diff options
Diffstat (limited to 'c++.html.markdown')
-rw-r--r-- | c++.html.markdown | 608 |
1 files changed, 574 insertions, 34 deletions
diff --git a/c++.html.markdown b/c++.html.markdown index 5f80f26f..8d1c7a26 100644 --- a/c++.html.markdown +++ b/c++.html.markdown @@ -4,7 +4,10 @@ filename: learncpp.cpp contributors: - ["Steven Basart", "http://github.com/xksteven"] - ["Matt Kline", "https://github.com/mrkline"] -lang: en + - ["Geoff Liu", "http://geoffliu.me"] + - ["Connor Waters", "http://github.com/connorwaters"] + - ["Ankush Goyal", "http://github.com/ankushg07"] + - ["Jatin Dhankhar", "https://github.com/jatindhankhar"] --- C++ is a systems programming language that, @@ -30,10 +33,9 @@ one of the most widely-used programming languages. // C++ is _almost_ a superset of C and shares its basic syntax for // variable declarations, primitive types, and functions. -// However, C++ varies in some of the following ways: -// A main() function in C++ should return an int, -// though void main() is accepted by most compilers (gcc, clang, etc.) +// Just like in C, your program's entry point is a function called +// main with an integer return type. // This value serves as the program's exit status. // See http://en.wikipedia.org/wiki/Exit_status for more information. int main(int argc, char** argv) @@ -51,11 +53,13 @@ int main(int argc, char** argv) return 0; } -// In C++, character literals are one byte. -sizeof('c') == 1 +// However, C++ varies in some of the following ways: + +// In C++, character literals are chars +sizeof('c') == sizeof(char) == 1 -// In C, character literals are the same size as ints. -sizeof('c') == sizeof(10) +// In C, character literals are ints +sizeof('c') == sizeof(int) // C++ has strict prototyping @@ -146,7 +150,7 @@ namespace First { namespace Second { void foo() { - printf("This is Second::foo\n") + printf("This is Second::foo\n"); } } @@ -157,11 +161,12 @@ void foo() int main() { - // Assume everything is from the namespace "Second" - // unless otherwise specified. + // Includes all symbols from namespace Second into the current scope. Note + // that simply foo() no longer works, since it is now ambiguous whether + // we're calling the foo in namespace Second or the top level. using namespace Second; - foo(); // prints "This is Second::foo" + Second::foo(); // prints "This is Second::foo" First::Nested::foo(); // prints "This is First::Nested::foo" ::foo(); // prints "This is global foo" } @@ -211,7 +216,7 @@ cout << myString + myOtherString; // "Hello World" cout << myString + " You"; // "Hello You" -// C++ strings are mutable and have value semantics. +// C++ strings are mutable. myString.append(" Dog"); cout << myString; // "Hello Dog" @@ -241,12 +246,135 @@ cout << fooRef; // Prints "I am foo. Hi!" // Doesn't reassign "fooRef". This is the same as "foo = bar", and // foo == "I am bar" // after this line. +cout << &fooRef << endl; //Prints the address of foo fooRef = bar; +cout << &fooRef << endl; //Still prints the address of foo +cout << fooRef; // Prints "I am bar" + +//The address of fooRef remains the same, i.e. it is still referring to foo. + const string& barRef = bar; // Create a const reference to bar. // Like C, const values (and pointers and references) cannot be modified. barRef += ". Hi!"; // Error, const references cannot be modified. +// Sidetrack: Before we talk more about references, we must introduce a concept +// called a temporary object. Suppose we have the following code: +string tempObjectFun() { ... } +string retVal = tempObjectFun(); + +// What happens in the second line is actually: +// - a string object is returned from tempObjectFun +// - a new string is constructed with the returned object as argument to the +// constructor +// - the returned object is destroyed +// The returned object is called a temporary object. Temporary objects are +// created whenever a function returns an object, and they are destroyed at the +// end of the evaluation of the enclosing expression (Well, this is what the +// standard says, but compilers are allowed to change this behavior. Look up +// "return value optimization" if you're into this kind of details). So in this +// code: +foo(bar(tempObjectFun())) + +// assuming foo and bar exist, the object returned from tempObjectFun is +// passed to bar, and it is destroyed before foo is called. + +// Now back to references. The exception to the "at the end of the enclosing +// expression" rule is if a temporary object is bound to a const reference, in +// which case its life gets extended to the current scope: + +void constReferenceTempObjectFun() { + // constRef gets the temporary object, and it is valid until the end of this + // function. + const string& constRef = tempObjectFun(); + ... +} + +// Another kind of reference introduced in C++11 is specifically for temporary +// objects. You cannot have a variable of its type, but it takes precedence in +// overload resolution: + +void someFun(string& s) { ... } // Regular reference +void someFun(string&& s) { ... } // Reference to temporary object + +string foo; +someFun(foo); // Calls the version with regular reference +someFun(tempObjectFun()); // Calls the version with temporary reference + +// For example, you will see these two versions of constructors for +// std::basic_string: +basic_string(const basic_string& other); +basic_string(basic_string&& other); + +// Idea being if we are constructing a new string from a temporary object (which +// is going to be destroyed soon anyway), we can have a more efficient +// constructor that "salvages" parts of that temporary string. You will see this +// concept referred to as "move semantics". + +///////////////////// +// Enums +///////////////////// + +// Enums are a way to assign a value to a constant most commonly used for +// easier visualization and reading of code +enum ECarTypes +{ + Sedan, + Hatchback, + SUV, + Wagon +}; + +ECarTypes GetPreferredCarType() +{ + return ECarTypes::Hatchback; +} + +// As of C++11 there is an easy way to assign a type to the enum which can be +// useful in serialization of data and converting enums back-and-forth between +// the desired type and their respective constants +enum ECarTypes : uint8_t +{ + Sedan, // 0 + Hatchback, // 1 + SUV = 254, // 254 + Hybrid // 255 +}; + +void WriteByteToFile(uint8_t InputValue) +{ + // Serialize the InputValue to a file +} + +void WritePreferredCarTypeToFile(ECarTypes InputCarType) +{ + // The enum is implicitly converted to a uint8_t due to its declared enum type + WriteByteToFile(InputCarType); +} + +// On the other hand you may not want enums to be accidentally cast to an integer +// type or to other enums so it is instead possible to create an enum class which +// won't be implicitly converted +enum class ECarTypes : uint8_t +{ + Sedan, // 0 + Hatchback, // 1 + SUV = 254, // 254 + Hybrid // 255 +}; + +void WriteByteToFile(uint8_t InputValue) +{ + // Serialize the InputValue to a file +} + +void WritePreferredCarTypeToFile(ECarTypes InputCarType) +{ + // Won't compile even though ECarTypes is a uint8_t due to the enum + // being declared as an "enum class"! + WriteByteToFile(InputCarType); +} + ////////////////////////////////////////// // Classes and object-oriented programming ////////////////////////////////////////// @@ -287,19 +415,22 @@ public: // Functions can also be defined inside the class body. // Functions defined as such are automatically inlined. - void bark() const { std::cout << name << " barks!\n" } + void bark() const { std::cout << name << " barks!\n"; } // Along with constructors, C++ provides destructors. // These are called when an object is deleted or falls out of scope. // This enables powerful paradigms such as RAII // (see below) - // Destructors must be virtual to allow classes to be derived from this one. + // The destructor should be virtual if a class is to be derived from; + // if it is not virtual, then the derived class' destructor will + // not be called if the object is destroyed through a base-class reference + // or pointer. virtual ~Dog(); }; // A semicolon must follow the class definition. // Class member functions are usually implemented in .cpp files. -void Dog::Dog() +Dog::Dog() { std::cout << "A dog has been constructed\n"; } @@ -322,25 +453,28 @@ void Dog::print() const std::cout << "Dog is " << name << " and weighs " << weight << "kg\n"; } -void Dog::~Dog() +Dog::~Dog() { - cout << "Goodbye " << name << "\n"; + std::cout << "Goodbye " << name << "\n"; } int main() { Dog myDog; // prints "A dog has been constructed" myDog.setName("Barkley"); myDog.setWeight(10); - myDog.printDog(); // prints "Dog is Barkley and weighs 10 kg" + myDog.print(); // prints "Dog is Barkley and weighs 10 kg" return 0; } // prints "Goodbye Barkley" // Inheritance: // This class inherits everything public and protected from the Dog class +// as well as private but may not directly access private members/methods +// without a public or protected method for doing so class OwnedDog : public Dog { - void setOwner(const std::string& dogsOwner) +public: + void setOwner(const std::string& dogsOwner); // Override the behavior of the print function for all OwnedDogs. See // http://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Subtyping @@ -424,7 +558,7 @@ int main () { Point up (0,1); Point right (1,0); // This calls the Point + operator - // Point up calls the + (function) with right as its paramater + // Point up calls the + (function) with right as its parameter Point result = up + right; // Prints "Result is upright (1,1)" cout << "Result is upright (" << result.x << ',' << result.y << ")\n"; @@ -432,6 +566,86 @@ int main () { } ///////////////////// +// Templates +///////////////////// + +// Templates in C++ are mostly used for generic programming, though they are +// much more powerful than generic constructs in other languages. They also +// support explicit and partial specialization and functional-style type +// classes; in fact, they are a Turing-complete functional language embedded +// in C++! + +// We start with the kind of generic programming you might be familiar with. To +// define a class or function that takes a type parameter: +template<class T> +class Box { +public: + // In this class, T can be used as any other type. + void insert(const T&) { ... } +}; + +// During compilation, the compiler actually generates copies of each template +// with parameters substituted, so the full definition of the class must be +// present at each invocation. This is why you will see template classes defined +// entirely in header files. + +// To instantiate a template class on the stack: +Box<int> intBox; + +// and you can use it as you would expect: +intBox.insert(123); + +// You can, of course, nest templates: +Box<Box<int> > boxOfBox; +boxOfBox.insert(intBox); + +// Until C++11, you had to place a space between the two '>'s, otherwise '>>' +// would be parsed as the right shift operator. + +// You will sometimes see +// template<typename T> +// instead. The 'class' keyword and 'typename' keywords are _mostly_ +// interchangeable in this case. For the full explanation, see +// http://en.wikipedia.org/wiki/Typename +// (yes, that keyword has its own Wikipedia page). + +// Similarly, a template function: +template<class T> +void barkThreeTimes(const T& input) +{ + input.bark(); + input.bark(); + input.bark(); +} + +// Notice that nothing is specified about the type parameters here. The compiler +// will generate and then type-check every invocation of the template, so the +// above function works with any type 'T' that has a const 'bark' method! + +Dog fluffy; +fluffy.setName("Fluffy") +barkThreeTimes(fluffy); // Prints "Fluffy barks" three times. + +// Template parameters don't have to be classes: +template<int Y> +void printMessage() { + cout << "Learn C++ in " << Y << " minutes!" << endl; +} + +// And you can explicitly specialize templates for more efficient code. Of +// course, most real-world uses of specialization are not as trivial as this. +// Note that you still need to declare the function (or class) as a template +// even if you explicitly specified all parameters. +template<> +void printMessage<10>() { + cout << "Learn C++ faster in only 10 minutes!" << endl; +} + +printMessage<20>(); // Prints "Learn C++ in 20 minutes!" +printMessage<10>(); // Prints "Learn C++ faster in only 10 minutes!" + + +///////////////////// // Exception Handling ///////////////////// @@ -439,19 +653,23 @@ int main () { // (see http://en.cppreference.com/w/cpp/error/exception) // but any type can be thrown an as exception #include <exception> +#include <stdexcept> // All exceptions thrown inside the _try_ block can be caught by subsequent // _catch_ handlers. try { // Do not allocate exceptions on the heap using _new_. - throw std::exception("A problem occurred"); + throw std::runtime_error("A problem occurred"); } + // Catch exceptions by const reference if they are objects catch (const std::exception& ex) { - std::cout << ex.what(); + std::cout << ex.what(); +} + // Catches any exception not caught by previous _catch_ blocks -} catch (...) +catch (...) { std::cout << "Unknown exception caught"; throw; // Re-throws the exception @@ -461,8 +679,8 @@ catch (const std::exception& ex) // RAII /////// -// RAII stands for Resource Allocation Is Initialization. -// It is often considered the most powerful paradigm in C++, +// RAII stands for "Resource Acquisition Is Initialization". +// It is often considered the most powerful paradigm in C++ // and is the simple concept that a constructor for an object // acquires that object's resources and the destructor releases them. @@ -483,16 +701,16 @@ void doSomethingWithAFile(const char* filename) // Unfortunately, things are quickly complicated by error handling. // Suppose fopen can fail, and that doSomethingWithTheFile and // doSomethingElseWithIt return error codes if they fail. -// (Exceptions are the preferred way of handling failure, -// but some programmers, especially those with a C background, -// disagree on the utility of exceptions). +// (Exceptions are the preferred way of handling failure, +// but some programmers, especially those with a C background, +// disagree on the utility of exceptions). // We now have to check each call for failure and close the file handle // if a problem occurred. bool doSomethingWithAFile(const char* filename) { FILE* fh = fopen(filename, "r"); // Open the file in read mode if (fh == nullptr) // The returned pointer is null on failure. - reuturn false; // Report that failure to the caller. + return false; // Report that failure to the caller. // Assume each function returns false if it failed if (!doSomethingWithTheFile(fh)) { @@ -513,7 +731,7 @@ bool doSomethingWithAFile(const char* filename) { FILE* fh = fopen(filename, "r"); if (fh == nullptr) - reuturn false; + return false; if (!doSomethingWithTheFile(fh)) goto failure; @@ -535,7 +753,7 @@ void doSomethingWithAFile(const char* filename) { FILE* fh = fopen(filename, "r"); // Open the file in read mode if (fh == nullptr) - throw std::exception("Could not open the file."); + throw std::runtime_error("Could not open the file."); try { doSomethingWithTheFile(fh); @@ -553,7 +771,7 @@ void doSomethingWithAFile(const char* filename) // Compare this to the use of C++'s file stream class (fstream) // fstream uses its destructor to close the file. // Recall from above that destructors are automatically called -// whenver an object falls out of scope. +// whenever an object falls out of scope. void doSomethingWithAFile(const std::string& filename) { // ifstream is short for input file stream @@ -584,8 +802,330 @@ void doSomethingWithAFile(const std::string& filename) // vector (i.e. self-resizing array), hash maps, and so on // all automatically destroy their contents when they fall out of scope. // - Mutexes using lock_guard and unique_lock + +// containers with object keys of non-primitive values (custom classes) require +// compare function in the object itself or as a function pointer. Primitives +// have default comparators, but you can override it. +class Foo { +public: + int j; + Foo(int a) : j(a) {} +}; +struct compareFunction { + bool operator()(const Foo& a, const Foo& b) const { + return a.j < b.j; + } +}; +//this isn't allowed (although it can vary depending on compiler) +//std::map<Foo, int> fooMap; +std::map<Foo, int, compareFunction> fooMap; +fooMap[Foo(1)] = 1; +fooMap.find(Foo(1)); //true + +/////////////////////////////////////// +// Lambda Expressions (C++11 and above) +/////////////////////////////////////// + +// lambdas are a convenient way of defining an anonymous function +// object right at the location where it is invoked or passed as +// an argument to a function. + +// For example, consider sorting a vector of pairs using the second +// value of the pair + +vector<pair<int, int> > tester; +tester.push_back(make_pair(3, 6)); +tester.push_back(make_pair(1, 9)); +tester.push_back(make_pair(5, 0)); + +// Pass a lambda expression as third argument to the sort function +// sort is from the <algorithm> header + +sort(tester.begin(), tester.end(), [](const pair<int, int>& lhs, const pair<int, int>& rhs) { + return lhs.second < rhs.second; + }); + +// Notice the syntax of the lambda expression, +// [] in the lambda is used to "capture" variables +// The "Capture List" defines what from the outside of the lambda should be available inside the function body and how. +// It can be either: +// 1. a value : [x] +// 2. a reference : [&x] +// 3. any variable currently in scope by reference [&] +// 4. same as 3, but by value [=] +// Example: + +vector<int> dog_ids; +// number_of_dogs = 3; +for(int i = 0; i < 3; i++) { + dog_ids.push_back(i); +} + +int weight[3] = {30, 50, 10}; + +// Say you want to sort dog_ids according to the dogs' weights +// So dog_ids should in the end become: [2, 0, 1] + +// Here's where lambda expressions come in handy + +sort(dog_ids.begin(), dog_ids.end(), [&weight](const int &lhs, const int &rhs) { + return weight[lhs] < weight[rhs]; + }); +// Note we captured "weight" by reference in the above example. +// More on Lambdas in C++ : http://stackoverflow.com/questions/7627098/what-is-a-lambda-expression-in-c11 + +/////////////////////////////// +// Range For (C++11 and above) +/////////////////////////////// + +// You can use a range for loop to iterate over a container +int arr[] = {1, 10, 3}; + +for(int elem: arr){ + cout << elem << endl; +} + +// You can use "auto" and not worry about the type of the elements of the container +// For example: + +for(auto elem: arr) { + // Do something with each element of arr +} + +///////////////////// +// Fun stuff +///////////////////// + +// Aspects of C++ that may be surprising to newcomers (and even some veterans). +// This section is, unfortunately, wildly incomplete; C++ is one of the easiest +// languages with which to shoot yourself in the foot. + +// You can override private methods! +class Foo { + virtual void bar(); +}; +class FooSub : public Foo { + virtual void bar(); // Overrides Foo::bar! +}; + + +// 0 == false == NULL (most of the time)! +bool* pt = new bool; +*pt = 0; // Sets the value points by 'pt' to false. +pt = 0; // Sets 'pt' to the null pointer. Both lines compile without warnings. + +// nullptr is supposed to fix some of that issue: +int* pt2 = new int; +*pt2 = nullptr; // Doesn't compile +pt2 = nullptr; // Sets pt2 to null. + +// There is an exception made for bools. +// This is to allow you to test for null pointers with if(!ptr), +// but as a consequence you can assign nullptr to a bool directly! +*pt = nullptr; // This still compiles, even though '*pt' is a bool! + + +// '=' != '=' != '='! +// Calls Foo::Foo(const Foo&) or some variant (see move semantics) copy +// constructor. +Foo f2; +Foo f1 = f2; + +// Calls Foo::Foo(const Foo&) or variant, but only copies the 'Foo' part of +// 'fooSub'. Any extra members of 'fooSub' are discarded. This sometimes +// horrifying behavior is called "object slicing." +FooSub fooSub; +Foo f1 = fooSub; + +// Calls Foo::operator=(Foo&) or variant. +Foo f1; +f1 = f2; + + +/////////////////////////////////////// +// Tuples (C++11 and above) +/////////////////////////////////////// + +#include<tuple> + +// Conceptually, Tuples are similar to old data structures (C-like structs) but instead of having named data members, +// its elements are accessed by their order in the tuple. + +// We start with constructing a tuple. +// Packing values into tuple +auto first = make_tuple(10, 'A'); +const int maxN = 1e9; +const int maxL = 15; +auto second = make_tuple(maxN, maxL); + +// Printing elements of 'first' tuple +cout << get<0>(first) << " " << get<1>(first) << "\n"; //prints : 10 A + +// Printing elements of 'second' tuple +cout << get<0>(second) << " " << get<1>(second) << "\n"; // prints: 1000000000 15 + +// Unpacking tuple into variables + +int first_int; +char first_char; +tie(first_int, first_char) = first; +cout << first_int << " " << first_char << "\n"; // prints : 10 A + +// We can also create tuple like this. + +tuple<int, char, double> third(11, 'A', 3.14141); +// tuple_size returns number of elements in a tuple (as a constexpr) + +cout << tuple_size<decltype(third)>::value << "\n"; // prints: 3 + +// tuple_cat concatenates the elements of all the tuples in the same order. + +auto concatenated_tuple = tuple_cat(first, second, third); +// concatenated_tuple becomes = (10, 'A', 1e9, 15, 11, 'A', 3.14141) + +cout << get<0>(concatenated_tuple) << "\n"; // prints: 10 +cout << get<3>(concatenated_tuple) << "\n"; // prints: 15 +cout << get<5>(concatenated_tuple) << "\n"; // prints: 'A' + + +///////////////////// +// Containers +///////////////////// + +// Containers or the Standard Template Library are some predefined templates. +// They manage the storage space for its elements and provide +// member functions to access and manipulate them. + +// Few containers are as follows: + +// Vector (Dynamic array) +// Allow us to Define the Array or list of objects at run time +#include <vector> +string val; +vector<string> my_vector; // initialize the vector +cin >> val; +my_vector.push_back(val); // will push the value of 'val' into vector ("array") my_vector +my_vector.push_back(val); // will push the value into the vector again (now having two elements) + +// To iterate through a vector we have 2 choices: +// Either classic looping (iterating through the vector from index 0 to its last index): +for (int i = 0; i < my_vector.size(); i++) { + cout << my_vector[i] << endl; // for accessing a vector's element we can use the operator [] +} + +// or using an iterator: +vector<string>::iterator it; // initialize the iterator for vector +for (it = my_vector.begin(); it != my_vector.end(); ++it) { + cout << *it << endl; +} + +// Set +// Sets are containers that store unique elements following a specific order. +// Set is a very useful container to store unique values in sorted order +// without any other functions or code. + +#include<set> +set<int> ST; // Will initialize the set of int data type +ST.insert(30); // Will insert the value 30 in set ST +ST.insert(10); // Will insert the value 10 in set ST +ST.insert(20); // Will insert the value 20 in set ST +ST.insert(30); // Will insert the value 30 in set ST +// Now elements of sets are as follows +// 10 20 30 + +// To erase an element +ST.erase(20); // Will erase element with value 20 +// Set ST: 10 30 +// To iterate through Set we use iterators +set<int>::iterator it; +for(it=ST.begin();it<ST.end();it++) { + cout << *it << endl; +} +// Output: +// 10 +// 30 + +// To clear the complete container we use Container_name.clear() +ST.clear(); +cout << ST.size(); // will print the size of set ST +// Output: 0 + +// NOTE: for duplicate elements we can use multiset + +// Map +// Maps store elements formed by a combination of a key value +// and a mapped value, following a specific order. + +#include<map> +map<char, int> mymap; // Will initialize the map with key as char and value as int + +mymap.insert(pair<char,int>('A',1)); +// Will insert value 1 for key A +mymap.insert(pair<char,int>('Z',26)); +// Will insert value 26 for key Z + +// To iterate +map<char,int>::iterator it; +for (it=mymap.begin(); it!=mymap.end(); ++it) + std::cout << it->first << "->" << it->second << '\n'; +// Output: +// A->1 +// Z->26 + +// To find the value corresponding to a key +it = mymap.find('Z'); +cout << it->second; + +// Output: 26 + + +/////////////////////////////////// +// Logical and Bitwise operators +////////////////////////////////// + +// Most of the operators in C++ are same as in other languages + +// Logical operators + +// C++ uses Short-circuit evaluation for boolean expressions, i.e, the second argument is executed or +// evaluated only if the first argument does not suffice to determine the value of the expression + +true && false // Performs **logical and** to yield false +true || false // Performs **logical or** to yield true +! true // Performs **logical not** to yield false + +// Instead of using symbols equivalent keywords can be used +true and false // Performs **logical and** to yield false +true or false // Performs **logical or** to yield true +not true // Performs **logical not** to yield false + +// Bitwise operators + +// **<<** Left Shift Operator +// << shifts bits to the left +4 << 1 // Shifts bits of 4 to left by 1 to give 8 +// x << n can be thought as x * 2^n + + +// **>>** Right Shift Operator +// >> shifts bits to the right +4 >> 1 // Shifts bits of 4 to right by 1 to give 2 +// x >> n can be thought as x / 2^n + +~4 // Performs a bitwise not +4 | 3 // Performs bitwise or +4 & 3 // Performs bitwise and +4 ^ 3 // Performs bitwise xor + +// Equivalent keywords are +compl 4 // Performs a bitwise not +4 bitor 3 // Performs bitwise or +4 bitand 3 // Performs bitwise and +4 xor 3 // Performs bitwise xor + + ``` -Futher Reading: +Further Reading: An up-to-date language reference can be found at <http://cppreference.com/w/cpp> |