summaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--bash.html.markdown9
-rw-r--r--brainfuck.html.markdown79
-rw-r--r--es-es/clojure-es.html.markdown395
-rw-r--r--hu-hu/go.html.markdown2
-rw-r--r--php.html.markdown10
-rw-r--r--ruby.html.markdown18
6 files changed, 506 insertions, 7 deletions
diff --git a/bash.html.markdown b/bash.html.markdown
index a0c43c12..76c794c6 100644
--- a/bash.html.markdown
+++ b/bash.html.markdown
@@ -73,12 +73,11 @@ ls -l | grep "\.txt"
echo "There are $(ls | wc -l) items here."
# Bash uses a case statement that works similarily to switch in Java and C++:
-case "$VARIABLE"
-in
+case "$VARIABLE" in
#List patterns for the conditions you want to meet
- 0) echo "There is a zero."
- 1) echo "There is a one."
- *) echo "It is not null."
+ 0) echo "There is a zero.";;
+ 1) echo "There is a one.";;
+ *) echo "It is not null.";;
esac
#For loops iterate for as many arguments given:
diff --git a/brainfuck.html.markdown b/brainfuck.html.markdown
new file mode 100644
index 00000000..2b7ce4db
--- /dev/null
+++ b/brainfuck.html.markdown
@@ -0,0 +1,79 @@
+---
+language: brainfuck
+contributors:
+ - ["Prajit Ramachandran", "http://prajitr.github.io"]
+---
+
+Brainfuck is an extremely minimal programming language (just 8 commands) and
+is Turing complete.
+
+```
+Any character not "><+-.,[]" (excluding quotation marks) is ignored.
+
+Brainfuck is represented by an array with 30,000 cells initialized to zero
+and a data pointer pointing at the current cell.
+
+There are eight commands:
++ : Increments the value at the current cell by one.
+- : Decrements the value at the current cell by one.
+> : Moves the data pointer to the next cell (cell on the right).
+< : Moves the data pointer to the previous cell (cell on the left).
+. : Prints the ASCII value at the current cell (i.e. 65 = 'A').
+, : Reads a single input character into the current cell.
+[ : If the value at the current cell is zero, skips to the corresponding ] .
+ Otherwise, move to the next instruction.
+] : If the value at the current cell is zero, move to the next instruction.
+ Otherwise, move backwards in the instructions to the corresponding [ .
+
+[ and ] form a while loop. Obviously, they must be balanced.
+
+Let's look at some basic Brainfuck programs.
+
+++++++ [ > ++++++++++ < - ] > +++++ .
+
+This program prints out the letter 'A'. First, it increments cell #1 to 6.
+Cell #1 will be used for looping. Then, it enters the loop ([) and moves
+to cell #2. It increments cell #2 10 times, moves back to cell #1, and
+decrements cell #1. This loop happens 6 times (it takes 6 decrements for
+cell #1 to reach 0, at which point it skips to the corresponding ] and
+continues on).
+
+At this point, we're on cell #1, which has a value of 0, while cell #2 has a
+value of 60. We move on cell #2, increment 5 times, for a value of 65, and then
+print cell #2's value. 65 is 'A' in ASCII, so 'A' is printed to the terminal.
+
+
+, [ > + < - ] > .
+
+This program reads a character from the user input, copies the character into
+another cell, and prints out the same character.
+
+, reads in a character from the user into cell #1. Then we start a loop. Move
+to cell #2, increment the value at cell #2, move back to cell #1, and decrement
+the value at cell #1. This continues on until cell #1 is 0, and cell #2 holds
+cell #1's old value. Because we're on cell #1 at the end of the loop, move to
+cell #2, and then print out the value in ASCII.
+
+Also keep in mind that the spaces are purely for readibility purposes. You
+could just as easily write it as
+
+,[>+<-]>.
+
+
+Try and figure out what this program does:
+
+,>,< [ > [ >+ >+ << -] >> [- << + >>] <<< -] >>
+
+This program takes two numbers for input, and multiplies them.
+
+The gist is it first reads in two inputs. Then it starts the outer loop,
+conditioned on cell #1. Then it moves to cell #2, and starts the inner
+loop conditioned on cell #2, incrementing cell #3. However, there comes a
+problem: at the end of the inner loop, cell #2 is zero. To solve this problem,
+we also increment cell #4, and then recopy cell #4 into cell #2.
+```
+
+And that's Brainfuck. Not that hard, eh? For fun, you can write your own
+Brainfuck programs, or you can write a Brainfuck interpreter in another
+language. The interpreter is fairly simple to implement, but if you're a
+masochist, trying writing a Brainfuck interpreter... in Brainfuck.
diff --git a/es-es/clojure-es.html.markdown b/es-es/clojure-es.html.markdown
new file mode 100644
index 00000000..7102b361
--- /dev/null
+++ b/es-es/clojure-es.html.markdown
@@ -0,0 +1,395 @@
+---
+language: clojure
+filename: learnclojure-es.clj
+contributors:
+ - ["Adam Bard", "http://adambard.com/"]
+translators:
+ - ["Antonio Hernández Blas", "https://twitter.com/nihilipster"]
+lang: es-es
+---
+
+Clojure es un lenguaje de la familia Lisp desarrollado para la Máquina Virtual
+de Java. Tiene un énfasis más fuerte en la [programación funcional](https://es.wikipedia.org/wiki/Programación_funcional) pura
+que Common Lisp, pero incluye varias facilidades de [SMT](https://es.wikipedia.org/wiki/Memoria_transacional) para manipular
+el estado según se presente.
+
+Esta combinación le permite manejar el procesamiento concurrente muy simple,
+y a menudo automáticamente.
+
+(Necesitas la versión de Clojure 1.2 o nueva)
+
+
+```clojure
+; Los comentatios inician con punto y coma.
+
+; Clojure es escrito en "forms" (patrones), los cuales son solo
+; listas de objectos dentro de paréntesis, separados por espacios en blanco.
+
+; El reader (lector) de Clojure asume que el primer objeto es una
+; función o una macro a llamar, y que el resto son argumentos.
+
+; La primera llamada en un archivo debe ser ns, para establecer el espacio de
+; nombre
+(ns learnclojure)
+
+; Más ejemplos básicos:
+
+; str creará una cadena de caracteres a partir de sus argumentos
+(str "Hello" " " "World") ; => "Hello World"
+
+; Las matemáticas son sencillas
+(+ 1 1) ; => 2
+(- 2 1) ; => 1
+(* 1 2) ; => 2
+(/ 2 1) ; => 2
+
+; La igualdad es =
+(= 1 1) ; => true
+(= 2 1) ; => false
+
+; Necesitas de la negación para la lógica, también
+(not true) ; => false
+
+; Los patrones anidados funcionan como lo esperas
+(+ 1 (- 3 2)) ; = 1 + (3 - 2) => 2
+
+; Tipos
+;;;;;;;;;;;;;
+
+; Clojure usa los tipos de objetos de Java para booleanos,cadenas de
+; caracteres y números.
+; Usa class para inspeccionarlos.
+(class 1); Los enteros literales son java.lang.Long por default
+(class 1.); Los flotantes literales son java.lang.Double
+(class ""); Las cadenas de caracteres van entre comillas dobles, y son
+; son java.lang.String
+(class false); Los Booleanos son java.lang.Boolean
+(class nil); El valor "null" es llamado nil
+
+; Si quieres crear una lista literal de datos, precede la con una comilla
+; simple para evitar su evaluación
+'(+ 1 2) ; => (+ 1 2)
+; (abreviatura de (quote (+ 1 2))
+
+; Puedes evaluar una lista precedida por comilla simple con eval
+(eval '(+ 1 2)) ; => 3
+
+; Colecciones & Secuencias
+;;;;;;;;;;;;;;;;;;;
+
+; Las Listas están basadas en listas enlazadas, mientras que los Vectores en
+; arreglos.
+; ¡Los Vectores y las Listas son clases de Java también!
+(class [1 2 3]); => clojure.lang.PersistentVector
+(class '(1 2 3)); => clojure.lang.PersistentList
+
+; Una lista podría ser escrita como (1 2 3), pero debemos precidirla con
+; comilla simple para evitar que el lector piense que es una función.
+; Además, (list 1 2 3) es lo mismo que '(1 2 3)
+
+; Las "Colecciones" son solo grupos de datos
+; Tanto las listas como los vectores son colecciones:
+(coll? '(1 2 3)) ; => true
+(coll? [1 2 3]) ; => true
+
+; Las "Secuencias" (seqs) son descripciones abstractas de listas de datos.
+; Solo las listas son seqs.
+(seq? '(1 2 3)) ; => true
+(seq? [1 2 3]) ; => false
+
+; Una seq solo necesita proporcionar una entrada cuando es accedida.
+; Así que, las seqs pueden ser perezosas -- pueden establecer series infinitas:
+(range 4) ; => (0 1 2 3)
+(range) ; => (0 1 2 3 4 ...) (una serie infinita)
+(take 4 (range)) ; (0 1 2 3)
+
+; Usa cons para agregar un elemento al inicio de una lista o vector
+(cons 4 [1 2 3]) ; => (4 1 2 3)
+(cons 4 '(1 2 3)) ; => (4 1 2 3)
+
+; conj agregará un elemento a una colección en la forma más eficiente.
+; Para listas, se agrega al inicio. Para vectores, al final.
+(conj [1 2 3] 4) ; => [1 2 3 4]
+(conj '(1 2 3) 4) ; => (4 1 2 3)
+
+; Usa concat para concatenar listas o vectores
+(concat [1 2] '(3 4)) ; => (1 2 3 4)
+
+; Usa filter, map para actuar sobre colecciones
+(map inc [1 2 3]) ; => (2 3 4)
+(filter even? [1 2 3]) ; => (2)
+
+; Usa reduce para reducirlos
+(reduce + [1 2 3 4])
+; = (+ (+ (+ 1 2) 3) 4)
+; => 10
+
+; reduce puede tomar un argumento como valor inicial también
+(reduce conj [] '(3 2 1))
+; = (conj (conj (conj [] 3) 2) 1)
+; => [3 2 1]
+
+; Funciones
+;;;;;;;;;;;;;;;;;;;;;
+
+; Usa fn para crear nuevas funciones. Una función siempre regresa
+; su última expresión
+(fn [] "Hello World") ; => fn
+
+; (Necesitas encerrarlo en paréntesis para llamarlo)
+((fn [] "Hello World")) ; => "Hello World"
+
+; Puedes crear una var (variable) usando def
+(def x 1)
+x ; => 1
+
+; Asigna una función a una var
+(def hello-world (fn [] "Hello World"))
+(hello-world) ; => "Hello World"
+
+; Puedes acortar este proceso al usar defn
+(defn hello-world [] "Hello World")
+
+; El [] es el vector de argumentos para la función.
+(defn hello [name]
+ (str "Hello " name))
+(hello "Steve") ; => "Hello Steve"
+
+; Puedes usar también esta abreviatura para crear funciones:
+(def hello2 #(str "Hello " %1))
+(hello2 "Fanny") ; => "Hello Fanny"
+
+; Puedes tener funciones multi-variadic (múltiple numero variable de
+; argumentos), también
+(defn hello3
+ ([] "Hello World")
+ ([name] (str "Hello " name)))
+(hello3 "Jake") ; => "Hello Jake"
+(hello3) ; => "Hello World"
+
+; Las funciones pueden colocar argumentos extras dentro de una seq por ti
+(defn count-args [& args]
+ (str "You passed " (count args) " args: " args))
+(count-args 1 2 3) ; => "You passed 3 args: (1 2 3)"
+
+; Puedes mezclar argumentos regulares y dentro de una seq
+(defn hello-count [name & args]
+ (str "Hello " name ", you passed " (count args) " extra args"))
+(hello-count "Finn" 1 2 3)
+; => "Hello Finn, you passed 3 extra args"
+
+
+; Mapas
+;;;;;;;;;;
+
+; Mapas de Hash y mapas de Arreglos comparten una interfaz. Los mapas de Hash
+; tienen búsquedas más rápidas pero no mantienen el orden de las llaves.
+(class {:a 1 :b 2 :c 3}) ; => clojure.lang.PersistentArrayMap
+(class (hash-map :a 1 :b 2 :c 3)) ; => clojure.lang.PersistentHashMap
+
+; Los mapas de Arreglos serán convertidos en mapas de Hash en la mayoría de
+; operaciones si crecen lo suficiente, así que no necesitas preocuparte.
+
+; Los mapas pueden usar cualquier tipo para sus llaves, pero usualmente las
+; keywords (llaves) son mejor.
+; Las keywords son como cadenas de caracteres con algunas ventajas en eficiencia
+(class :a) ; => clojure.lang.Keyword
+
+(def stringmap {"a" 1, "b" 2, "c" 3})
+stringmap ; => {"a" 1, "b" 2, "c" 3}
+
+(def keymap {:a 1, :b 2, :c 3})
+keymap ; => {:a 1, :c 3, :b 2}
+
+; Por cierto, las comas son siempre tratadas como espacios en blanco y no hacen
+; nada.
+
+; Recupera un valor de un mapa tratando la como una función
+(stringmap "a") ; => 1
+(keymap :a) ; => 1
+
+; ¡Las keywords pueden ser usadas para recuperar su valor del mapa, también!
+(:b keymap) ; => 2
+
+; No intentes ésto con cadenas de caracteres.
+;("a" stringmap)
+; => Exception: java.lang.String cannot be cast to clojure.lang.IFn
+
+; Recuperando un valor no presente regresa nil
+(stringmap "d") ; => nil
+
+; Usa assoc para agregar nuevas llaves a los mapas de Hash
+(def newkeymap (assoc keymap :d 4))
+newkeymap ; => {:a 1, :b 2, :c 3, :d 4}
+
+; Pero recuerda, ¡los tipos de clojure son inmutables!
+keymap ; => {:a 1, :b 2, :c 3}
+
+; Usa dissoc para remover llaves
+(dissoc keymap :a :b) ; => {:c 3}
+
+; Conjuntos
+;;;;;;
+
+(class #{1 2 3}) ; => clojure.lang.PersistentHashSet
+(set [1 2 3 1 2 3 3 2 1 3 2 1]) ; => #{1 2 3}
+
+; Agrega un miembro con conj
+(conj #{1 2 3} 4) ; => #{1 2 3 4}
+
+; Remueve uno con disj
+(disj #{1 2 3} 1) ; => #{2 3}
+
+; Comprueba la existencia tratando al conjunto como una función:
+(#{1 2 3} 1) ; => 1
+(#{1 2 3} 4) ; => nil
+
+; Hay más funciones en el espacio de nombre clojure.sets
+
+; Patrones útiles
+;;;;;;;;;;;;;;;;;
+
+; Las construcciones lógicas en clojure son macros, y tienen el mismo aspecto
+; que todo lo demás
+(if false "a" "b") ; => "b"
+(if false "a") ; => nil
+
+; Usa let para crear una binding (asociación) temporal
+(let [a 1 b 2]
+ (> a b)) ; => false
+
+; Agrupa expresiones con do
+(do
+ (print "Hello")
+ "World") ; => "World" (prints "Hello")
+
+; Las funciones tienen un do implicito
+(defn print-and-say-hello [name]
+ (print "Saying hello to " name)
+ (str "Hello " name))
+(print-and-say-hello "Jeff") ;=> "Hello Jeff" (prints "Saying hello to Jeff")
+
+; De igual forma let
+(let [name "Urkel"]
+ (print "Saying hello to " name)
+ (str "Hello " name)) ; => "Hello Urkel" (prints "Saying hello to Urkel")
+
+; Modulos
+;;;;;;;;;;;;;;;
+
+; Usa use para obtener todas las funciones del modulo
+(use 'clojure.set)
+
+; Ahora podemos usar operaciones de conjuntos
+(intersection #{1 2 3} #{2 3 4}) ; => #{2 3}
+(difference #{1 2 3} #{2 3 4}) ; => #{1}
+
+; Puedes escoger un subgrupo de funciones a importar, también
+(use '[clojure.set :only [intersection]])
+
+; Usa require para importar un modulo
+(require 'clojure.string)
+
+; Usa / para llamar funciones de un modulo
+; Aquí, el modulo es clojure.string y la función es blank?
+(clojure.string/blank? "") ; => true
+
+; Puedes asignarle una abreviatura a un modulo al importarlo
+(require '[clojure.string :as str])
+(str/replace "This is a test." #"[a-o]" str/upper-case) ; => "THIs Is A tEst."
+; (#"" es una expresión regular literal)
+
+; Puedes usar require (y use, pero no lo hagas) desde un espacio de nombre
+; usando :require,
+; No necesitas preceder con comilla simple tus módulos si lo haces de esta
+; forma.
+(ns test
+ (:require
+ [clojure.string :as str]
+ [clojure.set :as set]))
+
+; Java
+;;;;;;;;;;;;;;;;;
+
+; Java tiene una enorme y útil librería estándar, así que
+; querrás aprender como llegar a ella.
+
+; Usa import para cargar un modulo de java
+(import java.util.Date)
+
+; Puedes importar desde un ns también.
+(ns test
+ (:import java.util.Date
+ java.util.Calendar))
+
+; Usa el nombre de la clase con un "." al final para crear una nueva instancia
+(Date.) ; <un objeto Date>
+
+; Usa "." para llamar a métodos. O, usa el atajo ".método"
+(. (Date.) getTime) ; <un timestamp>
+(.getTime (Date.)) ; exactamente la misma cosa
+
+; Usa / para llamar métodos estáticos.
+(System/currentTimeMillis) ; <un timestamp> (System siempre está presente)
+
+; Usa doto para hacer frente al uso de clases (mutables) más tolerable
+(import java.util.Calendar)
+(doto (Calendar/getInstance)
+ (.set 2000 1 1 0 0 0)
+ .getTime) ; => A Date. set to 2000-01-01 00:00:00
+
+; STM
+;;;;;;;;;;;;;;;;;
+
+; Software Transactional Memory es un mecanismo que clojure usa para manejar
+; el estado persistente. Hay algunas cuantas construcciones en clojure que
+; usan esto.
+
+; Un atom es el más simple. Dale una valor inicial
+(def my-atom (atom {}))
+
+; Actualiza un atom con swap!
+; swap! toma una función y la llama con el valor actual del atom
+; como su primer argumento, y cualquier argumento restante como el segundo
+(swap! my-atom assoc :a 1) ; Establece my-atom al resultado de (assoc {} :a 1)
+(swap! my-atom assoc :b 2) ; Establece my-atom al resultado de (assoc {:a 1} :b 2)
+
+; Usa '@' para no referenciar al atom y obtener su valor
+my-atom ;=> Atom<#...> (Regresa el objeto Atom)
+@my-atom ; => {:a 1 :b 2}
+
+; Aquí está un simple contador usando un atom
+(def counter (atom 0))
+(defn inc-counter []
+ (swap! counter inc))
+
+(inc-counter)
+(inc-counter)
+(inc-counter)
+(inc-counter)
+(inc-counter)
+
+@counter ; => 5
+
+; Otros constructores STM son refs y agents.
+; Refs: http://clojure.org/refs
+; Agents: http://clojure.org/agents
+```
+
+### Lectura adicional
+
+Ésto queda lejos de ser exhaustivo, pero espero que sea suficiente para
+encaminarte.
+
+Clojure.org tiene muchos artículos:
+[http://clojure.org/](http://clojure.org/)
+
+Clojuredocs.org tiene documentación con ejemplos para la mayoría de
+funciones core:
+[http://clojuredocs.org/quickref/Clojure%20Core](http://clojuredocs.org/quickref/Clojure%20Core)
+
+4Clojure es una grandiosa forma de fortalecer tus habilidades con clojure/FP:
+[http://www.4clojure.com/](http://www.4clojure.com/)
+
+Clojure-doc.org (sí, de verdad) tiene un número de artículos para empezar:
+[http://clojure-doc.org/](http://clojure-doc.org/)
diff --git a/hu-hu/go.html.markdown b/hu-hu/go.html.markdown
index 69849858..621ebdbf 100644
--- a/hu-hu/go.html.markdown
+++ b/hu-hu/go.html.markdown
@@ -38,7 +38,7 @@ import (
"strconv" // Stringek átalakítására szolgáló csomag
)
-// Funkció deklarás, a main nevű funkció a program kezdőpontja.
+// Funkció deklarálás, a main nevű funkció a program kezdőpontja.
func main() {
// Println kiírja a beadott paramétereket a standard kimenetre.
// Ha más csomagot funkcióját akarjuk használni, akkor azt jelezni kell a
diff --git a/php.html.markdown b/php.html.markdown
index aa73c547..0caa07b6 100644
--- a/php.html.markdown
+++ b/php.html.markdown
@@ -59,6 +59,9 @@ $float = 1.234;
$float = 1.2e3;
$float = 7E-10;
+// Delete variable
+unset($int1)
+
// Arithmetic
$sum = 1 + 1; // 2
$difference = 2 - 1; // 1
@@ -136,6 +139,11 @@ echo $associative['One']; // prints 1
$array = ['One', 'Two', 'Three'];
echo $array[0]; // => "One"
+// Add an element to the end of an array
+$array[] = 'Four';
+
+// Remove element from array
+unset($array[3]);
/********************************
* Output
@@ -177,7 +185,7 @@ echo $x; // => 2
echo $z; // => 0
// Dumps type and value of variable to stdout
-var_dumb($z); // prints int(0)
+var_dump($z); // prints int(0)
// Prints variable to stdout in human-readable format
print_r($array); // prints: Array ( [0] => One [1] => Two [2] => Three )
diff --git a/ruby.html.markdown b/ruby.html.markdown
index 3a233d98..80682682 100644
--- a/ruby.html.markdown
+++ b/ruby.html.markdown
@@ -7,6 +7,7 @@ contributors:
- ["Luke Holder", "http://twitter.com/lukeholder"]
- ["Tristan Hume", "http://thume.ca/"]
- ["Nick LaMuro", "https://github.com/NickLaMuro"]
+ - ["Marcos Brizeno", "http://www.about.me/marcosbrizeno"]
---
```ruby
@@ -339,6 +340,23 @@ dwight.name #=> "Dwight K. Schrute"
# Call the class method
Human.say("Hi") #=> "Hi"
+# Variable's scopes are defined by the way we name them.
+# Variables that start with $ have global scope
+$var = "I'm a global var"
+defined? $var #=> "global-variable"
+
+# Variables that start with @ have instance scope
+@var = "I'm an instance var"
+defined? @var #=> "instance-variable"
+
+# Variables that start with @@ have class scope
+@@var = "I'm a class var"
+defined? @@var #=> "class variable"
+
+# Variables that start with a capital letter are constants
+Var = "I'm a constant"
+defined? Var #=> "constant"
+
# Class also is object in ruby. So class can have instance variables.
# Class variable is shared among the class and all of its descendants.