summaryrefslogtreecommitdiffhomepage
path: root/c++.html.markdown
diff options
context:
space:
mode:
Diffstat (limited to 'c++.html.markdown')
-rw-r--r--c++.html.markdown210
1 files changed, 182 insertions, 28 deletions
diff --git a/c++.html.markdown b/c++.html.markdown
index ff2a98fd..d03092e5 100644
--- a/c++.html.markdown
+++ b/c++.html.markdown
@@ -4,6 +4,8 @@ filename: learncpp.cpp
contributors:
- ["Steven Basart", "http://github.com/xksteven"]
- ["Matt Kline", "https://github.com/mrkline"]
+ - ["Geoff Liu", "http://geoffliu.me"]
+ - ["Connor Waters", "http://github.com/connorwaters"]
lang: en
---
@@ -52,11 +54,11 @@ int main(int argc, char** argv)
// However, C++ varies in some of the following ways:
-// In C++, character literals are one byte.
-sizeof('c') == 1
+// In C++, character literals are chars
+sizeof('c') == sizeof(char) == 1
-// In C, character literals are the same size as ints.
-sizeof('c') == sizeof(10)
+// In C, character literals are ints
+sizeof('c') == sizeof(int)
// C++ has strict prototyping
@@ -158,11 +160,12 @@ void foo()
int main()
{
- // Assume everything is from the namespace "Second"
- // unless otherwise specified.
+ // Includes all symbols from namespace Second into the current scope. Note
+ // that simply foo() no longer works, since it is now ambiguous whether
+ // we're calling the foo in namespace Second or the top level.
using namespace Second;
- foo(); // prints "This is Second::foo"
+ Second::foo(); // prints "This is Second::foo"
First::Nested::foo(); // prints "This is First::Nested::foo"
::foo(); // prints "This is global foo"
}
@@ -242,12 +245,135 @@ cout << fooRef; // Prints "I am foo. Hi!"
// Doesn't reassign "fooRef". This is the same as "foo = bar", and
// foo == "I am bar"
// after this line.
+cout << &fooRef << endl; //Prints the address of foo
fooRef = bar;
+cout << &fooRef << endl; //Still prints the address of foo
+cout << fooRef; // Prints "I am bar"
+
+//The address of fooRef remains the same, i.e. it is still referring to foo.
+
const string& barRef = bar; // Create a const reference to bar.
// Like C, const values (and pointers and references) cannot be modified.
barRef += ". Hi!"; // Error, const references cannot be modified.
+// Sidetrack: Before we talk more about references, we must introduce a concept
+// called a temporary object. Suppose we have the following code:
+string tempObjectFun() { ... }
+string retVal = tempObjectFun();
+
+// What happens in the second line is actually:
+// - a string object is returned from tempObjectFun
+// - a new string is constructed with the returned object as argument to the
+// constructor
+// - the returned object is destroyed
+// The returned object is called a temporary object. Temporary objects are
+// created whenever a function returns an object, and they are destroyed at the
+// end of the evaluation of the enclosing expression (Well, this is what the
+// standard says, but compilers are allowed to change this behavior. Look up
+// "return value optimization" if you're into this kind of details). So in this
+// code:
+foo(bar(tempObjectFun()))
+
+// assuming foo and bar exist, the object returned from tempObjectFun is
+// passed to bar, and it is destroyed before foo is called.
+
+// Now back to references. The exception to the "at the end of the enclosing
+// expression" rule is if a temporary object is bound to a const reference, in
+// which case its life gets extended to the current scope:
+
+void constReferenceTempObjectFun() {
+ // constRef gets the temporary object, and it is valid until the end of this
+ // function.
+ const string& constRef = tempObjectFun();
+ ...
+}
+
+// Another kind of reference introduced in C++11 is specifically for temporary
+// objects. You cannot have a variable of its type, but it takes precedence in
+// overload resolution:
+
+void someFun(string& s) { ... } // Regular reference
+void someFun(string&& s) { ... } // Reference to temporary object
+
+string foo;
+someFun(foo); // Calls the version with regular reference
+someFun(tempObjectFun()); // Calls the version with temporary reference
+
+// For example, you will see these two versions of constructors for
+// std::basic_string:
+basic_string(const basic_string& other);
+basic_string(basic_string&& other);
+
+// Idea being if we are constructing a new string from a temporary object (which
+// is going to be destroyed soon anyway), we can have a more efficient
+// constructor that "salvages" parts of that temporary string. You will see this
+// concept referred to as "move semantics".
+
+/////////////////////
+// Enums
+/////////////////////
+
+// Enums are a way to assign a value to a constant most commonly used for
+// easier visualization and reading of code
+enum ECarTypes
+{
+ Sedan,
+ Hatchback,
+ SUV,
+ Wagon
+};
+
+ECarTypes GetPreferredCarType()
+{
+ return ECarTypes::Hatchback;
+}
+
+// As of C++11 there is an easy way to assign a type to the enum which can be
+// useful in serialization of data and converting enums back-and-forth between
+// the desired type and their respective constants
+enum ECarTypes : uint8_t
+{
+ Sedan, // 0
+ Hatchback, // 1
+ SUV = 254, // 254
+ Hybrid // 255
+};
+
+void WriteByteToFile(uint8_t InputValue)
+{
+ // Serialize the InputValue to a file
+}
+
+void WritePreferredCarTypeToFile(ECarTypes InputCarType)
+{
+ // The enum is implicitly converted to a uint8_t due to its declared enum type
+ WriteByteToFile(InputCarType);
+}
+
+// On the other hand you may not want enums to be accidentally cast to an integer
+// type or to other enums so it is instead possible to create an enum class which
+// won't be implicitly converted
+enum class ECarTypes : uint8_t
+{
+ Sedan, // 0
+ Hatchback, // 1
+ SUV = 254, // 254
+ Hybrid // 255
+};
+
+void WriteByteToFile(uint8_t InputValue)
+{
+ // Serialize the InputValue to a file
+}
+
+void WritePreferredCarTypeToFile(ECarTypes InputCarType)
+{
+ // Won't compile even though ECarTypes is a uint8_t due to the enum
+ // being declared as an "enum class"!
+ WriteByteToFile(InputCarType);
+}
+
//////////////////////////////////////////
// Classes and object-oriented programming
//////////////////////////////////////////
@@ -294,7 +420,10 @@ public:
// These are called when an object is deleted or falls out of scope.
// This enables powerful paradigms such as RAII
// (see below)
- // Destructors must be virtual to allow classes to be derived from this one.
+ // The destructor should be virtual if a class is to be derived from;
+ // if it is not virtual, then the derived class' destructor will
+ // not be called if the object is destroyed through a base-class reference
+ // or pointer.
virtual ~Dog();
}; // A semicolon must follow the class definition.
@@ -339,6 +468,8 @@ int main() {
// Inheritance:
// This class inherits everything public and protected from the Dog class
+// as well as private but may not directly access private members/methods
+// without a public or protected method for doing so
class OwnedDog : public Dog {
void setOwner(const std::string& dogsOwner);
@@ -437,9 +568,10 @@ int main () {
/////////////////////
// Templates in C++ are mostly used for generic programming, though they are
-// much more powerful than generics constructs in other languages. It also
-// supports explicit and partial specialization, functional-style type classes,
-// and also it's Turing-complete.
+// much more powerful than generic constructs in other languages. They also
+// support explicit and partial specialization and functional-style type
+// classes; in fact, they are a Turing-complete functional language embedded
+// in C++!
// We start with the kind of generic programming you might be familiar with. To
// define a class or function that takes a type parameter:
@@ -451,7 +583,7 @@ public:
};
// During compilation, the compiler actually generates copies of each template
-// with parameters substituted, and so the full definition of the class must be
+// with parameters substituted, so the full definition of the class must be
// present at each invocation. This is why you will see template classes defined
// entirely in header files.
@@ -465,13 +597,13 @@ intBox.insert(123);
Box<Box<int> > boxOfBox;
boxOfBox.insert(intBox);
-// Up until C++11, you must place a space between the two '>'s, otherwise '>>'
-// will be parsed as the right shift operator.
+// Until C++11, you had to place a space between the two '>'s, otherwise '>>'
+// would be parsed as the right shift operator.
// You will sometimes see
// template<typename T>
-// instead. The 'class' keyword and 'typename' keyword are _mostly_
-// interchangeable in this case. For full explanation, see
+// instead. The 'class' keyword and 'typename' keywords are _mostly_
+// interchangeable in this case. For the full explanation, see
// http://en.wikipedia.org/wiki/Typename
// (yes, that keyword has its own Wikipedia page).
@@ -527,12 +659,15 @@ try {
// Do not allocate exceptions on the heap using _new_.
throw std::runtime_error("A problem occurred");
}
+
// Catch exceptions by const reference if they are objects
catch (const std::exception& ex)
{
- std::cout << ex.what();
+ std::cout << ex.what();
+}
+
// Catches any exception not caught by previous _catch_ blocks
-} catch (...)
+catch (...)
{
std::cout << "Unknown exception caught";
throw; // Re-throws the exception
@@ -542,8 +677,8 @@ catch (const std::exception& ex)
// RAII
///////
-// RAII stands for Resource Allocation Is Initialization.
-// It is often considered the most powerful paradigm in C++,
+// RAII stands for "Resource Acquisition Is Initialization".
+// It is often considered the most powerful paradigm in C++
// and is the simple concept that a constructor for an object
// acquires that object's resources and the destructor releases them.
@@ -564,9 +699,9 @@ void doSomethingWithAFile(const char* filename)
// Unfortunately, things are quickly complicated by error handling.
// Suppose fopen can fail, and that doSomethingWithTheFile and
// doSomethingElseWithIt return error codes if they fail.
-// (Exceptions are the preferred way of handling failure,
-// but some programmers, especially those with a C background,
-// disagree on the utility of exceptions).
+// (Exceptions are the preferred way of handling failure,
+// but some programmers, especially those with a C background,
+// disagree on the utility of exceptions).
// We now have to check each call for failure and close the file handle
// if a problem occurred.
bool doSomethingWithAFile(const char* filename)
@@ -680,26 +815,29 @@ class Foo {
virtual void bar();
};
class FooSub : public Foo {
- virtual void bar(); // overrides Foo::bar!
+ virtual void bar(); // Overrides Foo::bar!
};
// 0 == false == NULL (most of the time)!
bool* pt = new bool;
-*pt = 0; // Sets the value points by 'pt' to false.
+*pt = 0; // Sets the value points by 'pt' to false.
pt = 0; // Sets 'pt' to the null pointer. Both lines compile without warnings.
// nullptr is supposed to fix some of that issue:
int* pt2 = new int;
-*pt2 = nullptr; // Doesn't compile
+*pt2 = nullptr; // Doesn't compile
pt2 = nullptr; // Sets pt2 to null.
-// But somehow 'bool' type is an exception (this is to make `if (ptr)` compile).
+// There is an exception made for bools.
+// This is to allow you to test for null pointers with if(!ptr),
+// but as a consequence you can assign nullptr to a bool directly!
*pt = nullptr; // This still compiles, even though '*pt' is a bool!
// '=' != '=' != '='!
-// Calls Foo::Foo(const Foo&) or some variant copy constructor.
+// Calls Foo::Foo(const Foo&) or some variant (see move semantics) copy
+// constructor.
Foo f2;
Foo f1 = f2;
@@ -713,6 +851,22 @@ Foo f1 = fooSub;
Foo f1;
f1 = f2;
+
+// How to truly clear a container:
+class Foo { ... };
+vector<Foo> v;
+for (int i = 0; i < 10; ++i)
+ v.push_back(Foo());
+
+// Following line sets size of v to 0, but destructors don't get called
+// and resources aren't released!
+v.empty();
+v.push_back(Foo()); // New value is copied into the first Foo we inserted
+
+// Truly destroys all values in v. See section about temporary objects for
+// explanation of why this works.
+v.swap(vector<Foo>());
+
```
Further Reading: