diff options
| -rw-r--r-- | bash.html.markdown | 4 | ||||
| -rw-r--r-- | c.html.markdown | 51 | ||||
| -rw-r--r-- | c.html.markdown.orig | 641 | 
3 files changed, 667 insertions, 29 deletions
diff --git a/bash.html.markdown b/bash.html.markdown index 1473e669..2faa4988 100644 --- a/bash.html.markdown +++ b/bash.html.markdown @@ -53,10 +53,10 @@ else      echo "And this is not"  fi -# And the usual while loop: +# while loop:  while [true]  do -	echo "put loop content here..." +	echo "loop body here..."  	break  done diff --git a/c.html.markdown b/c.html.markdown index 68ef7f03..2a65d82c 100644 --- a/c.html.markdown +++ b/c.html.markdown @@ -39,7 +39,7 @@ Multi-line comments look like this. They work in C89 as well.  //print formatting:  "%d"    // integer -"%3d"   // minimum length of 3 digits for integer (right justifies text) +"%3d"   // integer with minimum of length 3 digits (right justifies text)  "%s"    // string  "%f"    // float  "%ld"   // long @@ -51,7 +51,7 @@ Multi-line comments look like this. They work in C89 as well.  "%o"    // octal  "%%"    // prints %  -// Constants: use #define keyword, no semicolon at end.  +// Constants: #define <keyword> (no semicolon at end)   #define DAYS_IN_YEAR = 365  //enumeration constants are also ways to declare constants.  @@ -62,7 +62,6 @@ enum days {SUN = 1, MON, TUE, WED, THU, FRI, SAT};  #include <stdlib.h>  #include <stdio.h>  #include <string.h> -#include <ctype.h>  // (File names between <angle brackets> are headers from the C standard library.)  // For your own headers, use double quotes instead of angle brackets: @@ -111,7 +110,7 @@ int main() {      unsigned int ux_int;      unsigned long long ux_long_long; -    // chars inside single quotes '*' are integers in your character set.  +    // chars inside single quotes are integers in machine's character set.       '0' //==> 48 on the ASCII character set.       'A' //==> 65 on the ASCII character set.  @@ -226,20 +225,14 @@ int main() {      0 || 1; // => 1 (Logical or)      0 || 0; // => 0 -    //Conditional expression ( ?: ) +    //Conditional expression ( ? : )      int a, b, z; -    z = (a > b) ? a : b; // z = max(a, b); +    z = (a > b) ? a : b; // "if a > b return a, else return b."       //Increment and decrement operators: -    int j = 0; -    char s[]; -    int w = 0; -    j++; //difference between postfix and prefix explained below -    ++j; //  in string example.  -    j--; -    --j;      s[j++]; //returns value of j to s THEN increments value of j.       s[++j]; //increments value of j THEN returns value of j to s.  +    // same with j-- and --j      // Bitwise operators!      ~0x0F; // => 0xF0 (bitwise negation, "1's complement") @@ -267,12 +260,6 @@ int main() {        printf("I print\n");      } -    // Notes: -    // Loops MUST always have a body. If no body is needed, do this: -    for (i = 0; i <= 5; i++) { -        ; // use semicolon to act as the body (null statement) -    } -      // While loops exist      int ii = 0;      while (ii < 10) { //ANY value not zero is true.  @@ -297,6 +284,12 @@ int main() {      printf("\n"); +    // *****NOTES*****: +    // Loops MUST always have a body. If no body is needed, do: +    for (i = 0; i <= 5; i++) { +        ; // use semicolon to act as the body (null statement) +    } +      // branching with multiple choices: switch()      switch (some_integral_expression) {      case 0: // labels need to be integral *constant* epxressions @@ -449,17 +442,19 @@ int add_two_ints(int x1, int x2)  }  // Must declare a 'function prototype' before main() when creating functions -// in file.   void getInt(char c); // function prototype -int main() { +int main() {         // main function      return 0;  }  void getInt(char w) { //parameter name does not need to match function prototype      ;  } -//if function takes no parameters, do: int getInt(void); for function prototype -//  and for the function declaration: int getInt(void) {} -//  this is to keep compatibility with older versions of C.  + +//if function takes no parameters, do:  +int getInt(void); for function prototype +//  and for the function declaration:  +int getInt(void) {} +//  (this is to keep compatibility with older versions of C).   /*  Functions are call by value. So when a function is called, the arguments passed @@ -485,11 +480,13 @@ void str_reverse(char *str_in)      }  } +/////////////////////////////////////  // Built in functions: +/////////////////////////////////////  // from stdio.h: -int c = getchar(); //reads character from input. If input = hi, only h is read. -// getchar() can be stored into int or char. I am using int because  -//   char is not large enough to store EOF used below.  +// getchar() +int c = getchar(); //reads character from input.  +// If input = hi, 'h' is returned then next call, 'i' returned.   while ((c = getchar()) != EOF) { // EOF constant "end of file".                                    //   Linux: CTRL+D, Windows: CTRL+X      // must have () around getchar() as != is run before =.  diff --git a/c.html.markdown.orig b/c.html.markdown.orig new file mode 100644 index 00000000..47996cb2 --- /dev/null +++ b/c.html.markdown.orig @@ -0,0 +1,641 @@ +--- +language: c +filename: learnc.c +contributors: +    - ["Adam Bard", "http://adambard.com/"] +    - ["Árpád Goretity", "http://twitter.com/H2CO3_iOS"] + +--- + +Ah, C. Still **the** language of modern high-performance computing. + +C is the lowest-level language most programmers will ever use, but +it more than makes up for it with raw speed. Just be aware of its manual +memory management and C will take you as far as you need to go. + +```c +// Single-line comments start with // - only available in C99 and later. + +/* +Multi-line comments look like this. They work in C89 as well. +*/ + +//Special characters: +'\a' // alert (bell) character +'\n' // newline character +'\t' // tab character (left justifies text) +'\v' // vertical tab +'\f' // new page (formfeed) +'\r' // carriage return +'\b' // backspace character +'\0' // null character. Usually put at end of strings in C lang.  +     //   hello\n\0. \0 used by convention to mark end of string.  +'\\' // backspace +'\?' // question mark +'\'' // single quote +'\"' // double quote +'\xhh' // hexadecimal number. Example: '\xb' = vertical tab character +'\ooo' // octal number. Example: '\013' = vertical tab character + +//print formatting: +"%d"    // integer +"%3d"   // integer with minimum of length 3 digits (right justifies text) +"%s"    // string +"%f"    // float +"%ld"   // long +"%3.2f" // minimum 3 digits left and 2 digits right decimal float  +"%7.4s" // (can do with strings too) +"%c"    // char +"%p"    // pointer +"%x"    // hexidecimal +"%o"    // octal +"%%"    // prints %  + +// Constants: #define <keyword> (no semicolon at end)  +#define DAYS_IN_YEAR = 365 + +//enumeration constants are also ways to declare constants.  +enum days {SUN = 1, MON, TUE, WED, THU, FRI, SAT}; +// MON gets 2 automatically, TUE gets 3, etc.  + +// Import headers with #include +#include <stdlib.h> +#include <stdio.h> +#include <string.h> + +// (File names between <angle brackets> are headers from the C standard library.) +// For your own headers, use double quotes instead of angle brackets: +#include "my_header.h" + +// Declare function signatures in advance in a .h file, or at the top of +// your .c file. +void function_1(); +void function_2(); + +// Your program's entry point is a function called +// main with an integer return type. +int main() { +    // print output using printf, for "print formatted" +    // %d is an integer, \n is a newline +    printf("%d\n", 0); // => Prints 0 +    // All statements must end with a semicolon + +    /////////////////////////////////////// +    // Types +    /////////////////////////////////////// + +    // ints are usually 4 bytes  +    int x_int = 0; + +    // shorts are usually 2 bytes +    short x_short = 0; + +    // chars are guaranteed to be 1 byte +    char x_char = 0; +    char y_char = 'y'; // Char literals are quoted with '' + +    // longs are often 4 to 8 bytes; long longs are guaranteed to be at least +    // 64 bits +    long x_long = 0; +    long long x_long_long = 0;  + +    // floats are usually 32-bit floating point numbers +    float x_float = 0.0; + +    // doubles are usually 64-bit floating-point numbers +    double x_double = 0.0; + +    // Integral types may be unsigned. +    unsigned short ux_short; +    unsigned int ux_int; +    unsigned long long ux_long_long; + +    // chars inside single quotes are integers in machine's character set.  +    '0' //==> 48 on the ASCII character set.  +    'A' //==> 65 on the ASCII character set.  + +    // sizeof(T) gives you the size of a variable with type T in bytes +    // sizeof(obj) yields the size of the expression (variable, literal, etc.). +    printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words) + + +    // If the argument of the `sizeof` operator an expression, then its argument +    // is not evaluated (except VLAs (see below)). +    // The value it yields in this case is a compile-time constant. +    int a = 1; +    size_t size = sizeof(a++); // a++ is not evaluated +    printf("sizeof(a++) = %zu where a = %d\n", size, a); +    // prints "sizeof(a++) = 4 where a = 1" (on a 32-bit architecture) + +    // Arrays must be initialized with a concrete size. +    char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes +    int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes +                          // (assuming 4-byte words) + + +    // You can initialize an array to 0 thusly: +    char my_array[20] = {0}; + +    // Indexing an array is like other languages -- or, +    // rather, other languages are like C +    my_array[0]; // => 0 + +    // Arrays are mutable; it's just memory! +    my_array[1] = 2; +    printf("%d\n", my_array[1]); // => 2 + +    // In C99 (and as an optional feature in C11), variable-length arrays (VLAs) +    // can be declared as well. The size of such an array need not be a compile +    // time constant: +    printf("Enter the array size: "); // ask the user for an array size +    char buf[0x100]; +    fgets(buf, sizeof buf, stdin); + +    // strtoul parses a string to an unsigned integer +    size_t size = strtoul(buf, NULL, 10); +    int var_length_array[size]; // declare the VLA +    printf("sizeof array = %zu\n", sizeof var_length_array); + +    // A possible outcome of this program may be: +    // > Enter the array size: 10 +    // > sizeof array = 40 + +    // Strings are just arrays of chars terminated by a NUL (0x00) byte, +    // represented in strings as the special character '\0'. +    // (We don't have to include the NUL byte in string literals; the compiler +    //  inserts it at the end of the array for us.) +    char a_string[20] = "This is a string"; +    printf("%s\n", a_string); // %s formats a string + +    printf("%d\n", a_string[16]); // => 0 +    // i.e., byte #17 is 0 (as are 18, 19, and 20) + +    // If we have characters between single quotes, that's a character literal. +    // It's of type `int`, and *not* `char` (for historical reasons). +    int cha = 'a'; // fine +    char chb = 'a'; // fine too (implicit conversion from int to char) + +    /////////////////////////////////////// +    // Operators +    /////////////////////////////////////// + +    int i1 = 1, i2 = 2; // Shorthand for multiple declaration +    float f1 = 1.0, f2 = 2.0; + +    //more shorthands: +    int a, b, c; +    a = b = c = 0; + +    // Arithmetic is straightforward +    i1 + i2; // => 3 +    i2 - i1; // => 1 +    i2 * i1; // => 2 +    i1 / i2; // => 0 (0.5, but truncated towards 0) + +    f1 / f2; // => 0.5, plus or minus epsilon +    // Floating-point numbers and calculations are not exact + +    // Modulo is there as well +    11 % 3; // => 2 + +    // Comparison operators are probably familiar, but +    // there is no boolean type in c. We use ints instead. +    // (Or _Bool or bool in C99.) +    // 0 is false, anything else is true. (The comparison  +    // operators always yield 0 or 1.) +    3 == 2; // => 0 (false) +    3 != 2; // => 1 (true) +    3 > 2; // => 1 +    3 < 2; // => 0 +    2 <= 2; // => 1 +    2 >= 2; // => 1 + +    // C is not Python - comparisons don't chain. +    int a = 1; +    // WRONG: +    int between_0_and_2 = 0 < a < 2; +    // Correct: +    int between_0_and_2 = 0 < a && a < 2; + +    // Logic works on ints +    !3; // => 0 (Logical not) +    !0; // => 1 +    1 && 1; // => 1 (Logical and) +    0 && 1; // => 0 +    0 || 1; // => 1 (Logical or) +    0 || 0; // => 0 + +    //Conditional expression ( ? : ) +    int a, b, z; +    z = (a > b) ? a : b; // "if a > b return a, else return b."  + +    //Increment and decrement operators: +    s[j++]; //returns value of j to s THEN increments value of j.  +    s[++j]; //increments value of j THEN returns value of j to s.  +    // same with j-- and --j + +    // Bitwise operators! +    ~0x0F; // => 0xF0 (bitwise negation, "1's complement") +    0x0F & 0xF0; // => 0x00 (bitwise AND) +    0x0F | 0xF0; // => 0xFF (bitwise OR) +    0x04 ^ 0x0F; // => 0x0B (bitwise XOR) +    0x01 << 1; // => 0x02 (bitwise left shift (by 1)) +    0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) + +    // Be careful when shifting signed integers - the following are undefined: +    // - shifting into the sign bit of a signed integer (int a = 1 << 32) +    // - left-shifting a negative number (int a = -1 << 2) +    // - shifting by an offset which is >= the width of the type of the LHS: +    //   int a = 1 << 32; // UB if int is 32 bits wide + +    /////////////////////////////////////// +    // Control Structures +    /////////////////////////////////////// + +    if (0) { +      printf("I am never run\n"); +    } else if (0) { +      printf("I am also never run\n"); +    } else { +      printf("I print\n"); +    } + +    // While loops exist +    int ii = 0; +    while (ii < 10) { //ANY value not zero is true.  +        printf("%d, ", ii++); // ii++ increments ii AFTER using it's current value. +    } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +    printf("\n"); + +    int kk = 0; +    do { +        printf("%d, ", kk); +    } while (++kk < 10); // ++kk increments kk BEFORE using it's current value. +    // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +    printf("\n"); + +    // For loops too +    int jj; +    for (jj=0; jj < 10; jj++) { +        printf("%d, ", jj); +    } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +    printf("\n"); + +    // *****NOTES*****: +    // Loops MUST always have a body. If no body is needed, do: +    for (i = 0; i <= 5; i++) { +        ; // use semicolon to act as the body (null statement) +    } + +    // branching with multiple choices: switch() +    switch (some_integral_expression) { +    case 0: // labels need to be integral *constant* epxressions +        do_stuff(); +        break; // if you don't break, control flow falls over labels +    case 1: +        do_something_else(); +        break; +    default: +        // if `some_integral_expression` didn't match any of the labels +        fputs("error!\n", stderr); +        exit(-1); +        break; +    } +     + +    /////////////////////////////////////// +    // Typecasting +    /////////////////////////////////////// + +    // Every value in C has a type, but you can cast one value into another type +    // if you want (with some constraints). + +    int x_hex = 0x01; // You can assign vars with hex literals + +    // Casting between types will attempt to preserve their numeric values +    printf("%d\n", x_hex); // => Prints 1 +    printf("%d\n", (short) x_hex); // => Prints 1 +    printf("%d\n", (char) x_hex); // => Prints 1 + +    // Types will overflow without warning +    printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long) + +    // For determining the max value of a `char`, a `signed char` and an `unisigned char`, +    // respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h> + +    // Integral types can be cast to floating-point types, and vice-versa. +    printf("%f\n", (float)100); // %f formats a float +    printf("%lf\n", (double)100); // %lf formats a double +    printf("%d\n", (char)100.0); + +    /////////////////////////////////////// +    // Pointers +    /////////////////////////////////////// + +    // A pointer is a variable declared to store a memory address. Its declaration will +    // also tell you the type of data it points to. You can retrieve the memory address  +    // of your variables, then mess with them. + +    int x = 0; +    printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable +    // (%p formats an object pointer of type void *) +    // => Prints some address in memory; + + +    // Pointers start with * in their declaration +    int *px, not_a_pointer; // px is a pointer to an int +    px = &x; // Stores the address of x in px +    printf("%p\n", (void *)px); // => Prints some address in memory +    printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer)); +    // => Prints "8, 4" on a typical 64-bit system + +    // To retreive the value at the address a pointer is pointing to, +    // put * in front to de-reference it. +    // Note: yes, it may be confusing that '*' is used for _both_ declaring a +    // pointer and dereferencing it. +    printf("%d\n", *px); // => Prints 0, the value of x + +    // You can also change the value the pointer is pointing to. +    // We'll have to wrap the de-reference in parenthesis because +    // ++ has a higher precedence than *. +    (*px)++; // Increment the value px is pointing to by 1 +    printf("%d\n", *px); // => Prints 1 +    printf("%d\n", x); // => Prints 1 + +    // Arrays are a good way to allocate a contiguous block of memory +    int x_array[20]; //declares array of size 20 (cannot change size) +    int xx; +    for (xx = 0; xx < 20; xx++) { +        x_array[xx] = 20 - xx; +    } // Initialize x_array to 20, 19, 18,... 2, 1 + +    // Declare a pointer of type int and initialize it to point to x_array +    int* x_ptr = x_array; +    // x_ptr now points to the first element in the array (the integer 20).  +    // This works because arrays often decay into pointers to their first element. +    // For example, when an array is passed to a function or is assigned to a pointer, +    // it decays into (implicitly converted to) a pointer. +    // Exceptions: when the array is the argument of the `&` (address-od) operator: +    int arr[10]; +    int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`! +                                  // It's of type "pointer to array" (of ten `int`s). +    // or when the array is a string literal used for initializing a char array: +    char arr[] = "foobarbazquirk"; +    // or when it's the argument of the `sizeof` or `alignof` operator: +    int arr[10]; +    int *ptr = arr; // equivalent with int *ptr = &arr[0]; +    printf("%zu %zu\n", sizeof arr, sizeof ptr); // probably prints "40, 4" or "40, 8" + + +    // Pointers are incremented and decremented based on their type +    // (this is called pointer arithmetic) +    printf("%d\n", *(x_ptr + 1)); // => Prints 19 +    printf("%d\n", x_array[1]); // => Prints 19 + +    // You can also dynamically allocate contiguous blocks of memory with the +    // standard library function malloc, which takes one argument of type size_t +    // representing the number of bytes to allocate (usually from the heap, although this +    // may not be true on e. g. embedded systems - the C standard says nothing about it). +    int *my_ptr = malloc(sizeof(*my_ptr) * 20); +    for (xx = 0; xx < 20; xx++) { +        *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx +    } // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) + +    // Dereferencing memory that you haven't allocated gives +    // "unpredictable results" - the program is said to invoke "undefined behavior" +    printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash. + +    // When you're done with a malloc'd block of memory, you need to free it,  +    // or else no one else can use it until your program terminates +    // (this is called a "memory leak"): +    free(my_ptr); + +    // Strings are arrays of char, but they are usually represented as a +    // pointer-to-char (which is a pointer to the first element of the array). +    // It's good practice to use `const char *' when referring to a string literal, +    // since string literals shall not be modified (i. e. "foo"[0] = 'a' is ILLEGAL.) +    const char *my_str = "This is my very own string literal"; +    printf("%c\n", *my_str); // => 'T' + +    // This is not the case if the string is an array +    // (potentially initialized with a string literal) +    // that resides in writable memory, as in: +    char foo[] = "foo"; +    foo[0] = 'a'; // this is legal, foo now contains "aoo" + +    function_1(); +} // end main function + +/////////////////////////////////////// +// Functions +/////////////////////////////////////// + +// Function declaration syntax: +// <return type> <function name>(<args>) + +int add_two_ints(int x1, int x2) +{ +    return x1 + x2; // Use return to return a value +} + +<<<<<<< HEAD +// Must declare a 'function prototype' before main() when creating functions +// in file.  +======= +// Must declare a 'funtion prototype' when creating functions before main() +>>>>>>> f28d33fb187bc834e6e2956117039f9abe3b6d9b +void getInt(char c); // function prototype +int main() {         // main function +    return 0; +} +void getInt(char w) { //parameter name does not need to match function prototype +    ; +} + +//if function takes no parameters, do:  +int getInt(void); for function prototype +//  and for the function declaration:  +int getInt(void) {} +//  (this is to keep compatibility with older versions of C).  + +/* +Functions are call by value. So when a function is called, the arguments passed +to the function are copies of original arguments (except arrays). Anything you   +do to your arguments do not change the value of the actual argument where the +function was called.  + +You can use pointers if you need to edit the original argument values.  + +Example: in-place string reversal +*/ + +// A void function returns no value +void str_reverse(char *str_in) +{ +    char tmp; +    int ii = 0; +    size_t len = strlen(str_in); // `strlen()` is part of the c standard library +    for (ii = 0; ii < len / 2; ii++) { +        tmp = str_in[ii]; +        str_in[ii] = str_in[len - ii - 1]; // ii-th char from end +        str_in[len - ii - 1] = tmp; +    } +} + +///////////////////////////////////// +// Built in functions: +///////////////////////////////////// +// from stdio.h: +// getchar() +int c = getchar(); //reads character from input.  +// If input = hi, 'h' is returned then next call, 'i' returned.  +while ((c = getchar()) != EOF) { // EOF constant "end of file".  +                                 //   Linux: CTRL+D, Windows: CTRL+X +    // must have () around getchar() as != is run before =.  +    putchar(c); //prints character (without newline at end) +    char c = getchar();  +} + +//if referring to external variables outside function, must use extern keyword. +int i = 0; +void testFunc() { +    extern int i; //i here is now using external variable i +} + +/* +char c[] = "This is a test."; +str_reverse(c); +printf("%s\n", c); // => ".tset a si sihT" +*/ + +/////////////////////////////////////// +// User-defined types and structs +/////////////////////////////////////// + +// Typedefs can be used to create type aliases +typedef int my_type; +my_type my_type_var = 0; + +// Structs are just collections of data, the members are allocated sequentially, +// in the order they are written: +struct rectangle { +    int width; +    int height; +}; + +// It's not generally true that +// sizeof(struct rectangle) == sizeof(int) + sizeof(int) +// due to potential padding between the structure members (this is for alignment +// reasons). [1] + +void function_1() +{ +    struct rectangle my_rec; + +    // Access struct members with . +    my_rec.width = 10; +    my_rec.height = 20; + +    // You can declare pointers to structs +    struct rectangle *my_rec_ptr = &my_rec; + +    // Use dereferencing to set struct pointer members... +    (*my_rec_ptr).width = 30; + +    // ... or even better: prefer the -> shorthand for the sake of readability +    my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10; +} + +// You can apply a typedef to a struct for convenience +typedef struct rectangle rect; + +int area(rect r) +{ +    return r.width * r.height; +} + +// if you have large structs, you can pass them "by pointer" to avoid copying +// the whole struct: +int area(const rect *r) +{ +    return r->width * r->height; +} + +/////////////////////////////////////// +// Function pointers  +/////////////////////////////////////// +/* +At runtime, functions are located at known memory addresses. Function pointers are +much like any other pointer (they just store a memory address), but can be used  +to invoke functions directly, and to pass handlers (or callback functions) around. +However, definition syntax may be initially confusing. + +Example: use str_reverse from a pointer +*/ +void str_reverse_through_pointer(char *str_in) { +    // Define a function pointer variable, named f.  +    void (*f)(char *); // Signature should exactly match the target function. +    f = &str_reverse; // Assign the address for the actual function (determined at runtime) +    // f = str_reverse; would work as well - functions decay into pointers, similar to arrays +    (*f)(str_in); // Just calling the function through the pointer +    // f(str_in); // That's an alternative but equally valid syntax for calling it. +} + +/* +As long as function signatures match, you can assign any function to the same pointer. +Function pointers are usually typedef'd for simplicity and readability, as follows: +*/ + +typedef void (*my_fnp_type)(char *); + +// Then used when declaring the actual pointer variable: +// ... +// my_fnp_type f;  + + +/////////////////////////////////////// +// Order of Evaluation +/////////////////////////////////////// + +//---------------------------------------------------// +//        Operators                  | Associativity // +//---------------------------------------------------// +// () [] -> .                        | left to right // +// ! ~ ++ -- + = *(type)sizeof       | right to left // +// * / %                             | left to right // +// + -                               | left to right // +// << >>                             | left to right // +// < <= > >=                         | left to right // +// == !=                             | left to right // +// &                                 | left to right // +// ^                                 | left to right // +// |                                 | left to right // +// &&                                | left to right // +// ||                                | left to right // +// ?:                                | right to left // +// = += -= *= /= %= &= ^= |= <<= >>= | right to left // +// ,                                 | left to right // +//---------------------------------------------------// + +``` + +## Further Reading + +Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language) +It is *the* book about C, written by the creators of C. Be careful, though - it's ancient and it contains some +inaccuracies (well, ideas that are not considered good anymore) or now-changed practices. + +Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/). + +If you have a question, read the [compl.lang.c Frequently Asked Questions](http://c-faq.com). + +It's very important to use proper spacing, indentation and to be consistent with your coding style in general. +Readable code is better than clever code and fast code. For a good, sane coding style to adopt, see the +[Linux kernel coding stlye](https://www.kernel.org/doc/Documentation/CodingStyle). + +Other than that, Google is your friend. + +[1] http://stackoverflow.com/questions/119123/why-isnt-sizeof-for-a-struct-equal-to-the-sum-of-sizeof-of-each-member  | 
