= 2; // => 1 +     +    // Logic works on ints +    !3; // => 0 (Logical not) +    !0; // => 1 +    1 && 1; // => 1 (Logical and) +    0 && 1; // => 0 +    0 || 1; // => 1 (Logical or) +    0 || 0; // => 0 +     +    // Bitwise operators! +    ~0x0F; // => 0xF0 (bitwise negation, "1's complement") +    0x0F & 0xF0; // => 0x00 (bitwise AND) +    0x0F | 0xF0; // => 0xFF (bitwise OR) +    0x04 ^ 0x0F; // => 0x0B (bitwise XOR) +    0x01 << 1; // => 0x02 (bitwise left shift (by 1)) +    0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) +     +    /////////////////////////////////////// +    // Control Structures +    /////////////////////////////////////// +     +    if (0) { +      printf("I am never run\n"); +    } else if (0) { +      printf("I am also never run\n"); +    } else { +      printf("I print\n"); +    } +     +    // While loops exist +    int ii = 0; +    while (ii < 10) { +        printf("%d, ", ii++); // ii++ increments ii in-place, after yielding its value ("postincrement"). +    } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " +     +    printf("\n"); +     +    int kk = 0; +    do { +        printf("%d, ", kk); +    } while (++kk < 10); // ++kk increments kk in-place, and yields the already incremented value ("preincrement") +    // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " +     +    printf("\n"); +     +    // For loops too +    int jj; +    for (jj=0; jj < 10; jj++) { +        printf("%d, ", jj); +    } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " +     +    printf("\n"); +     +    /////////////////////////////////////// +    // Typecasting +    /////////////////////////////////////// +     +    // Every value in C has a type, but you can cast one value into another type +    // if you want (with some constraints). +     +    int x_hex = 0x01; // You can assign vars with hex literals +     +    // Casting between types will attempt to preserve their numeric values +    printf("%d\n", x_hex); // => Prints 1 +    printf("%d\n", (short) x_hex); // => Prints 1 +    printf("%d\n", (char) x_hex); // => Prints 1 +     +    // Types will overflow without warning +    printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long) +    // printf("%d\n", (unsigned char) 257); would be undefined behavior - `char' is usually signed +    // on most modern systems, and signed integer overflow invokes UB. +    // Also, for determining the maximal value of a `char`, a `signed char` and an `unisigned char`, +    // respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h> +     +    // Integral types can be cast to floating-point types, and vice-versa. +    printf("%f\n", (float)100); // %f formats a float +    printf("%lf\n", (double)100); // %lf formats a double +    printf("%d\n", (char)100.0); +     +    /////////////////////////////////////// +    // Pointers +    /////////////////////////////////////// +     +    // A pointer is a variable declared to store a memory address. Its declaration will +    // also tell you the type of data it points to. You can retrieve the memory address  +    // of your variables, then mess with them. +     +    int x = 0; +    printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable +    // (%p formats an object pointer of type void *) +    // => Prints some address in memory; +     +     +    // Pointers start with * in their declaration +    int *px, not_a_pointer; // px is a pointer to an int +    px = &x; // Stores the address of x in px +    printf("%p\n", (void *)px); // => Prints some address in memory +    printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer)); +    // => Prints "8, 4" on a typical 64-bit system +     +    // To retreive the value at the address a pointer is pointing to, +    // put * in front to de-reference it. +    // Note: yes, it may be confusing that '*' is used for _both_ declaring a pointer and dereferencing it. +    printf("%d\n", *px); // => Prints 0, the value of x, which is what px is pointing to the address of +     +    // You can also change the value the pointer is pointing to. +    // We'll have to wrap the de-reference in parenthesis because +    // ++ has a higher precedence than *. +    (*px)++; // Increment the value px is pointing to by 1 +    printf("%d\n", *px); // => Prints 1 +    printf("%d\n", x); // => Prints 1 +     +    int x_array[20]; // Arrays are a good way to allocate a contiguous block of memory +    int xx; +    for (xx = 0; xx < 20; xx++) { +        x_array[xx] = 20 - xx; +    } // Initialize x_array to 20, 19, 18,... 2, 1 +     +    // Declare a pointer of type int and initialize it to point to x_array +    int* x_ptr = x_array; +    // x_ptr now points to the first element in the array (the integer 20).  +    // This works because arrays often decay into pointers to their first element. +    // For example, when an array is passed to a function or is assigned to a pointer, +    // it decays into (implicitly converted to) a pointer. +    // Exceptions: when the array is the argument of the `&` (address-od) operator: +    int arr[10]; +    int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`! It's of type "pointer to array" (of ten `int`s). +    // or when the array is a string literal used for initializing a char array: +    char arr[] = "foobarbazquirk"; +    // or when it's the argument of the `sizeof` or `alignof` operator: +    int arr[10]; +    int *ptr = arr; // equivalent with int *ptr = &arr[0]; +    printf("%zu %zu\n", sizeof arr, sizeof ptr); // probably prints "40, 4" or "40, 8" +     + +    // Pointers are incremented and decremented based on their type +    // (this is called pointer arithmetic) +    printf("%d\n", *(x_ptr + 1)); // => Prints 19 +    printf("%d\n", x_array[1]); // => Prints 19 +     +    // You can also dynamically allocate contiguous blocks of memory with the +    // standard library function malloc, which takes one argument of type size_t +    // representing the number of bytes to allocate (usually from the heap, although this +    // may not be true on e. g. embedded systems - the C standard says nothing about it). +    int *my_ptr = malloc(sizeof(*my_ptr) * 20); +    for (xx = 0; xx < 20; xx++) { +        *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx would also work here, and it's also more readable +    } // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) +     +    // Dereferencing memory that you haven't allocated gives +    // "unpredictable results" - the program is said to invoke "undefined behavior" +    printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash. +     +    // When you're done with a malloc'd block of memory, you need to free it,  +    // or else no one else can use it until your program terminates +    // (this is called a "memory leak"): +    free(my_ptr); +     +    // Strings are arrays of char, but they are usually represented as a +    // pointer-to-char (which is a pointer to the first element of the array). +    // It's good practice to use `const char *' when referring to a string literal, +    // since string literals shall not be modified (i. e. "foo"[0] = 'a' is ILLEGAL.) +    const char *my_str = "This is my very own string literal"; +    printf("%c\n", *my_str); // => 'T' +     +    // This is not the case if the string is an array (potentially initialized with a string literal) +    // that resides in writable memory, as in: +    char foo[] = "foo"; +    foo[0] = 'a'; // this is legal, foo now contains "aoo" +     +    function_1();  } // end main function  /////////////////////////////////////// @@ -300,7 +359,8 @@ function_1();  // Function declaration syntax:  // <return type> <function name>(<args>) -int add_two_ints(int x1, int x2){ +int add_two_ints(int x1, int x2) +{      return x1 + x2; // Use return to return a value  } @@ -312,10 +372,12 @@ Example: in-place string reversal  */  // A void function returns no value -void str_reverse(char* str_in){ +void str_reverse(char *str_in) +{      char tmp; -    int ii=0, len = strlen(str_in); // Strlen is part of the c standard library -    for(ii=0; ii<len/2; ii++){ +    int ii = 0; +    size_t len = strlen(str_in); // `strlen()` is part of the c standard library +    for (ii = 0; ii < len / 2; ii++) {          tmp = str_in[ii];          str_in[ii] = str_in[len - ii - 1]; // ii-th char from end          str_in[len - ii - 1] = tmp; @@ -336,15 +398,20 @@ printf("%s\n", c); // => ".tset a si sihT"  typedef int my_type;  my_type my_type_var = 0; -// Structs are just collections of data +// Structs are just collections of data, the members are allocated sequentially, in the order they are written:  struct rectangle {      int width;      int height;  }; +// it's generally not true that sizeof(struct rectangle) == sizeof(int) + sizeof(int) due to +// potential padding between the structure members (this is for alignment reasons. Probably won't +// happen if all members are of the same type, but watch out! +// See http://stackoverflow.com/questions/119123/why-isnt-sizeof-for-a-struct-equal-to-the-sum-of-sizeof-of-each-member +// for further information. -void function_1(){ - +void function_1() +{      struct rectangle my_rec;      // Access struct members with . @@ -352,22 +419,29 @@ void function_1(){      my_rec.height = 20;      // You can declare pointers to structs -    struct rectangle* my_rec_ptr = &my_rec; +    struct rectangle *my_rec_ptr = &my_rec;      // Use dereferencing to set struct pointer members...      (*my_rec_ptr).width = 30; -    // ... or use the -> shorthand +    // ... or even better: prefer the -> shorthand for the sake of readability      my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10;  }  // You can apply a typedef to a struct for convenience  typedef struct rectangle rect; -int area(rect r){ +int area(rect r) +{      return r.width * r.height;  } +// if you have large structs, you can pass them "by pointer" to avoid copying the whole struct: +int area(const rect *r) +{ +    return r->width * r->height; +} +  ///////////////////////////////////////  // Function pointers   /////////////////////////////////////// @@ -379,10 +453,11 @@ However, definition syntax may be initially confusing.  Example: use str_reverse from a pointer  */ -void str_reverse_through_pointer(char * str_in) { +void str_reverse_through_pointer(char *str_in) {      // Define a function pointer variable, named f.       void (*f)(char *); // Signature should exactly match the target function.      f = &str_reverse; // Assign the address for the actual function (determined at runtime) +    // f = str_reverse; would work as well - functions decay into pointers, similar to arrays      (*f)(str_in); // Just calling the function through the pointer      // f(str_in); // That's an alternative but equally valid syntax for calling it.  } @@ -403,7 +478,15 @@ typedef void (*my_fnp_type)(char *);  ## Further Reading  Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language) +It is *the* book about C, written by the creators of C. Be careful, though - it's ancient and it contains some +inaccuracies (well, ideas that are not considered good anymore) or now-changed practices. + +Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/). + +If you have a question, read the [compl.lang.c Frequently Asked Questions](http://c-faq.com). -Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/) +It's very important to use proper spacing, indentation and to be consistent with your coding style in general. +Readable code is better than clever code and fast code. For a good, sane coding style to adopt, see the +[Linux kernel coding stlye](https://www.kernel.org/doc/Documentation/CodingStyle).  Other than that, Google is your friend. | 
