summaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--clojure.html.markdown2
-rw-r--r--go.html.markdown301
-rw-r--r--ko-kr/javascript-kr.html.markdown6
-rw-r--r--ko-kr/lua-kr.html.markdown2
-rw-r--r--pt-br/elisp-pt.html.markdown359
-rw-r--r--pt-br/python-pt.html.markdown2
-rw-r--r--ruby.html.markdown12
-rwxr-xr-xzh-cn/python-cn.html.markdown277
8 files changed, 812 insertions, 149 deletions
diff --git a/clojure.html.markdown b/clojure.html.markdown
index 6baae0ce..a502a95c 100644
--- a/clojure.html.markdown
+++ b/clojure.html.markdown
@@ -365,7 +365,7 @@ my-atom ;=> Atom<#...> (Returns the Atom object)
### Further Reading
-This is far from exhaustive, but hopefully it's enought o get you on your feet.
+This is far from exhaustive, but hopefully it's enough to get you on your feet.
Clojure.org has lots of articles:
[http://clojure.org/](http://clojure.org/)
diff --git a/go.html.markdown b/go.html.markdown
new file mode 100644
index 00000000..e7b35926
--- /dev/null
+++ b/go.html.markdown
@@ -0,0 +1,301 @@
+---
+name: Go
+category: language
+language: Go
+filename: learngo.go
+contributors:
+ - ["Sonia Keys", "https://github.com/soniakeys"]
+---
+
+Go was created out of the need to get work done. It's not the latest trend
+in computer science, but it is the newest fastest way to solve real-world
+problems.
+
+It has familiar concepts of imperative languages with static typing.
+It's fast to compile and fast to execute, it adds easy-to-understand
+concurrency to leverage today's multi-core CPUs, and has features to
+help with large-scale programming.
+
+Go comes with a great standard library and an enthusiastic community.
+
+```Go
+// Single line comment
+/* Multi-
+ line comment */
+
+// A package clause starts every source file.
+// Main is a special name declaring an executable rather than a library.
+package main
+
+// Import declaration declares library packages referenced in this file.
+import (
+ "fmt" // A package in the Go standard library
+ "net/http" // Yes, a web server!
+ "strconv" // String conversions
+)
+
+// A function definition. Main is special. It is the entry point for the
+// executable program. Love it or hate it, Go uses brace brackets.
+func main() {
+ // Println outputs a line to stdout.
+ // Qualify it with the package name, fmt.
+ fmt.Println("Hello world!")
+
+ // Call another function within this package.
+ beyondHello()
+}
+
+// Functions have parameters in parentheses.
+// If there are no parameters, empty parens are still required.
+func beyondHello() {
+ var x int // Variable declaration. Variables must be declared before use.
+ x = 3 // Variable assignment.
+ // "Short" declarations use := to infer the type, declare, and assign.
+ y := 4
+ sum, prod := learnMultiple(x, y) // function returns two values
+ fmt.Println("sum:", sum, "prod:", prod) // simple output
+ learnTypes() // < y minutes, learn more!
+}
+
+// Functions can have parameters and (multiple!) return values.
+func learnMultiple(x, y int) (sum, prod int) {
+ return x + y, x * y // return two values
+}
+
+// Some built-in types and literals.
+func learnTypes() {
+ // Short declaration usually gives you what you want.
+ s := "Learn Go!" // string type
+
+ s2 := `A "raw" string literal
+can include line breaks.` // same string type
+
+ // non-ASCII literal. Go source is UTF-8.
+ g := 'Σ' // rune type, an alias for uint32, holds a UTF-8 code point
+
+ f := 3.14195 // float64, an IEEE-754 64-bit floating point number
+ c := 3 + 4i // complex128, represented internally with two float64s
+
+ // Var syntax with an initializers.
+ var u uint = 7 // unsigned, but implementation dependent size as with int
+ var pi float32 = 22. / 7
+
+ // Conversion syntax with a short declaration.
+ n := byte('\n') // byte is an alias for uint8
+
+ // Arrays have size fixed at compile time.
+ var a4 [4]int // an array of 4 ints, initialized to all 0
+ a3 := [...]int{3, 1, 5} // an array of 3 ints, initialized as shown
+
+ // Slices have dynamic size. Arrays and slices each have advantages
+ // but use cases for slices are much more common.
+ s3 := []int{4, 5, 9} // compare to a3. no ellipsis here
+ s4 := make([]int, 4) // allocates slice of 4 ints, initialized to all 0
+ var d2 [][]float64 // declaration only, nothing allocated here
+ bs := []byte("a slice") // type conversion syntax
+
+ p, q := learnMemory() // declares p, q to be type pointer to int.
+ fmt.Println(*p, *q) // * follows a pointer. This prints two ints.
+
+ // Maps are a dynamically growable associative array type, like the
+ // hash or dictionary types of some other languages.
+ m := map[string]int{"three": 3, "four": 4}
+ m["one"] = 1
+
+ // Unused variables are an error in Go.
+ // The underbar lets you "use" a variable but discard its value.
+ _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
+ // Output of course counts as using a variable.
+ fmt.Println(s, c, a4, s3, d2, m)
+
+ learnFlowControl() // back in the flow
+}
+
+// Go is fully garbage collected. It has pointers but no pointer arithmetic.
+// You can make a mistake with a nil pointer, but not by incrementing a pointer.
+func learnMemory() (p, q *int) {
+ // Named return values p and q have type pointer to int.
+ p = new(int) // built-in function new allocates memory.
+ // The allocated int is initialized to 0, p is no longer nil.
+ s := make([]int, 20) // allocate 20 ints as a single block of memory
+ s[3] = 7 // assign one of them
+ r := -2 // declare another local variable
+ return &s[3], &r // & takes the address of an object.
+}
+
+func expensiveComputation() int {
+ return 1e6
+}
+
+func learnFlowControl() {
+ // If statements require brace brackets, and do not require parens.
+ if true {
+ fmt.Println("told ya")
+ }
+ // Formatting is standardized by the command line command "go fmt."
+ if false {
+ // pout
+ } else {
+ // gloat
+ }
+ // Use switch in preference to chained if statements.
+ x := 1
+ switch x {
+ case 0:
+ case 1:
+ // cases don't "fall through"
+ case 2:
+ // unreached
+ }
+ // Like if, for doesn't use parens either.
+ for x := 0; x < 3; x++ { // ++ is a statement
+ fmt.Println("iteration", x)
+ }
+ // x == 1 here.
+
+ // For is the only loop statement in Go, but it has alternate forms.
+ for { // infinite loop
+ break // just kidding
+ continue // unreached
+ }
+ // As with for, := in an if statement means to declare and assign y first,
+ // then test y > x.
+ if y := expensiveComputation(); y > x {
+ x = y
+ }
+ // Function literals are closures.
+ xBig := func() bool {
+ return x > 100 // references x declared above switch statement.
+ }
+ fmt.Println("xBig:", xBig()) // true (we last assigned 1e6 to x)
+ x /= 1e5 // this makes it == 10
+ fmt.Println("xBig:", xBig()) // false now
+
+ // When you need it, you'll love it.
+ goto love
+love:
+
+ learnInterfaces() // Good stuff coming up!
+}
+
+// Define Stringer as an interface type with one method, String.
+type Stringer interface {
+ String() string
+}
+
+// Define pair as a struct with two fields, ints named x and y.
+type pair struct {
+ x, y int
+}
+
+// Define a method on type pair. Pair now implements Stringer.
+func (p pair) String() string { // p is called the "receiver"
+ // Sprintf is another public function in package fmt.
+ // Dot syntax references fields of p.
+ return fmt.Sprintf("(%d, %d)", p.x, p.y)
+}
+
+func learnInterfaces() {
+ // Brace syntax is a "struct literal." It evaluates to an initialized
+ // struct. The := syntax declares and initializes p to this struct.
+ p := pair{3, 4}
+ fmt.Println(p.String()) // call String method of p, of type pair.
+ var i Stringer // declare i of interface type Stringer.
+ i = p // valid because pair implements Stringer
+ // Call String method of i, of type Stringer. Output same as above.
+ fmt.Println(i.String())
+
+ // Functions in the fmt package call the String method to ask an object
+ // for a printable representation of itself.
+ fmt.Println(p) // output same as above. Println calls String method.
+ fmt.Println(i) // output same as above
+
+ learnErrorHandling()
+}
+
+func learnErrorHandling() {
+ // ", ok" idiom used to tell if something worked or not.
+ m := map[int]string{3: "three", 4: "four"}
+ if x, ok := m[1]; !ok { // ok will be false because 1 is not in the map.
+ fmt.Println("no one there")
+ } else {
+ fmt.Print(x) // x would be the value, if it were in the map.
+ }
+ // An error value communicates not just "ok" but more about the problem.
+ if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value
+ // prints "strconv.ParseInt: parsing "non-int": invalid syntax"
+ fmt.Println(err)
+ }
+ // We'll revisit interfaces a little later. Meanwhile,
+ learnConcurrency()
+}
+
+// c is a channel, a concurrency-safe communication object.
+func inc(i int, c chan int) {
+ c <- i + 1 // <- is the "send" operator when a channel appears on the left.
+}
+
+// We'll use inc to increment some numbers concurrently.
+func learnConcurrency() {
+ // Same make function used earlier to make a slice. Make allocates and
+ // initializes slices, maps, and channels.
+ c := make(chan int)
+ // Start three concurrent goroutines. Numbers will be incremented
+ // concurrently, perhaps in parallel if the machine is capable and
+ // properly configured. All three send to the same channel.
+ go inc(0, c) // go is a statement that starts a new goroutine.
+ go inc(10, c)
+ go inc(-805, c)
+ // Read three results from the channel and print them out.
+ // There is no telling in what order the results will arrive!
+ fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator.
+
+ cs := make(chan string) // another channel, this one handles strings.
+ cc := make(chan chan string) // a channel of channels.
+ go func() { c <- 84 }() // start a new goroutine just to send a value
+ go func() { cs <- "wordy" }() // again, for cs this time
+ // Select has syntax like a switch statement but each case involves
+ // a channel operation. It selects a case at random out of the cases
+ // that are ready to communicate.
+ select {
+ case i := <-c: // the value received can be assigned to a variable
+ fmt.Println("it's a", i)
+ case <-cs: // or the value received can be discarded
+ fmt.Println("it's a string")
+ case <-cc: // empty channel, not ready for communication.
+ fmt.Println("didn't happen.")
+ }
+ // At this point a value was taken from either c or cs. One of the two
+ // goroutines started above has completed, the other will remain blocked.
+
+ learnWebProgramming() // Go does it. You want to do it too.
+}
+
+// A single function from package http starts a web server.
+func learnWebProgramming() {
+ // ListenAndServe first parameter is TCP address to listen at.
+ // Second parameter is an interface, specifically http.Handler.
+ err := http.ListenAndServe(":8080", pair{})
+ fmt.Println(err) // don't ignore errors
+}
+
+// Make pair an http.Handler by implementing its only method, ServeHTTP.
+func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
+ // Serve data with a method of http.ResponseWriter
+ w.Write([]byte("You learned Go in Y minutes!"))
+}
+```
+
+## Further Reading
+
+The root of all things Go is the [official Go web site](http://golang.org/).
+There you can follow the tutorial, play interactively, and read lots.
+
+The language definition itself is highly recommended. It's easy to read
+and amazingly short (as language definitions go these days.)
+
+On the reading list for students of Go is the source code to the standard
+library. Comprehensively documented, it demonstrates the best of readable
+and understandable Go, Go style, and Go idioms. Click on a function name
+in the documentation and the source code comes up!
+
diff --git a/ko-kr/javascript-kr.html.markdown b/ko-kr/javascript-kr.html.markdown
index 79f5d88b..e5517aa8 100644
--- a/ko-kr/javascript-kr.html.markdown
+++ b/ko-kr/javascript-kr.html.markdown
@@ -268,7 +268,7 @@ function sayHelloInFiveSeconds(name){
// 기다리지 않고 실행을 마칩니다. 하지만 5초가 지나면 inner에서도
// prompt의 값에 접근할 수 있습니다.
}
-sayHelloInFiveSeconds("Adam") // will open a popup with "Hello, Adam!" in 5s
+sayHelloInFiveSeconds("Adam") // 5초 내로 "Hello, Adam!"이라고 적힌 팝업이 표시됨
///////////////////////////////////
// 5. 객체 심화; 생성자와 프로토타입
@@ -403,7 +403,7 @@ String.prototype.firstCharacter = function(){
// 예를 들어, Object.create가 모든 구현체에서 사용 가능한 것은 아니라고
// 했지만 아래의 폴리필을 이용해 Object.create를 여전히 사용할 수 있습니다.
-if (Object.create === undefined){ // don't overwrite it if it exists
+if (Object.create === undefined){ // 이미 존재하면 덮어쓰지 않음
Object.create = function(proto){
// 올바른 프로토타입을 가지고 임시 생성자를 만듬
var Constructor = function(){}
@@ -432,4 +432,4 @@ MDN의 ['자바스크립트 재입문'](https://developer.mozilla.org/ko/docs/A_
더불어 이 글에 직접적으로 기여한 분들로, 내용 중 일부는 이 사이트에 있는
루이 딘(Louie Dihn)의 파이썬 튜토리얼과 모질라 개발자 네트워크에 있는
-[자바스크립트 튜토리얼](https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript)을 참고했습니다. \ No newline at end of file
+[자바스크립트 튜토리얼](https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript)을 참고했습니다.
diff --git a/ko-kr/lua-kr.html.markdown b/ko-kr/lua-kr.html.markdown
index 2badf734..04d119c4 100644
--- a/ko-kr/lua-kr.html.markdown
+++ b/ko-kr/lua-kr.html.markdown
@@ -327,7 +327,7 @@ seymour:makeSound() -- 'woof woof woof' -- 4.
-- 필요할 경우, 하위 클래스의 new()는 기반 클래스의 new()와 유사합니다.
function LoudDog:new()
newObj = {}
- -- set up newObj
+ -- newObj를 구성
self.__index = self
return setmetatable(newObj, self)
end
diff --git a/pt-br/elisp-pt.html.markdown b/pt-br/elisp-pt.html.markdown
new file mode 100644
index 00000000..9031cad9
--- /dev/null
+++ b/pt-br/elisp-pt.html.markdown
@@ -0,0 +1,359 @@
+---
+language: elisp
+contributors:
+ - ["Bastien Guerry", "http://bzg.fr"]
+translators:
+ - ["Lucas Tadeu Teixeira", "http://ltt.me"]
+lang: pt-br
+filename: learn-emacs-lisp-pt.el
+---
+
+```scheme
+;; Introdução ao Emacs Lisp em 15 minutos (v0.2d)
+;;
+;; Autor: Bastien / @bzg2 / http://bzg.fr
+;;
+;; Antes de começar, leia este texto escrito Peter Norvig:
+;; http://norvig.com/21-days.html
+;;
+;; Agora instale GNU Emacs 24.3:
+;;
+;; Debian: apt-get install emacs (ou veja as instruções da sua distribuição)
+;; OSX: http://emacsformacosx.com/emacs-builds/Emacs-24.3-universal-10.6.8.dmg
+;; Windows: http://ftp.gnu.org/gnu/windows/emacs/emacs-24.3-bin-i386.zip
+;;
+;; Informações mais gerais podem ser encontradas em:
+;; http://www.gnu.org/software/emacs/#Obtaining
+
+;; Aviso importante:
+;;
+;; Realizar este tutorial não danificará seu computador, a menos
+;; que você fique tão irritado a ponto de jogá-lo no chão. Neste caso,
+;; me abstenho de qualquer responsabilidade. Divirta-se!
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;
+;; Abra o Emacs.
+;;
+;; Aperte a tecla `q' para ocultar a mensagem de boas vindas.
+;;
+;; Agora olhe para a linha cinza na parte inferior da janela:
+;;
+;; "*scratch*" é o nome do espaço de edição em que você se encontra.
+;; Este espaço de edição é chamado "buffer".
+;;
+;; O buffer de rascunho (i.e., "scratch") é o buffer padrão quando
+;; o Emacs é aberto. Você nunca está editando arquivos: você está
+;; editando buffers que você pode salvar em um arquivo.
+;;
+;; "Lisp interaction" refere-se a um conjunto de comandos disponíveis aqui.
+;;
+;; O Emacs possui um conjunto de comandos embutidos (disponíveis em
+;; qualquer buffer) e vários subconjuntos de comandos disponíveis
+;; quando você ativa um modo específico. Aqui nós utilizamos
+;; `lisp-interaction-mode', que possui comandos para interpretar e navegar
+;; em código Elisp.
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;
+;; Pontos e vírgulas iniciam comentários em qualquer parte de uma linha.
+;;
+;; Programas codificados em Elisp são compostos por expressões simbólicas
+;; (conhecidas também por "sexps"):
+(+ 2 2)
+
+;; Esta expressão simbólica significa "Some 2 e 2".
+
+;; "Sexps" são envoltas em parêntese, possivelmente aninhados:
+(+ 2 (+ 1 1))
+
+;; Uma expressão simbólica contém átomos ou outras expressões
+;; simbólicas. Nos exemplos acima, 1 e 2 são átomos;
+;; (+ 2 (+ 1 1)) e (+ 1 1) são expressões simbólicas.
+
+;; No modo `lisp-interaction-mode' você pode interpretar "sexps".
+;; Posicione o cursor logo após o parêntese de fechamento e,
+;; então, segure apertado Ctrl e aperte a tecla j ("C-j", em resumo).
+
+(+ 3 (+ 1 2))
+;; ^ posicione o cursor aqui
+;; `C-j' => 6
+
+;; `C-j' insere o resultado da interpretação da expressão no buffer.
+
+;; `C-xC-e' exibe o mesmo resultado na linha inferior do Emacs,
+;; chamada de "mini-buffer". Nós geralmente utilizaremos `C-xC-e',
+;; já que não queremos poluir o buffer com texto desnecessário.
+
+;; `setq' armazena um valor em uma variável:
+(setq my-name "Bastien")
+;; `C-xC-e' => "Bastien" (texto exibido no mini-buffer)
+
+;; `insert' insere "Hello!" na posição em que se encontra seu cursor:
+(insert "Hello!")
+;; `C-xC-e' => "Hello!"
+
+;; Nós executamos `insert' com apenas um argumento ("Hello!"), mas
+;; mais argumentos podem ser passados -- aqui utilizamos dois:
+
+(insert "Hello" " world!")
+;; `C-xC-e' => "Hello world!"
+
+;; Você pode utilizar variávies no lugar de strings:
+(insert "Hello, I am " my-name)
+;; `C-xC-e' => "Hello, I am Bastien"
+
+;; Você pode combinar "sexps" em funções:
+(defun hello () (insert "Hello, I am " my-name))
+;; `C-xC-e' => hello
+
+;; Você pode interpretar chamadas de funções:
+(hello)
+;; `C-xC-e' => Hello, I am Bastien
+
+;; Os parêntesis vazios na definição da função significam que ela
+;; não aceita argumentos. Mas sempre utilizar `my-name' é um tédio!
+;; Vamos dizer à função para aceitar um argumento (o argumento é
+;; chamado "name"):
+
+(defun hello (name) (insert "Hello " name))
+;; `C-xC-e' => hello
+
+;; Agora vamos executar a função com a string "you" como o valor
+;; para seu único parâmetro:
+(hello "you")
+;; `C-xC-e' => "Hello you"
+
+;; Aí sim!
+
+;; Respire um pouco.
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;
+;; Agora mude para um novo buffer chamado "*test*":
+
+(switch-to-buffer-other-window "*test*")
+;; `C-xC-e'
+;; => [a tela exibirá duas janelas e o cursor estará no buffer *test*]
+
+;; Posicione o mouse sobre a janela superior e clique com o botão
+;; esquerdo para voltar. Ou você pode utilizar `C-xo' (i.e. segure
+;; ctrl-x e aperte o) para voltar para a outra janela, de forma interativa.
+
+;; Você pode combinar várias "sexps" com `progn':
+(progn
+ (switch-to-buffer-other-window "*test*")
+ (hello "you"))
+;; `C-xC-e'
+;; => [A tela exibirá duas janelas e o cursor estará no buffer *test*]
+
+;; Agora, se você não se importar, pararei de pedir que você aperte
+;; `C-xC-e': faça isso para cada "sexp" que escrevermos.
+
+;; Sempre volte para o buffer *scratch* com o mouse ou `C-xo'.
+
+;; Frequentemente, é útil apagar o conteúdo do buffer:
+(progn
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ (hello "there"))
+
+;; Ou voltar para a outra janela:
+(progn
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ (hello "you")
+ (other-window 1))
+
+;; Você pode armazenar um valor em uma variável local utilizando `let':
+(let ((local-name "you"))
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ (hello local-name)
+ (other-window 1))
+
+;; Neste caso, não é necessário utilizar `progn' já que `let' combina
+;; várias "sexps".
+
+;; Vamos formatar uma string:
+(format "Hello %s!\n" "visitor")
+
+;; %s é um espaço reservado para uma string, substituído por "visitor".
+;; \n é um caractere de nova linha.
+
+;; Vamos refinar nossa função utilizando `format':
+(defun hello (name)
+ (insert (format "Hello %s!\n" name)))
+
+(hello "you")
+
+;; Vamos criar outra função que utilize `let':
+(defun greeting (name)
+ (let ((your-name "Bastien"))
+ (insert (format "Hello %s!\n\nI am %s."
+ name ; the argument of the function
+ your-name ; the let-bound variable "Bastien"
+ ))))
+
+;; E executá-la:
+(greeting "you")
+
+;; Algumas funções são interativas:
+(read-from-minibuffer "Enter your name: ")
+
+;; Ao ser interpretada, esta função retorna o que você digitou no prompt.
+
+;; Vamos fazer nossa função `greeting' pedir pelo seu nome:
+(defun greeting (from-name)
+ (let ((your-name (read-from-minibuffer "Enter your name: ")))
+ (insert (format "Hello!\n\nI am %s and you are %s."
+ from-name ; the argument of the function
+ your-name ; the let-bound var, entered at prompt
+ ))))
+
+(greeting "Bastien")
+
+;; Vamos finalizá-la fazendo-a exibir os resultados em outra janela:
+(defun greeting (from-name)
+ (let ((your-name (read-from-minibuffer "Enter your name: ")))
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ (insert (format "Hello %s!\n\nI am %s." your-name from-name))
+ (other-window 1)))
+
+;; Agora teste-a:
+(greeting "Bastien")
+
+;; Respire um pouco.
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;
+;; Vamos armazenar uma lista de nomes:
+(setq list-of-names '("Sarah" "Chloe" "Mathilde"))
+
+;; Pegue o primeiro elemento desta lista utilizando `car':
+(car list-of-names)
+
+;; Pegue uma lista de todos os elementos, exceto o primeiro, utilizando
+;; `cdr':
+(cdr list-of-names)
+
+;; Adicione um elemento ao início da lista com `push':
+(push "Stephanie" list-of-names)
+
+;; NOTA: `car' e `cdr' não modificam a lista, `push' sim.
+;; Esta é uma diferença importante: algumas funções não têm qualquer
+;; efeito colateral (como `car'), enquanto outras sim (como `push').
+
+;; Vamos executar `hello' para cada elemento em `list-of-names':
+(mapcar 'hello list-of-names)
+
+;; Refine `greeting' para saudar todos os nomes em `list-of-names':
+(defun greeting ()
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ (mapcar 'hello list-of-names)
+ (other-window 1))
+
+(greeting)
+
+;; Você se lembra da função `hello' que nós definimos lá em cima? Ela
+;; recebe um argumento, um nome. `mapcar' executa `hello', sucessivamente,
+;; utilizando cada elemento de `list-of-names' como argumento para `hello'.
+
+;; Agora vamos arrumar, um pouco, o que nós temos escrito no buffer:
+
+(defun replace-hello-by-bonjour ()
+ (switch-to-buffer-other-window "*test*")
+ (goto-char (point-min))
+ (while (search-forward "Hello")
+ (replace-match "Bonjour"))
+ (other-window 1))
+
+;; (goto-char (point-min)) vai para o início do buffer.
+;; (search-forward "Hello") busca pela string "Hello".
+;; (while x y) interpreta a(s) sexp(s) y enquanto x retornar algo.
+;; Se x retornar `nil' (nada), nós saímos do laço.
+
+(replace-hello-by-bonjour)
+
+;; Você deveria ver todas as ocorrências de "Hello" no buffer *test*
+;; substituídas por "Bonjour".
+
+;; Você deveria, também, receber um erro: "Search failed: Hello".
+;;
+;; Para evitar este erro, você precisa dizer ao `search-forward' se ele
+;; deveria parar de buscar em algum ponto no buffer, e se ele deveria
+;; falhar de forma silenciosa quando nada fosse encontrado:
+
+;; (search-forward "Hello" nil t) dá conta do recado:
+
+;; O argumento `nil' diz: a busca não está limitada a uma posição.
+;; O argumento `t' diz: falhe silenciosamente quando nada for encontrado.
+
+;; Nós utilizamos esta "sexp" na função abaixo, que não gera um erro:
+
+(defun hello-to-bonjour ()
+ (switch-to-buffer-other-window "*test*")
+ (erase-buffer)
+ ;; Say hello to names in `list-of-names'
+ (mapcar 'hello list-of-names)
+ (goto-char (point-min))
+ ;; Replace "Hello" by "Bonjour"
+ (while (search-forward "Hello" nil t)
+ (replace-match "Bonjour"))
+ (other-window 1))
+
+(hello-to-bonjour)
+
+;; Vamos colorir os nomes:
+
+(defun boldify-names ()
+ (switch-to-buffer-other-window "*test*")
+ (goto-char (point-min))
+ (while (re-search-forward "Bonjour \\(.+\\)!" nil t)
+ (add-text-properties (match-beginning 1)
+ (match-end 1)
+ (list 'face 'bold)))
+ (other-window 1))
+
+;; Esta função introduz `re-search-forward': ao invés de buscar
+;; pela string "Bonjour", você busca por um padrão utilizando uma
+;; "expressão regular" (abreviada pelo prefixo "re-").
+
+;; A expressão regular é "Bonjour \\(.+\\)!" e lê-se:
+;; a string "Bonjour ", e
+;; um grupo de | que é o \\( ... \\)
+;; quaisquer caracteres | que é o .
+;; possivelmente repetidos | que é o +
+;; e a string "!".
+
+;; Preparado? Teste!
+
+(boldify-names)
+
+;; `add-text-properties' adiciona... propriedades de texto, como uma fonte.
+
+;; OK, terminamos por aqui. Feliz Hacking!
+
+;; Se você quiser saber mais sobre uma variável ou função:
+;;
+;; C-h v uma-variável RET
+;; C-h f uma-função RET
+;;
+;; Para ler o manual de Emacs Lisp que vem com o Emacs:
+;;
+;; C-h i m elisp RET
+;;
+;; Para ler uma introdução online ao Emacs Lisp:
+;; https://www.gnu.org/software/emacs/manual/html_node/eintr/index.html
+
+;; Agradecimentos a estas pessoas por seu feedback e sugestões:
+;; - Wes Hardaker
+;; - notbob
+;; - Kevin Montuori
+;; - Arne Babenhauserheide
+;; - Alan Schmitt
+;; - LinXitoW
+;; - Aaron Meurer
+```
diff --git a/pt-br/python-pt.html.markdown b/pt-br/python-pt.html.markdown
index e08bb5a8..5afd46d0 100644
--- a/pt-br/python-pt.html.markdown
+++ b/pt-br/python-pt.html.markdown
@@ -4,7 +4,7 @@ contributors:
- ["Louie Dinh", "http://ldinh.ca"]
translators:
- ["Vilson Vieira", "http://automata.cc"]
-lang: pt-bf
+lang: pt-br
filename: learnpython-pt.py
---
diff --git a/ruby.html.markdown b/ruby.html.markdown
index 68c5b524..19f2ec86 100644
--- a/ruby.html.markdown
+++ b/ruby.html.markdown
@@ -6,6 +6,7 @@ contributors:
- ["Joel Walden", "http://joelwalden.net"]
- ["Luke Holder", "http://twitter.com/lukeholder"]
- ["Tristan Hume", "http://thume.ca/"]
+ - ["Nick LaMuro", "https://github.com/NickLaMuro"]
---
```ruby
@@ -117,11 +118,11 @@ status == :approved #=> false
# Arrays
# This is an array
-[1, 2, 3, 4, 5] #=> [1, 2, 3, 4, 5]
+array = [1, 2, 3, 4, 5] #=> [1, 2, 3, 4, 5]
# Arrays can contain different types of items
-array = [1, "hello", false] #=> => [1, "hello", false]
+[1, "hello", false] #=> [1, "hello", false]
# Arrays can be indexed
# From the front
@@ -173,9 +174,9 @@ new_hash.keys #=> [:defcon, :action]
if true
"if statement"
elsif false
- "else if, optional"
+ "else if, optional"
else
- "else, also optional"
+ "else, also optional"
end
for counter in 1..5
@@ -190,7 +191,8 @@ end
# HOWEVER, No-one uses for loops.
# Instead you should use the "each" method and pass it a block.
# A block is a bunch of code that you can pass to a method like "each".
-# It is analogous to lambdas, anonymous functions or closures in other programming languages.
+# It is analogous to lambdas, anonymous functions or closures in other
+# programming languages.
#
# The "each" method of a range runs the block once for each element of the range.
# The block is passed a counter as a parameter.
diff --git a/zh-cn/python-cn.html.markdown b/zh-cn/python-cn.html.markdown
index 764eed54..51efaac3 100755
--- a/zh-cn/python-cn.html.markdown
+++ b/zh-cn/python-cn.html.markdown
@@ -17,6 +17,7 @@ Python 由 Guido Van Rossum 在90年代初创建。 它现在是最流行的语
如果是Python 3,请在网络上寻找其他教程
```python
+
# 单行注释
""" 多行字符串可以用
三个引号包裹,不过这也可以被当做
@@ -28,84 +29,84 @@ Python 由 Guido Van Rossum 在90年代初创建。 它现在是最流行的语
####################################################
# 数字类型
-3 #=> 3
+3 # => 3
# 简单的算数
-1 + 1 #=> 2
-8 - 1 #=> 7
-10 * 2 #=> 20
-35 / 5 #=> 7
+1 + 1 # => 2
+8 - 1 # => 7
+10 * 2 # => 20
+35 / 5 # => 7
# 整数的除法会自动取整
-5 / 2 #=> 2
+5 / 2 # => 2
# 要做精确的除法,我们需要引入浮点数
2.0 # 浮点数
-11.0 / 4.0 #=> 2.75 好多了
+11.0 / 4.0 # => 2.75 精确多了
# 括号具有最高优先级
-(1 + 3) * 2 #=> 8
+(1 + 3) * 2 # => 8
-# 布尔值也是原始数据类型
+# 布尔值也是基本的数据类型
True
False
-# 用not来取非
-not True #=> False
-not False #=> True
+# 用 not 来取非
+not True # => False
+not False # => True
# 相等
-1 == 1 #=> True
-2 == 1 #=> False
+1 == 1 # => True
+2 == 1 # => False
# 不等
-1 != 1 #=> False
-2 != 1 #=> True
+1 != 1 # => False
+2 != 1 # => True
# 更多的比较操作符
-1 < 10 #=> True
-1 > 10 #=> False
-2 <= 2 #=> True
-2 >= 2 #=> True
+1 < 10 # => True
+1 > 10 # => False
+2 <= 2 # => True
+2 >= 2 # => True
# 比较运算可以连起来写!
-1 < 2 < 3 #=> True
-2 < 3 < 2 #=> False
+1 < 2 < 3 # => True
+2 < 3 < 2 # => False
-# 字符串通过"或'括起来
+# 字符串通过 " 或 ' 括起来
"This is a string."
'This is also a string.'
# 字符串通过加号拼接
-"Hello " + "world!" #=> "Hello world!"
+"Hello " + "world!" # => "Hello world!"
# 字符串可以被视为字符的列表
-"This is a string"[0] #=> 'T'
+"This is a string"[0] # => 'T'
# % 可以用来格式化字符串
"%s can be %s" % ("strings", "interpolated")
-# 也可以用format方法来格式化字符串
+# 也可以用 format 方法来格式化字符串
# 推荐使用这个方法
"{0} can be {1}".format("strings", "formatted")
# 也可以用变量名代替数字
"{name} wants to eat {food}".format(name="Bob", food="lasagna")
# None 是对象
-None #=> None
+None # => None
# 不要用相等 `==` 符号来和None进行比较
-# 要用 `is`
-"etc" is None #=> False
-None is None #=> True
+# 要用 `is`
+"etc" is None # => False
+None is None # => True
# 'is' 可以用来比较对象的相等性
# 这个操作符在比较原始数据时没多少用,但是比较对象时必不可少
-# None, 0, 和空字符串都被算作False
-# 其他的均为True
-0 == False #=> True
-"" == False #=> True
+# None, 0, 和空字符串都被算作 False
+# 其他的均为 True
+0 == False # => True
+"" == False # => True
####################################################
@@ -116,16 +117,16 @@ None is None #=> True
print "I'm Python. Nice to meet you!"
-# 给变量赋值前不需要事先生命
-some_var = 5 # 规范用小写字母和下划线来做为变量名
-some_var #=> 5
+# 给变量赋值前不需要事先声明
+some_var = 5 # 一般建议使用小写字母和下划线组合来做为变量名
+some_var # => 5
-# 访问之前为赋值的变量会抛出异常
-# 查看控制流程一节来了解异常处理
-some_other_var # 抛出命名异常
+# 访问未赋值的变量会抛出异常
+# 可以查看控制流程一节来了解如何异常处理
+some_other_var # 抛出 NameError
-# if语句可以作为表达式来使用
-"yahoo!" if 3 > 2 else 2 #=> "yahoo!"
+# if 语句可以作为表达式来使用
+"yahoo!" if 3 > 2 else 2 # => "yahoo!"
# 列表用来保存序列
li = []
@@ -133,64 +134,64 @@ li = []
other_li = [4, 5, 6]
# 在列表末尾添加元素
-li.append(1) #li 现在是 [1]
-li.append(2) #li 现在是 [1, 2]
-li.append(4) #li 现在是 [1, 2, 4]
-li.append(3) #li 现在是 [1, 2, 4, 3]
+li.append(1) # li 现在是 [1]
+li.append(2) # li 现在是 [1, 2]
+li.append(4) # li 现在是 [1, 2, 4]
+li.append(3) # li 现在是 [1, 2, 4, 3]
# 移除列表末尾元素
-li.pop() #=> 3 and li is now [1, 2, 4]
-# 放回来
+li.pop() # => 3 li 现在是 [1, 2, 4]
+# 重新加进去
li.append(3) # li is now [1, 2, 4, 3] again.
# 像其他语言访问数组一样访问列表
-li[0] #=> 1
+li[0] # => 1
# 访问最后一个元素
-li[-1] #=> 3
+li[-1] # => 3
# 越界会抛出异常
-li[4] # 抛出越界异常
+li[4] # 抛出越界异常
# 切片语法需要用到列表的索引访问
# 可以看做数学之中左闭右开区间
-li[1:3] #=> [2, 4]
+li[1:3] # => [2, 4]
# 省略开头的元素
-li[2:] #=> [4, 3]
+li[2:] # => [4, 3]
# 省略末尾的元素
-li[:3] #=> [1, 2, 4]
+li[:3] # => [1, 2, 4]
# 删除特定元素
-del li[2] # li 现在是 [1, 2, 3]
+del li[2] # li 现在是 [1, 2, 3]
# 合并列表
-li + other_li #=> [1, 2, 3, 4, 5, 6] - 不改变这两个列表
+li + other_li # => [1, 2, 3, 4, 5, 6] - 并不会不改变这两个列表
-# 通过拼接合并列表
-li.extend(other_li) # li 是 [1, 2, 3, 4, 5, 6]
+# 通过拼接来合并列表
+li.extend(other_li) # li 是 [1, 2, 3, 4, 5, 6]
-# 用in来返回元素是否在列表中
-1 in li #=> True
+# 用 in 来返回元素是否在列表中
+1 in li # => True
# 返回列表长度
-len(li) #=> 6
+len(li) # => 6
-# 元组类似于列表,但是他是不可改变的
+# 元组类似于列表,但它是不可改变的
tup = (1, 2, 3)
-tup[0] #=> 1
+tup[0] # => 1
tup[0] = 3 # 类型错误
# 对于大多数的列表操作,也适用于元组
-len(tup) #=> 3
-tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
-tup[:2] #=> (1, 2)
-2 in tup #=> True
+len(tup) # => 3
+tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)
+tup[:2] # => (1, 2)
+2 in tup # => True
# 你可以将元组解包赋给多个变量
-a, b, c = (1, 2, 3) # a是1,b是2,c是3
-# 如果不加括号,那么会自动视为元组
+a, b, c = (1, 2, 3) # a 是 1,b 是 2,c 是 3
+# 如果不加括号,将会被自动视为元组
d, e, f = 4, 5, 6
# 现在我们可以看看交换两个数字是多么容易的事
-e, d = d, e # d是5,e是4
+e, d = d, e # d 是 5,e 是 4
# 字典用来储存映射关系
@@ -199,59 +200,59 @@ empty_dict = {}
filled_dict = {"one": 1, "two": 2, "three": 3}
# 字典也用中括号访问元素
-filled_dict["one"] #=> 1
+filled_dict["one"] # => 1
# 把所有的键保存在列表中
-filled_dict.keys() #=> ["three", "two", "one"]
+filled_dict.keys() # => ["three", "two", "one"]
# 键的顺序并不是唯一的,得到的不一定是这个顺序
# 把所有的值保存在列表中
-filled_dict.values() #=> [3, 2, 1]
+filled_dict.values() # => [3, 2, 1]
# 和键的顺序相同
# 判断一个键是否存在
-"one" in filled_dict #=> True
-1 in filled_dict #=> False
+"one" in filled_dict # => True
+1 in filled_dict # => False
-# 查询一个不存在的键会抛出键异常
-filled_dict["four"] # 键异常
+# 查询一个不存在的键会抛出 KeyError
+filled_dict["four"] # KeyError
-# 用get方法来避免键异常
-filled_dict.get("one") #=> 1
-filled_dict.get("four") #=> None
-# get方法支持在不存在的时候返回一个默认值
-filled_dict.get("one", 4) #=> 1
-filled_dict.get("four", 4) #=> 4
+# 用 get 方法来避免 KeyError
+filled_dict.get("one") # => 1
+filled_dict.get("four") # => None
+# get 方法支持在不存在的时候返回一个默认值
+filled_dict.get("one", 4) # => 1
+filled_dict.get("four", 4) # => 4
-# Setdefault是一个更安全的添加字典元素的方法
-filled_dict.setdefault("five", 5) #filled_dict["five"] 的值为 5
-filled_dict.setdefault("five", 6) #filled_dict["five"] 的值仍然是 5
+# setdefault 是一个更安全的添加字典元素的方法
+filled_dict.setdefault("five", 5) # filled_dict["five"] 的值为 5
+filled_dict.setdefault("five", 6) # filled_dict["five"] 的值仍然是 5
# 集合储存无顺序的元素
empty_set = set()
-# 出事话一个集合
-some_set = set([1,2,2,3,4]) # filled_set 现在是 set([1, 2, 3, 4])
+# 初始化一个集合
+some_set = set([1, 2, 2, 3, 4]) # filled_set 现在是 set([1, 2, 3, 4])
# Python 2.7 之后,大括号可以用来表示集合
-filled_set = {1, 2, 2, 3, 4} # => {1 2 3 4}
+filled_set = {1, 2, 2, 3, 4} # => {1 2 3 4}
-# 为集合添加元素
-filled_set.add(5) # filled_set 现在是 {1, 2, 3, 4, 5}
+# 向集合添加元素
+filled_set.add(5) # filled_set 现在是 {1, 2, 3, 4, 5}
-# 用&来实现集合的交
+# 用 & 来计算集合的交
other_set = {3, 4, 5, 6}
-filled_set & other_set #=> {3, 4, 5}
+filled_set & other_set # => {3, 4, 5}
-# 用|来实现集合的并
-filled_set | other_set #=> {1, 2, 3, 4, 5, 6}
+# 用 | 来计算集合的并
+filled_set | other_set # => {1, 2, 3, 4, 5, 6}
-# 用-来实现集合的差
-{1,2,3,4} - {2,3,5} #=> {1, 4}
+# 用 - 来计算集合的差
+{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}
-# 用in来判断元素是否存在于集合中
-2 in filled_set #=> True
-10 in filled_set #=> False
+# 用 in 来判断元素是否存在于集合中
+2 in filled_set # => True
+10 in filled_set # => False
####################################################
@@ -261,13 +262,13 @@ filled_set | other_set #=> {1, 2, 3, 4, 5, 6}
# 新建一个变量
some_var = 5
-# 这是个if语句,在python中缩进是很重要的。
-# 会输出 "some var is smaller than 10"
+# 这是个 if 语句,在 python 中缩进是很重要的。
+# 下面的代码片段将会输出 "some var is smaller than 10"
if some_var > 10:
print "some_var is totally bigger than 10."
elif some_var < 10: # 这个 elif 语句是不必须的
print "some_var is smaller than 10."
-else: # 也不是必须的
+else: # 这个 else 也不是必须的
print "some_var is indeed 10."
@@ -281,7 +282,7 @@ else: # 也不是必须的
for animal in ["dog", "cat", "mouse"]:
# 你可以用 % 来格式化字符串
print "%s is a mammal" % animal
-
+
"""
`range(number)` 返回从0到给定数字的列表
输出:
@@ -294,7 +295,7 @@ for i in range(4):
print i
"""
-While循环
+while 循环
输出:
0
1
@@ -304,29 +305,29 @@ While循环
x = 0
while x < 4:
print x
- x += 1 # Shorthand for x = x + 1
+ x += 1 # x = x + 1 的简写
-# 用 try/except块来处理异常
+# 用 try/except 块来处理异常
# Python 2.6 及以上适用:
try:
- # 用raise来抛出异常
+ # 用 raise 来抛出异常
raise IndexError("This is an index error")
except IndexError as e:
- pass # Pass就是什么都不做,不过通常这里会做一些恢复工作
+ pass # pass 就是什么都不做,不过通常这里会做一些恢复工作
####################################################
## 4. 函数
####################################################
-# 用def来新建函数
+# 用 def 来新建函数
def add(x, y):
print "x is %s and y is %s" % (x, y)
- return x + y # Return values with a return statement
+ return x + y # 通过 return 来返回值
# 调用带参数的函数
-add(5, 6) #=> 输出 "x is 5 and y is 6" 返回 11
+add(5, 6) # => 输出 "x is 5 and y is 6" 返回 11
# 通过关键字赋值来调用函数
add(y=6, x=5) # 顺序是无所谓的
@@ -335,7 +336,7 @@ add(y=6, x=5) # 顺序是无所谓的
def varargs(*args):
return args
-varargs(1, 2, 3) #=> (1,2,3)
+varargs(1, 2, 3) # => (1,2,3)
# 我们也可以定义接受多个变量的函数,这些变量是按照关键字排列的
@@ -343,7 +344,7 @@ def keyword_args(**kwargs):
return kwargs
# 实际效果:
-keyword_args(big="foot", loch="ness") #=> {"big": "foot", "loch": "ness"}
+keyword_args(big="foot", loch="ness") # => {"big": "foot", "loch": "ness"}
# 你也可以同时将一个函数定义成两种形式
def all_the_args(*args, **kwargs):
@@ -355,38 +356,38 @@ all_the_args(1, 2, a=3, b=4) prints:
{"a": 3, "b": 4}
"""
-# 当调用函数的时候,我们也可以和之前所做的相反,把元组和字典展开为参数
+# 当调用函数的时候,我们也可以进行相反的操作,把元组和字典展开为参数
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
-all_the_args(*args) # equivalent to foo(1, 2, 3, 4)
-all_the_args(**kwargs) # equivalent to foo(a=3, b=4)
-all_the_args(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4)
+all_the_args(*args) # 等价于 foo(1, 2, 3, 4)
+all_the_args(**kwargs) # 等价于 foo(a=3, b=4)
+all_the_args(*args, **kwargs) # 等价于 foo(1, 2, 3, 4, a=3, b=4)
-# Python 有一等函数:
+# 函数在 python 中是一等公民
def create_adder(x):
def adder(y):
return x + y
return adder
add_10 = create_adder(10)
-add_10(3) #=> 13
+add_10(3) # => 13
# 匿名函数
-(lambda x: x > 2)(3) #=> True
+(lambda x: x > 2)(3) # => True
# 内置高阶函数
-map(add_10, [1,2,3]) #=> [11, 12, 13]
-filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
+map(add_10, [1, 2, 3]) # => [11, 12, 13]
+filter(lambda x: x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
# 可以用列表方法来对高阶函数进行更巧妙的引用
-[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
-[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]
+[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
+[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
####################################################
## 5. 类
####################################################
-# 我们新建的类是从object类中继承的
+# 我们新建的类是从 object 类中继承的
class Human(object):
# 类属性,由所有类的对象共享
@@ -397,9 +398,9 @@ class Human(object):
# 将参数赋给对象成员属性
self.name = name
- # 成员方法,参数要有self
+ # 成员方法,参数要有 self
def say(self, msg):
- return "%s: %s" % (self.name, msg)
+ return "%s: %s" % (self.name, msg)
# 类方法由所有类的对象共享
# 这类方法在调用时,会把类本身传给第一个参数
@@ -421,15 +422,15 @@ j = Human("Joel")
print j.say("hello") # 输出 "Joel: hello"
# 访问类的方法
-i.get_species() #=> "H. sapiens"
+i.get_species() # => "H. sapiens"
# 改变共享属性
Human.species = "H. neanderthalensis"
-i.get_species() #=> "H. neanderthalensis"
-j.get_species() #=> "H. neanderthalensis"
+i.get_species() # => "H. neanderthalensis"
+j.get_species() # => "H. neanderthalensis"
# 访问静态变量
-Human.grunt() #=> "*grunt*"
+Human.grunt() # => "*grunt*"
####################################################
@@ -438,12 +439,12 @@ Human.grunt() #=> "*grunt*"
# 我们可以导入其他模块
import math
-print math.sqrt(16) #=> 4
+print math.sqrt(16) # => 4
-# 我们也可以从一个模块中特定的函数
+# 我们也可以从一个模块中导入特定的函数
from math import ceil, floor
-print ceil(3.7) #=> 4.0
-print floor(3.7) #=> 3.0
+print ceil(3.7) # => 4.0
+print floor(3.7) # => 3.0
# 从模块中导入所有的函数
# 警告:不推荐使用
@@ -451,13 +452,13 @@ from math import *
# 简写模块名
import math as m
-math.sqrt(16) == m.sqrt(16) #=> True
+math.sqrt(16) == m.sqrt(16) # => True
# Python的模块其实只是普通的python文件
# 你也可以创建自己的模块,并且导入它们
# 模块的名字就和文件的名字相同
-# 以可以通过下面的信息找找要成为模块需要什么属性或方法
+# 也可以通过下面的方法查看模块中有什么属性和方法
import math
dir(math)