diff options
-rw-r--r-- | java.html.markdown | 369 |
1 files changed, 369 insertions, 0 deletions
diff --git a/java.html.markdown b/java.html.markdown new file mode 100644 index 00000000..d780d515 --- /dev/null +++ b/java.html.markdown @@ -0,0 +1,369 @@ +--- +language: java +author: Jake Prather +author_url: http://github.com/JakeHP +--- + +Java is a general-purpose, concurrent, class-based, object-oriented computer programming language. +Read more here: https://en.wikipedia.org/wiki/Java_(programming_language) + +```java +// Single-line comments start with // +/* +Multi-line comments look like this. +*/ + +// Import Packages +import java.util.ArrayList; +import package.path.here; +// Import "sub-packages" +import java.lang.Math.*; + +// Your program's entry point is a function called main +public class Main +{ + public static void main (String[] args) throws java.lang.Exception + { + //stuff here + } +} + +// Printing +System.out.println("Hello World"); +System.out.println("Integer: "+10+"Double: "+3.14+ "Boolean: "+true); + +/////////////////////////////////////// +// Types +/////////////////////////////////////// + +// You have to declare variables before using them. A variable declaration +// requires you to specify its type; a variable's type determines its size +// in bytes. + +// Integers +int x_int = 0; + +// shorts are usually 2 bytes +short x_short = 0; + +// chars are guaranteed to be 1 byte +char x_char = 0; +char y_char = 'y'; // Char literals are quoted with '' + +// longs are often 4 to 8 bytes; long longs are guaranteed to be at least +// 64 bits +long x_long = 0; +long long x_long_long = 0; + +// floats are usually 32-bit floating point numbers +float x_float = 0.0; + +// doubles are usually 64-bit floating-point numbers +double x_double = 0.0; + +// Integral types may be unsigned. This means they can't be negative, but +// the maximum value of an unsigned variable is greater than the maximum +// value of the same size. +unsigned char ux_char; +unsigned short ux_short; +unsigned int ux_int; +unsigned long long ux_long_long; + +// Other than char, which is always 1 byte, these types vary in size depending +// on your machine. sizeof(T) gives you the size of a variable with type T in +// bytes so you can express the size of these types in a portable way. +// For example, +printf("%d\n", sizeof(int)); // => 4 (on machines with 4-byte words) + +// Arrays must be initialized with a concrete size. +char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes +int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes + // (assuming 4-byte words) + + +// You can initialize an array to 0 thusly: +char my_array[20] = {0}; + +// Indexing an array is like other languages -- or, +// rather, other languages are like C +my_array[0]; // => 0 + +// Arrays are mutable; it's just memory! +my_array[1] = 2; +printf("%d\n", my_array[1]); // => 2 + +// Strings are just arrays of chars terminated by a NUL (0x00) byte, +// represented in strings as the special character '\0'. +// (We don't have to include the NUL byte in string literals; the compiler +// inserts it at the end of the array for us.) +char a_string[20] = "This is a string"; +printf("%s\n", a_string); // %s formats a string + +/* +You may have noticed that a_string is only 16 chars long. +Char #17 is the NUL byte. +Chars #18, 19 and 20 have undefined values. +*/ + +printf("%d\n", a_string[16]); => 0 + +/////////////////////////////////////// +// Operators +/////////////////////////////////////// + +int i1 = 1, i2 = 2; // Shorthand for multiple declaration +float f1 = 1.0, f2 = 2.0; + +// Arithmetic is straightforward +i1 + i2; // => 3 +i2 - i1; // => 1 +i2 * i1; // => 2 +i1 / i2; // => 0 (0.5, but truncated towards 0) + +f1 / f2; // => 0.5, plus or minus epsilon + +// Modulo is there as well +11 % 3; // => 2 + +// Comparison operators are probably familiar, but +// there is no boolean type in c. We use ints instead. +// 0 is false, anything else is true. (The comparison +// operators always return 0 or 1.) +3 == 2; // => 0 (false) +3 != 2; // => 1 (true) +3 > 2; // => 1 +3 < 2; // => 0 +2 <= 2; // => 1 +2 >= 2; // => 1 + +// Logic works on ints +!3; // => 0 (Logical not) +!0; // => 1 +1 && 1; // => 1 (Logical and) +0 && 1; // => 0 +0 || 1; // => 1 (Logical or) +0 || 0; // => 0 + +// Bitwise operators! +~0x0F; // => 0xF0 (bitwise negation) +0x0F & 0xF0; // => 0x00 (bitwise AND) +0x0F | 0xF0; // => 0xFF (bitwise OR) +0x04 ^ 0x0F; // => 0x0B (bitwise XOR) +0x01 << 1; // => 0x02 (bitwise left shift (by 1)) +0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) + +/////////////////////////////////////// +// Control Structures +/////////////////////////////////////// + +if (0) { + printf("I am never run\n"); +} else if (0) { + printf("I am also never run\n"); +} else { + printf("I print\n"); +} + +// While loops exist +int ii = 0; +while (ii < 10) { + printf("%d, ", ii++); // ii++ increments ii in-place, after using its value. +} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +printf("\n"); + +int kk = 0; +do { + printf("%d, ", kk); +} while (++kk < 10); // ++kk increments kk in-place, before using its value +// => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +printf("\n"); + +// For loops too +int jj; +for (jj=0; jj < 10; jj++) { + printf("%d, ", jj); +} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +printf("\n"); + +/////////////////////////////////////// +// Typecasting +/////////////////////////////////////// + +// Every value in C has a type, but you can cast one value into another type +// if you want. + +int x_hex = 0x01; // You can assign vars with hex literals + +// Casting between types will attempt to preserve their numeric values +printf("%d\n", x_hex); // => Prints 1 +printf("%d\n", (short) x_hex); // => Prints 1 +printf("%d\n", (char) x_hex); // => Prints 1 + +// Types will overflow without warning +printf("%d\n", (char) 257); // => 1 (Max char = 255) + +// Integral types can be cast to floating-point types, and vice-versa. +printf("%f\n", (float)100); // %f formats a float +printf("%lf\n", (double)100); // %lf formats a double +printf("%d\n", (char)100.0); + +/////////////////////////////////////// +// Pointers +/////////////////////////////////////// + +// A pointer is a variable declared to store a memory address. Its declaration will +// also tell you the type of data it points to. You can retrieve the memory address +// of your variables, then mess with them. + +int x = 0; +printf("%p\n", &x); // Use & to retrieve the address of a variable +// (%p formats a pointer) +// => Prints some address in memory; + +// Pointer types end with * in their declaration +int* px; // px is a pointer to an int +px = &x; // Stores the address of x in px +printf("%p\n", px); // => Prints some address in memory + +// To retreive the value at the address a pointer is pointing to, +// put * in front to de-reference it. +printf("%d\n", *px); // => Prints 0, the value of x, which is what px is pointing to the address of + +// You can also change the value the pointer is pointing to. +// We'll have to wrap the de-reference in parenthesis because +// ++ has a higher precedence than *. +(*px)++; // Increment the value px is pointing to by 1 +printf("%d\n", *px); // => Prints 1 +printf("%d\n", x); // => Prints 1 + +int x_array[20]; // Arrays are a good way to allocate a contiguous block of memory +int xx; +for (xx=0; xx<20; xx++) { + x_array[xx] = 20 - xx; +} // Initialize x_array to 20, 19, 18,... 2, 1 + +// Declare a pointer of type int and initialize it to point to x_array +int* x_ptr = x_array; +// x_ptr now points to the first element in the array (the integer 20). +// This works because arrays are actually just pointers to their first element. + +// Arrays are pointers to their first element +printf("%d\n", *(x_ptr)); // => Prints 20 +printf("%d\n", x_array[0]); // => Prints 20 + +// Pointers are incremented and decremented based on their type +printf("%d\n", *(x_ptr + 1)); // => Prints 19 +printf("%d\n", x_array[1]); // => Prints 19 + +// You can also dynamically allocate contiguous blocks of memory with the +// standard library function malloc, which takes one integer argument +// representing the number of bytes to allocate from the heap. +int* my_ptr = (int*) malloc(sizeof(int) * 20); +for (xx=0; xx<20; xx++) { + *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx would also work here +} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) + +// Dereferencing memory that you haven't allocated gives +// unpredictable results +printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? + +// When you're done with a malloc'd block of memory, you need to free it, +// or else no one else can use it until your program terminates +free(my_ptr); + +// Strings can be char arrays, but are usually represented as char +// pointers: +char* my_str = "This is my very own string"; + +printf("%c\n", *my_str); // => 'T' + +function_1(); +} // end main function + +/////////////////////////////////////// +// Functions +/////////////////////////////////////// + +// Function declaration syntax: +// <return type> <function name>(<args>) + +int add_two_ints(int x1, int x2){ + return x1 + x2; // Use return to return a value +} + +/* +Functions are pass-by-value, but you can make your own references +with pointers so functions can mutate their values. + +Example: in-place string reversal +*/ + +// A void function returns no value +void str_reverse(char* str_in){ + char tmp; + int ii=0, len = strlen(str_in); // Strlen is part of the c standard library + for(ii=0; ii<len/2; ii++){ + tmp = str_in[ii]; + str_in[ii] = str_in[len - ii - 1]; // ii-th char from end + str_in[len - ii - 1] = tmp; + } +} + +/* +char c[] = "This is a test."; +str_reverse(c); +printf("%s\n", c); // => ".tset a si sihT" +*/ + +/////////////////////////////////////// +// User-defined types and structs +/////////////////////////////////////// + +// Typedefs can be used to create type aliases +typedef int my_type; +my_type my_type_var = 0; + +// Structs are just collections of data +struct rectangle { + int width; + int height; +}; + + +void function_1(){ + + struct rectangle my_rec; + + // Access struct members with . + my_rec.width = 10; + my_rec.height = 20; + + // You can declare pointers to structs + struct rectangle* my_rec_ptr = &my_rec; + + // Use dereferencing to set struct pointer members... + (*my_rec_ptr).width = 30; + + // ... or use the -> shorthand + my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10; +} + +// You can apply a typedef to a struct for convenience +typedef struct rectangle rect; + +int area(rect r){ + return r.width * r.height; +} + +``` + +## Further Reading + +Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language) + +Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/) + +Other than that, Google is your friend. |