diff options
-rw-r--r-- | es-es/coffeescript-es.html.markdown | 4 | ||||
-rw-r--r-- | fr-fr/haskell.html.markdown | 430 | ||||
-rw-r--r-- | haskell.html.markdown | 2 | ||||
-rw-r--r-- | julia.html.markdown | 299 |
4 files changed, 653 insertions, 82 deletions
diff --git a/es-es/coffeescript-es.html.markdown b/es-es/coffeescript-es.html.markdown index 78bb9be5..6bf430e6 100644 --- a/es-es/coffeescript-es.html.markdown +++ b/es-es/coffeescript-es.html.markdown @@ -44,7 +44,7 @@ math = # "cube": function(x) { return x * square(x); } #} -# Símbolos: +# Número de argumentos variable: race = (winner, runners...) -> print winner, runners @@ -52,6 +52,6 @@ race = (winner, runners...) -> alert "I knew it!" if elvis? #=> if(typeof elvis !== "undefined" && elvis !== null) { alert("I knew it!"); } -# Colecciones por comprensión: +# Listas: cubes = (math.cube num for num in list) #=> ... ``` diff --git a/fr-fr/haskell.html.markdown b/fr-fr/haskell.html.markdown new file mode 100644 index 00000000..9d0cec99 --- /dev/null +++ b/fr-fr/haskell.html.markdown @@ -0,0 +1,430 @@ +--- +language: haskell +contributors: + - ["Adit Bhargava", "http://adit.io"] +translators: + - ["David Baumgartner", "http://davidbaumgartner.ch"] +lang: fr-fr +--- + +Haskell a été conçu pour être un langage fonctionnel pur et maniable. Il est connu pour ses monades et son système de types, mais je n'ai cesse d'y revenir pour son élégance. Pour moi, Haskell fait de la programmation une joie. + +```haskell +-- Un commentaire en une ligne commence avec deux tirets. +{- Un commentaire sur plusieurs lignes peut être contenu dans +un bloc de cette façon. +-} + +---------------------------------------------------- +-- 1. Types de données primitifs et opérateurs +---------------------------------------------------- + +-- Vous avez les nombres +3 -- 3 + +-- Les maths sont comme vous vous y attendez +1 + 1 -- 2 +8 - 1 -- 7 +10 * 2 -- 20 +35 / 5 -- 7.0 + +-- La division n'est pas entière par défaut +35 / 4 -- 8.75 + +-- division entière +35 `div` 4 -- 8 + +-- Les booléens sont primitifs +True +False + +-- Opérations avec les booléens +not True -- False +not False -- True +1 == 1 -- True +1 /= 1 -- False +1 < 10 -- True + +-- Dans les exemples plus hauts, `not` est une fonction qui prend une valeur. +-- Haskell n'a pas besoin de parenthèses pour appeler une fonction... tous +-- les arguments sont juste listés après la fonction. Le schéma général est +-- donc : +-- func arg1 arg2 arg3... +-- Voyez la section sur les fonctions pour savoir comment écrire les vôtres. + +-- Caractères et chaînes de caractère +"Ceci est une chaîne de caractère." +'a' -- caractère +'Vous ne pouvez pas utiliser des apostrophes pour les chaînes de caractère.' -- erreur ! + +-- Les chaînes peuvent être concaténées +"Hello " ++ "world!" -- "Hello world!" + +-- Une chaîne de caractère est *réellement* une liste +"Ceci est une chaîne." !! 0 -- 'C' + + +---------------------------------------------------- +-- Listes et tuples +---------------------------------------------------- + +-- Tous les éléments d'une liste doit avoir le même type. +-- les deux lignes suivantes sont semblables +[1, 2, 3, 4, 5] +[1..5] + +-- Il y a aussi des listes infinies en Haskell ! +[1..] -- une liste de tous les nombres naturels + +-- Les listes infinies fonctionnent parce que Haskell est « paresseux »: +-- ça veut dire qu'il n'évalue que ce qui a besoin de l'être. Vous pouvez +-- donc vous demander le 1000e élément de votre liste et il vous le donnera : + +[1..] !! 999 -- 1000 + +-- Et là, Haskell a évalué les éléments 1 à 1000 de la liste... mais le reste +-- de cette liste « infinie » n'existe pas encore ! En fait, Haskell ne va jamais +-- le faire à moins qu'il ne le doive. + +-- Adjoindre deux listes +[1..5] ++ [6..10] + +-- ajouter au début de la liste +0:[1..5] -- [0, 1, 2, 3, 4, 5] + +-- l'indice d'une liste +[0..] !! 5 -- 5 + +-- d'autres opérations sur les listes +head [1..5] -- 1 +tail [1..5] -- [2, 3, 4, 5] +init [1..5] -- [1, 2, 3, 4] +last [1..5] -- 5 + +--liste en compréhension +[x*2 | x <- [1..5]] -- [2, 4, 6, 8, 10] + +--avec un conditionnel +[x*2 | x <- [1..5], x*2 > 4] -- [6, 8, 10] + +-- Chaque élément d'un tuple peut être d'un type différent, mais un +-- tuple a une longueur fixée. +-- Un tuple : +("haskell", 1) + +-- accéder aux éléments d'un tuple +fst ("haskell", 1) -- "haskell" +snd ("haskell", 1) -- 1 + +---------------------------------------------------- +-- 3. Functions +---------------------------------------------------- +-- Une simple fonction qui prend deux paramètres +add a b = a + b + +-- Notez que si vous utilisez ghci (l'interpréteur Haskell) +-- vous devrez utiliser `let`. Par exemple : +-- let add a b = a + b + +-- Utiliser une fonction +add 1 2 -- 3 + +-- Vous pouvez également mettre le nom de la fonction entre les +-- deux arguments avec des accents graves : +1 `add` 2 -- 3 + +-- Vous pouvez également définir des fonctions qui n'ont pas de +-- lettres ! Ça vous laisse créer vos propres opérateurs ! Voilà +-- un opérateur qui fait une division entière : +(//) a b = a `div` b +35 // 4 -- 8 + +-- Gardes : Une façon de gérer la valeur de vos arguments en amont +fib x + | x < 2 = x + | otherwise = fib (x - 1) + fib (x - 2) + +-- Le filtrage par motif est similaire. Là, on a donné trois +-- définitions différentes de `fib`. Haskell appellera automatiquement +-- la première fonction qui correspond au motif de la valeur. +fib 1 = 1 +fib 2 = 2 +fib x = fib (x - 1) + fib (x - 2) + +-- Filtrage par motif sur un tuple. +foo (x, y) = (x + 1, y + 2) + +-- Filtrage par motif sur des listes. Ici, `x` est le premier +-- élément de la liste, et `xs` le reste. On peut écrire notre +-- propre fonction `map` : +myMap func [] = [] +myMap func (x:xs) = func x:(myMap func xs) + +-- Les fonctions anonymes sont créées avec des barres obliques +-- inverses, suivies de tous les arguments. +myMap (\x -> x + 2) [1..5] -- [3, 4, 5, 6, 7] + +-- Une utilisation de fold (appelée `inject` dans quelques autres +-- langages) avec comme paramètre une fonction anonyme. +-- `foldl1` veut dire fold left -- soit littéralement pli gauche -- +-- et utilise la première valeur de la liste comme accumulateur. +foldl1 (\acc x -> acc + x) [1..5] -- 15 + +---------------------------------------------------- +-- 4. Plus de fonctions +---------------------------------------------------- + +-- curryfication : si vous n'appliquez pas tous les arguments à une +-- fonction, elle devient « curryfiée ». Ça veut dire qu'elle retourne +-- une fonction qui prend le reste des arguments. + +add a b = a + b +foo = add 10 -- foo est une fonction qui prend un nombre et y ajoute 10 +foo 5 -- 15 + +-- Une autre façon de l'écrire +foo = (+10) +foo 5 -- 15 + +-- Composition de fonctions +-- la fonction (.) enchaîne deux fonctions. +-- Par exemple, on a foo qui est une fonction qui prend une valeur, y ajoute +-- 10 et multiplie ce résultat par 5, et ensuite retourne la valeur finale. +foo = (*5) . (+10) + +-- (5 + 10) * 5 = 75 +foo 5 -- 75 + +-- fixation de priorité +-- Haskell a une autre fonction appelée `$`. Elle peut changer la priorité +-- de sorte que tout ce qu'il y a à sa gauche est calculé d'abord et ensuite +-- appliqué à tout ce qu'il y a à droite. Vous pouvez utiliser `.` et `$` +-- pour vous débarrasser de beaucoup de parenthèses : + +-- avant +(even (fib 7)) -- False + +-- ensuite +even . fib $ 7 -- False + +---------------------------------------------------- +-- 5. Signature de type +---------------------------------------------------- + +-- Haskell a un système de types très strict : par exemple, tout a un type. + +-- Quelques types simples : +5 :: Integer +"hello" :: String +True :: Bool + +-- Les fonctions ont également des types. +-- `not` prend un booléen et retourne un booléen. +-- not :: Bool -> Bool + +-- Voilà une fonction qui prend deux paramètres. +-- add :: Integer -> Integer -> Integer + +-- Quand vous définissez une valeur (souvenez-vous, tout est valeur en +-- Haskell), une bonne pratique est d'écrire son type explicitement +double :: Integer -> Integer +double x = x * 2 + +---------------------------------------------------- +-- 6. Flux de contrôle et structures conditionnelles +---------------------------------------------------- + +-- structure conditionnelle if +haskell = if 1 == 1 then "awesome" else "awful" -- haskell = "awesome" + +-- les structures if peuvent être écrites sur plusieurs lignes +haskell = if 1 == 1 + then "awesome" + else "awful" + +-- les structures case : voilà comment vous pourriez analyser les arguments de +-- ligne de commande +case args of + "help" -> printHelp + "start" -> startProgram + _ -> putStrLn "bad args" + + +-- Haskell n'a pas de boucles parce qu'il utilise la récursion. +-- `map` applique une fonction sur chaque élément d'une liste + +map (*2) [1..5] -- [2, 4, 6, 8, 10] + +-- vous pouvez créer une fonction `for` en utilisant `map` +for array func = map func array + +-- et l'utiliser +for [0..5] $ \i -> show i + +-- nous aurions pu l'écrire également ainsi +for [0..5] show + +-- vous pouvez utiliser foldl et foldr pour +-- réduire une liste +-- foldl <fonction> <valeur initiale> <liste> +foldl (\x y -> 2*x + y) 4 [1,2,3] -- 43 + +-- C'est donc la même chose que +(2 * (2 * (2 * 4 + 1) + 2) + 3) + +-- foldl évalue de gauche à droite, foldr +-- de droite à gauche +foldr (\x y -> 2*x + y) 4 [1,2,3] -- 16 + +-- Et c'est équivalent à +(2 * 3 + (2 * 2 + (2 * 1 + 4))) + +---------------------------------------------------- +-- 7. Types de données +---------------------------------------------------- + +-- Vous pouvez écrire vos propres types de données en Haskell + +data Couleur = Rouge | Bleu | Vert + +-- Et maintenant l'utiliser dans une fonction + + +say :: Couleur -> String +say Rouge = "Vous êtes Rouge !" +say Bleu = "Vous êtes Bleu !" +say Vert = "Vous êtes Vert !" + +-- Vos types peuvent également avoir des paramètres + +data Maybe a = Nothing | Just a + +-- Tous les exemples ci-dessous sont issus du type Maybe +Just "hello" -- of type `Maybe String` +Just 1 -- of type `Maybe Int` +Nothing -- of type `Maybe a` for any `a` + +---------------------------------------------------- +-- 8. Haskell IO +---------------------------------------------------- + +-- Tandis que l'IO ne peut pas être totalement expliqué pleinement +-- sans que les monades ne le soient, il n'est pas difficile +-- d'expliquer suffisamment pour commencer. + +-- Quand un programme en Haskell est exécuté, la fonction `main` +-- est appelée. Il doit retourner une valeur de type `IO ()`. +-- Par exemple : + +main :: IO () +main = putStrLn $ "Bonjour, le ciel ! " ++ (say Blue) +-- putStrLn a comme type String -> IO () + +-- La façon la plus simple pour faire de l'IO est de faire un programme +-- fonction de String vers String. La fonction +-- interact :: (String -> String) -> IO () +-- prend un texte, applique une fonction et affiche le résultat. + +countLines :: String -> String +countLines = show . length . lines + +main' = interact countLines + +-- Vous pouvez considérer qu'une valeur de type `IO ()` représente +-- une séquence d'actions que l'ordinateur exécute, un peu comme +-- dans un langage impératif. On peut utiliser la structure `do` +-- pour enchaîner des actions. Par exemple : + +sayHello :: IO () +sayHello = do + putStrLn "Quel est ton nom ?" + name <- getLine -- prend une ligne et assigne sa valeur à `name` + putStrLn $ "Salut, " ++ name + +-- Exercice : écrire votre propre version d'`interact` qui ne fait +-- que de lire une ligne d'entrée. + +-- Le code de `sayHello` ne sera jamais exécuté, cependant. La seule +-- action qui sera exécutée est la valeur de `main`. +-- Pour lancer `sayHello`, commentez l'ancienne définition de `main` +-- et remplacez-le par : +-- main = sayHello + +-- Essaions de mieux comprendre comment la fonction `getLine` que +-- nous venons d'utiliser. Son type est : +-- getLine :: IO String +-- vous pouvez considérer le type `IO a` comme un programme que +-- le programme va générer comme une valeur de type `a` quand +-- il sera exécuté. On peut l'enregistrer et la réutiliser en +-- utilisant `<-`. On peut aussi faire nos propres actions +-- de type `IO String` : + +action :: IO String +action = do + putStrLn "C'est une ligne. Heu" + input1 <- getLine + input2 <- getLine + -- Le type de la structure `do` est celui de sa dernière ligne. + -- `return` n'est pas un mot clef, mais simplement une fonction. + return (input1 ++ "\n" ++ input2) -- return :: String -> IO String + +-- On peut maintenant l'utiliser comme on a utilisé `getLine` +-- tout à l'heure + +main'' = do + putStrLn "Je vais afficher deux lignes !" + result <- action + putStrLn result + putStrLn "C'était tout !" + +-- Le type `IO` est un exemple de « monade ». La façon dont Haskell utilise +-- une monade pour faire de l'IO lui permet d'être purement fonctionnel. N'importe +-- quelle fonction qui interagit avec le « monde extérieur » (c'est à dire fait de l'IO) +-- devient marqué comme `IO` dans la signature de son type. Ça nous montre +-- quelles fonctions sont « pures » (n'interagissent pas avec le monde extérieur +-- ou ne changent pas d'état) et quelles fonctions ne le sont pas. + +-- C'est une fonctionnalité très puissante, car il est facile d'exécuter +-- des fonctions pures simultanément, et donc la concurrence en Haskell +-- est très facile. + + +---------------------------------------------------- +-- 9. Le REPL de Haskell +---------------------------------------------------- + +-- Lancer le REPL en tapant `ghci`. +-- Vous pouvez maintenant taper du code Haskell. +-- Toutes les nouvelles valeurs peuvent être crées +-- avec `let` : + +let foo = 5 + +-- Vous pouvez voir le type de n'importe quelle valeur avec `:t` : + +>:t foo +foo :: Integer + +-- Vous pouvez également lancer des actions de type `IO ()` + +> sayHello +Quel est ton nom ? +Ami +Salut, Ami ! + +``` + +Et Haskell ne se limite pas à ça, on trouve encore par exemple les classes de types et les monades. Il y a beaucoup de raisons qui font que coder en Haskell est si *fun*. Je vous laisse avec un dernier exemple : une implémentation de quicksort : + +```haskell +qsort [] = [] +qsort (p:xs) = qsort lesser ++ [p] ++ qsort greater + where lesser = filter (< p) xs + greater = filter (>= p) xs +``` + +Haskell facile à installer. Téléchargez-le [ici](http://www.haskell.org/platform/). + +Vous pouvez trouver une approche beaucoup plus douce avec les excellents +[Learn you a Haskell](http://lyah.haskell.fr/) ou +[Real World Haskell (en)](http://book.realworldhaskell.org/). diff --git a/haskell.html.markdown b/haskell.html.markdown index 6b3c6e17..267b40af 100644 --- a/haskell.html.markdown +++ b/haskell.html.markdown @@ -11,7 +11,7 @@ makes coding a real joy for me. ```haskell -- Single line comments start with two dashes. {- Multiline comments can be enclosed -en a block like this. +in a block like this. -} ---------------------------------------------------- diff --git a/julia.html.markdown b/julia.html.markdown index cf3a464b..4ebd50ff 100644 --- a/julia.html.markdown +++ b/julia.html.markdown @@ -8,7 +8,7 @@ filename: learnjulia.jl Julia is a new homoiconic functional language focused on technical computing. While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python. -This is based on the current development version of Julia, as of June 29th, 2013. +This is based on the current development version of Julia, as of October 18th, 2013. ```ruby @@ -20,20 +20,20 @@ This is based on the current development version of Julia, as of June 29th, 2013 # Everything in Julia is a expression. -# You have numbers +# There are several basic types of numbers. 3 #=> 3 (Int64) 3.2 #=> 3.2 (Float64) 2 + 1im #=> 2 + 1im (Complex{Int64}) 2//3 #=> 2//3 (Rational{Int64}) -# Math is what you would expect +# All of the normal infix operators are available. 1 + 1 #=> 2 8 - 1 #=> 7 10 * 2 #=> 20 35 / 5 #=> 7.0 +5 / 2 #=> 2.5 # dividing an Int by an Int always results in a Float +div(5, 2) #=> 2 # for a truncated result, use div 5 \ 35 #=> 7.0 -5 / 2 #=> 2.5 -div(5, 2) #=> 2 2 ^ 2 #=> 4 # power, not bitwise xor 12 % 10 #=> 2 @@ -77,11 +77,13 @@ false # Strings are created with " "This is a string." -# Character literals written with ' +# Character literals are written with ' 'a' -# A string can be treated like a list of characters +# A string can be indexed like an array of characters "This is a string"[1] #=> 'T' # Julia indexes from 1 +# However, this is will not work well for UTF8 strings, +# so iterating over strings is reccommended (map, for loops, etc). # $ can be used for string interpolation: "2 + 2 = $(2 + 2)" #=> "2 + 2 = 4" @@ -94,10 +96,10 @@ false ## 2. Variables and Collections #################################################### -# Printing is pretty easy +# Printing is easy println("I'm Julia. Nice to meet you!") -# No need to declare variables before assigning to them. +# You don't declare variables before assigning to them. some_var = 5 #=> 5 some_var #=> 5 @@ -108,12 +110,14 @@ catch e println(e) end -# Variable name start with a letter. You can use uppercase letters, digits, -# and exclamation points as well after the initial alphabetic character. +# Variable names start with a letter. +# After that, you can use letters, digits, underscores, and exclamation points. SomeOtherVar123! = 6 #=> 6 # You can also use unicode characters ☃ = 8 #=> 8 +# These are especially handy for mathematical notation +2 * π #=> 6.283185307179586 # A note on naming conventions in Julia: # @@ -158,6 +162,10 @@ a[1] #=> 1 # remember that Julia indexes from 1, not 0! # indexing expression a[end] #=> 6 +# we also have shift and unshift +shift!(a) #=> 1 and a is now [2,4,3,4,5,6] +unshift!(a,7) #=> [7,2,4,3,4,5,6] + # Function names that end in exclamations points indicate that they modify # their argument. arr = [5,4,6] #=> 3-element Int64 Array: [5,4,6] @@ -182,23 +190,24 @@ a = [1:5] #=> 5-element Int64 Array: [1,2,3,4,5] # You can look at ranges with slice syntax. a[1:3] #=> [1, 2, 3] a[2:] #=> [2, 3, 4, 5] +a[2:end] #=> [2, 3, 4, 5] -# Remove arbitrary elements from a list with splice! +# Remove elements from an array by index with splice! arr = [3,4,5] splice!(arr,2) #=> 4 ; arr is now [3,5] # Concatenate lists with append! b = [1,2,3] -append!(a,b) # Now a is [1, 3, 4, 5, 1, 2, 3] +append!(a,b) # Now a is [1, 2, 3, 4, 5, 1, 2, 3] -# Check for existence in a list with contains -contains(a,1) #=> true +# Check for existence in a list with in +in(a,1) #=> true # Examine the length with length -length(a) #=> 7 +length(a) #=> 8 # Tuples are immutable. -tup = (1, 2, 3) #=>(1,2,3) # an (Int64,Int64,Int64) tuple. +tup = (1, 2, 3) #=> (1,2,3) # an (Int64,Int64,Int64) tuple. tup[1] #=> 1 try: tup[0] = 3 #=> ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64) @@ -209,22 +218,26 @@ end # Many list functions also work on tuples length(tup) #=> 3 tup[1:2] #=> (1,2) -contains(tup,2) #=> true +in(tup,2) #=> true # You can unpack tuples into variables a, b, c = (1, 2, 3) #=> (1,2,3) # a is now 1, b is now 2 and c is now 3 -# Tuples are created by default if you leave out the parentheses +# Tuples are created even if you leave out the parentheses d, e, f = 4, 5, 6 #=> (4,5,6) -# Now look how easy it is to swap two values +# A 1-element tuple is distinct from the value it contains +(1,) == 1 #=> false +(1) == 1 #=> true + +# Look how easy it is to swap two values e, d = d, e #=> (5,4) # d is now 5 and e is now 4 # Dictionaries store mappings empty_dict = Dict() #=> Dict{Any,Any}() -# Here is a prefilled dictionary +# You can create a dictionary using a literal filled_dict = ["one"=> 1, "two"=> 2, "three"=> 3] # => Dict{ASCIIString,Int64} @@ -241,31 +254,35 @@ values(filled_dict) #=> ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2]) # Note - Same as above regarding key ordering. -# Check for existence of keys in a dictionary with contains, haskey -contains(filled_dict, ("one", 1)) #=> true -contains(filled_dict, ("two", 3)) #=> false +# Check for existence of keys in a dictionary with in, haskey +in(filled_dict, ("one", 1)) #=> true +in(filled_dict, ("two", 3)) #=> false haskey(filled_dict, "one") #=> true haskey(filled_dict, 1) #=> false -# Trying to look up a non-existing key will raise an error +# Trying to look up a non-existant key will raise an error try filled_dict["four"] #=> ERROR: key not found: four in getindex at dict.jl:489 catch e println(e) end -# Use get method to avoid the error +# Use the get method to avoid that error by providing a default value # get(dictionary,key,default_value) get(filled_dict,"one",4) #=> 1 get(filled_dict,"four",4) #=> 4 -# Sets store sets +# Use Sets to represent collections of unordered, unique values empty_set = Set() #=> Set{Any}() -# Initialize a set with a bunch of values +# Initialize a set with values filled_set = Set(1,2,2,3,4) #=> Set{Int64}(1,2,3,4) -# Add more items to a set -add!(filled_set,5) #=> Set{Int64}(5,4,2,3,1) +# Add more values to a set +push!(filled_set,5) #=> Set{Int64}(5,4,2,3,1) + +# Check if the values are in the set +in(filled_set,2) #=> true +in(filled_set,10) #=> false # There are functions for set intersection, union, and difference. other_set = Set(3, 4, 5, 6) #=> Set{Int64}(6,4,5,3) @@ -273,10 +290,6 @@ intersect(filled_set, other_set) #=> Set{Int64}(3,4,5) union(filled_set, other_set) #=> Set{Int64}(1,2,3,4,5,6) setdiff(Set(1,2,3,4),Set(2,3,5)) #=> Set{Int64}(1,4) -# Check for existence in a set with contains -contains(filled_set,2) #=> true -contains(filled_set,10) #=> false - #################################################### ## 3. Control Flow @@ -285,8 +298,7 @@ contains(filled_set,10) #=> false # Let's make a variable some_var = 5 -# Here is an if statement. Indentation is NOT meaningful in Julia. -# prints "some var is smaller than 10" +# Here is an if statement. Indentation is not meaningful in Julia. if some_var > 10 println("some_var is totally bigger than 10.") elseif some_var < 10 # This elseif clause is optional. @@ -294,44 +306,56 @@ elseif some_var < 10 # This elseif clause is optional. else # The else clause is optional too. println("some_var is indeed 10.") end +#=> prints "some var is smaller than 10" -# For loops iterate over iterables, such as ranges, lists, sets, dicts, strings. - +# For loops iterate over iterables. +# Iterable types include Range, Array, Set, Dict, and String. for animal=["dog", "cat", "mouse"] - # You can use $ to interpolate into strings println("$animal is a mammal") + # You can use $ to interpolate variables or expression into strings end # prints: # dog is a mammal # cat is a mammal # mouse is a mammal -# You can use in instead of =, if you want. +# You can use 'in' instead of '='. for animal in ["dog", "cat", "mouse"] println("$animal is a mammal") end +# prints: +# dog is a mammal +# cat is a mammal +# mouse is a mammal for a in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"] - println("$(a[1]) is $(a[2])") + println("$(a[1]) is a $(a[2])") end +# prints: +# dog is a mammal +# cat is a mammal +# mouse is a mammal for (k,v) in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"] - println("$k is $v") + println("$k is a $v") end - - -# While loops go until a condition is no longer met. # prints: -# 0 -# 1 -# 2 -# 3 +# dog is a mammal +# cat is a mammal +# mouse is a mammal + +# While loops loop while a condition is true x = 0 while x < 4 println(x) x += 1 # Shorthand for x = x + 1 end +# prints: +# 0 +# 1 +# 2 +# 3 # Handle exceptions with a try/except block try @@ -346,11 +370,14 @@ end ## 4. Functions #################################################### -# Use the keyword function to create new functions +# The keyword 'function' creates new functions +#function name(arglist) +# body... +#end function add(x, y) println("x is $x and y is $y") - # Functions implicitly return the value of their last statement + # Functions return the value of their last statement x + y end @@ -360,13 +387,16 @@ add(5, 6) #=> 11 after printing out "x is 5 and y is 6" # positional arguments function varargs(args...) return args + # use the keyword return to return anywhere in the function end +#=> varargs (generic function with 1 method) varargs(1,2,3) #=> (1,2,3) # The ... is called a splat. -# It can also be used in a fuction call -# to splat a list or tuple out to be the arguments +# We just used it in a function definition. +# It can also be used in a fuction call, +# where it will splat an Array or Tuple's contents into the argument list. Set([1,2,3]) #=> Set{Array{Int64,1}}([1,2,3]) # produces a Set of Arrays Set([1,2,3]...) #=> Set{Int64}(1,2,3) # this is equivalent to Set(1,2,3) @@ -399,7 +429,7 @@ keyword_args(name2="ness") #=> ["name2"=>"ness","k1"=>4] keyword_args(k1="mine") #=> ["k1"=>"mine","name2"=>"hello"] keyword_args() #=> ["name2"=>"hello","k2"=>4] -# You can also do both at once +# You can combine all kinds of arguments in the same function function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo") println("normal arg: $normal_arg") println("optional arg: $optional_positional_arg") @@ -420,12 +450,15 @@ function create_adder(x) return adder end -# or equivalently +# This is "stabby lambda syntax" for creating anonymous functions +(x -> x > 2)(3) #=> true + +# This function is identical to create_adder implementation above. function create_adder(x) y -> x + y end -# you can also name the internal function, if you want +# You can also name the internal function, if you want function create_adder(x) function adder(y) x + y @@ -436,61 +469,114 @@ end add_10 = create_adder(10) add_10(3) #=> 13 -# The first two inner functions above are anonymous functions -(x -> x > 2)(3) #=> true # There are built-in higher order functions map(add_10, [1,2,3]) #=> [11, 12, 13] filter(x -> x > 5, [3, 4, 5, 6, 7]) #=> [6, 7] -# We can use list comprehensions for nice maps and filters +# We can use list comprehensions for nicer maps [add_10(i) for i=[1, 2, 3]] #=> [11, 12, 13] [add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13] #################################################### -## 5. Types and Multiple-Dispatch +## 5. Types #################################################### -# Type definition +# Julia has a type system. +# Every value has a type; variables do not have types themselves. +# You can use the `typeof` function to get the type of a value. +typeof(5) #=> Int64 + +# Types are first-class values +typeof(Int64) #=> DataType +typeof(DataType) #=> DataType +# DataType is the type that represents types, including itself. + +# Types are used for documentation, optimizations, and dispatch. +# They are not statically checked. + +# Users can define types +# They are like records or structs in other languages. +# New types are defined used the `type` keyword. + +# type Name +# field::OptionalType +# ... +# end type Tiger taillength::Float64 - coatcolor # no type annotation is implicitly Any + coatcolor # not including a type annotation is the same as `::Any` end -# default constructor is the properties in order -# so, Tiger(taillength,coatcolor) -# Type instantiation -tigger = Tiger(3.5,"orange") # the type doubles as the constructor function +# The default constructor's arguments are the properties +# of the tyep, in order the order they are listed in the definition +tigger = Tiger(3.5,"orange") #=> Tiger(3.5,"orange") + +# The type doubles as the constructor function for values of that type +sherekhan = typeof(tigger)(5.6,"fire") #=> Tiger(5.6,"fire") -# Abtract Types -abstract Cat # just a name and point in the type hierarchy +# These struct-style types are called concrete types +# They can be instantiated, but cannot have subtypes. +# The other kind of types is abstract types. -# * types defined with the type keyword are concrete types; they can be -# instantiated -# -# * types defined with the abstract keyword are abstract types; they can -# have subtypes. -# -# * each type has one supertype; a supertype can have zero or more subtypes. +# abstract Name +abstract Cat # just a name and point in the type hierarchy +# Abstract types cannot be instantiated, but can have subtypes. +# For example, Number is an abstract type +subtypes(Number) #=> 6-element Array{Any,1}: + # Complex{Float16} + # Complex{Float32} + # Complex{Float64} + # Complex{T<:Real} + # ImaginaryUnit + # Real +subtypes(Cat) #=> 0-element Array{Any,1} + +# Every type has a super type; use the `super` function to get it. +typeof(5) #=> Int64 +super(Int64) #=> Signed +super(Signed) #=> Real +super(Real) #=> Number +super(Number) #=> Any +super(super(Signed)) #=> Number +super(Any) #=> Any +# All of these type, except for Int64, are abstract. + +# <: is the subtyping operator type Lion <: Cat # Lion is a subtype of Cat mane_color roar::String end +# You can define more constructors for your type +# Just define a function of the same name as the type +# and call an existing constructor to get a value of the correct type +Lion(roar::String) = Lion("green",roar) +# This is an outer constructor because it's outside the type definition + type Panther <: Cat # Panther is also a subtype of Cat eye_color Panther() = new("green") # Panthers will only have this constructor, and no default constructor. end +# Using inner constructors, like Panter does, gives you control +# over how values of the type can be created. +# When possible, you should use outer constructors rather than inner ones. -# Multiple Dispatch +#################################################### +## 6. Multiple-Dispatch +#################################################### # In Julia, all named functions are generic functions # This means that they are built up from many small methods -# For example, let's make a function meow: +# Each constructor for Lion is a method of the generic function Lion. + +# For a non-constructor example, let's make a function meow: + +# Definitions for Lion, Panther, Tiger function meow(cat::Lion) - cat.roar # access properties using dot notation + cat.roar # access type properties using dot notation end function meow(cat::Panther) @@ -501,21 +587,75 @@ function meow(cat::Tiger) "rawwwr" end +# Testing the meow function meow(tigger) #=> "rawwr" meow(Lion("brown","ROAAR")) #=> "ROAAR" meow(Panther()) #=> "grrr" +# Review the local type hierarchy +issubtype(Tiger,Cat) #=> false +issubtype(Lion,Cat) #=> true +issubtype(Panther,Cat) #=> true + +# Defining a function that takes Cats function pet_cat(cat::Cat) println("The cat says $(meow(cat))") end +pet_cat(Lion("42")) #=> prints "The cat says 42" try pet_cat(tigger) #=> ERROR: no method pet_cat(Tiger,) catch e println(e) end -pet_cat(Lion(Panther(),"42")) #=> prints "The cat says 42" +# In OO languages, single dispatch is common; +# this means that the method is picked based on the type of the first argument. +# In Julia, all of the argument types contribute to selecting the best method. + +# Let's define a function with more arguments, so we can see the difference +function fight(t::Tiger,c::Cat) + println("The $(t.coatcolor) tiger wins!") +end +#=> fight (generic function with 1 method) + +fight(tigger,Panther()) #=> prints The orange tiger wins! +fight(tigger,Lion("ROAR")) #=> prints The orange tiger wins! + +# Let's change the behavior when the Cat is specifically a Lion +fight(t::Tiger,l::Lion) = println("The $(l.mane_color)-maned lion wins!") +#=> fight (generic function with 2 methods) + +fight(tigger,Panther()) #=> prints The orange tiger wins! +fight(tigger,Lion("ROAR")) #=> prints The green-maned lion wins! + +# We don't need a Tiger in order to fight +fight(l::Lion,c::Cat) = println("The victorious cat says $(meow(c))") +#=> fight (generic function with 3 methods) + +fight(Lion("balooga!"),Panther()) #=> prints The victorious cat says grrr +try + fight(Panther(),Lion("RAWR")) #=> ERROR: no method fight(Panther,Lion) +catch +end + +# Also let the cat go first +fight(c::Cat,l::Lion) = println("The cat beats the Lion") +#=> Warning: New definition +# fight(Cat,Lion) at none:1 +# is ambiguous with +# fight(Lion,Cat) at none:2. +# Make sure +# fight(Lion,Lion) +# is defined first. +#fight (generic function with 4 methods) + +# This warning is because it's unclear which fight will be called in: +fight(Lion("RAR"),Lion("brown","rarrr")) #=> prints The victorious cat says rarrr +# The result may be different in other versions of Julia + +fight(l::Lion,l2::Lion) = println("The lions come to a tie") +fight(Lion("RAR"),Lion("brown","rarrr")) #=> prints The lions come to a tie ``` @@ -523,3 +663,4 @@ pet_cat(Lion(Panther(),"42")) #=> prints "The cat says 42" You can get a lot more detail from [The Julia Manual](http://docs.julialang.org/en/latest/manual/) +The best place to get help with Julia is the (very friendly) [mailing list](https://groups.google.com/forum/#!forum/julia-users). |