diff options
Diffstat (limited to 'c.html.markdown')
| -rw-r--r-- | c.html.markdown | 1052 | 
1 files changed, 603 insertions, 449 deletions
| diff --git a/c.html.markdown b/c.html.markdown index 22f251f2..d92d2ee6 100644 --- a/c.html.markdown +++ b/c.html.markdown @@ -4,7 +4,10 @@ filename: learnc.c  contributors:      - ["Adam Bard", "http://adambard.com/"]      - ["Árpád Goretity", "http://twitter.com/H2CO3_iOS"] - +    - ["Jakub Trzebiatowski", "http://cbs.stgn.pl"] +    - ["Marco Scannadinari", "https://marcoms.github.io"] +    - ["Zachary Ferguson", "https://github.io/zfergus2"] +    - ["himanshu", "https://github.com/himanshu81494"]  ---  Ah, C. Still **the** language of modern high-performance computing. @@ -20,12 +23,19 @@ memory management and C will take you as far as you need to go.  Multi-line comments look like this. They work in C89 as well.  */ +/* +Multi-line comments don't nest /* Be careful */  // comment ends on this line... +*/ // ...not this one! +  // Constants: #define <keyword> +// Constants are written in all-caps out of convention, not requirement  #define DAYS_IN_YEAR 365 -// Enumeration constants are also ways to declare constants.  +// Enumeration constants are also ways to declare constants. +// All statements must end with a semicolon  enum days {SUN = 1, MON, TUE, WED, THU, FRI, SAT}; -// MON gets 2 automatically, TUE gets 3, etc.  +// MON gets 2 automatically, TUE gets 3, etc. +  // Import headers with #include  #include <stdlib.h> @@ -34,388 +44,443 @@ enum days {SUN = 1, MON, TUE, WED, THU, FRI, SAT};  // (File names between <angle brackets> are headers from the C standard library.)  // For your own headers, use double quotes instead of angle brackets: -#include "my_header.h" +//#include "my_header.h"  // Declare function signatures in advance in a .h file, or at the top of  // your .c file. -void function_1(char c); +void function_1();  int function_2(void);  // Must declare a 'function prototype' before main() when functions occur after  // your main() function. -int add_two_ints(int x1, int x2); // function prototype  +int add_two_ints(int x1, int x2); // function prototype +// although `int add_two_ints(int, int);` is also valid (no need to name the args), +// it is recommended to name arguments in the prototype as well for easier inspection  // Your program's entry point is a function called  // main with an integer return type. -int main() { -    // print output using printf, for "print formatted" -    // %d is an integer, \n is a newline -    printf("%d\n", 0); // => Prints 0 -    // All statements must end with a semicolon - -    /////////////////////////////////////// -    // Types -    /////////////////////////////////////// - -    // ints are usually 4 bytes  -    int x_int = 0; - -    // shorts are usually 2 bytes -    short x_short = 0; - -    // chars are guaranteed to be 1 byte -    char x_char = 0; -    char y_char = 'y'; // Char literals are quoted with '' - -    // longs are often 4 to 8 bytes; long longs are guaranteed to be at least -    // 64 bits -    long x_long = 0; -    long long x_long_long = 0;  - -    // floats are usually 32-bit floating point numbers -    float x_float = 0.0; - -    // doubles are usually 64-bit floating-point numbers -    double x_double = 0.0; - -    // Integral types may be unsigned. -    unsigned short ux_short; -    unsigned int ux_int; -    unsigned long long ux_long_long; - -    // chars inside single quotes are integers in machine's character set.  -    '0' // => 48 in the ASCII character set.  -    'A' // => 65 in the ASCII character set.  - -    // sizeof(T) gives you the size of a variable with type T in bytes -    // sizeof(obj) yields the size of the expression (variable, literal, etc.). -    printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words) - - -    // If the argument of the `sizeof` operator is an expression, then its argument -    // is not evaluated (except VLAs (see below)). -    // The value it yields in this case is a compile-time constant. -    int a = 1; -    // size_t is an unsigned integer type of at least 2 bytes used to represent  -    // the size of an object. -    size_t size = sizeof(a++); // a++ is not evaluated -    printf("sizeof(a++) = %zu where a = %d\n", size, a); -    // prints "sizeof(a++) = 4 where a = 1" (on a 32-bit architecture) - -    // Arrays must be initialized with a concrete size. -    char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes -    int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes -                          // (assuming 4-byte words) - - -    // You can initialize an array to 0 thusly: -    char my_array[20] = {0}; - -    // Indexing an array is like other languages -- or, -    // rather, other languages are like C -    my_array[0]; // => 0 - -    // Arrays are mutable; it's just memory! -    my_array[1] = 2; -    printf("%d\n", my_array[1]); // => 2 - -    // In C99 (and as an optional feature in C11), variable-length arrays (VLAs) -    // can be declared as well. The size of such an array need not be a compile -    // time constant: -    printf("Enter the array size: "); // ask the user for an array size -    char buf[0x100]; -    fgets(buf, sizeof buf, stdin); - -    // strtoul parses a string to an unsigned integer -    size_t size = strtoul(buf, NULL, 10); -    int var_length_array[size]; // declare the VLA -    printf("sizeof array = %zu\n", sizeof var_length_array); - -    // A possible outcome of this program may be: -    // > Enter the array size: 10 -    // > sizeof array = 40 - -    // Strings are just arrays of chars terminated by a NULL (0x00) byte, -    // represented in strings as the special character '\0'. -    // (We don't have to include the NULL byte in string literals; the compiler -    //  inserts it at the end of the array for us.) -    char a_string[20] = "This is a string"; -    printf("%s\n", a_string); // %s formats a string - -    printf("%d\n", a_string[16]); // => 0 -    // i.e., byte #17 is 0 (as are 18, 19, and 20) - -    // If we have characters between single quotes, that's a character literal. -    // It's of type `int`, and *not* `char` (for historical reasons). -    int cha = 'a'; // fine -    char chb = 'a'; // fine too (implicit conversion from int to char) - -    //Multi-dimensional arrays: -    int multi_array[2][5] = { -        {1, 2, 3, 4, 5}, -        {6, 7, 8, 9, 0} -    }; -    //access elements: -    int array_int = multi_array[0][2]; // => 3 - -    /////////////////////////////////////// -    // Operators -    /////////////////////////////////////// - -    // Shorthands for multiple declarations: -    int i1 = 1, i2 = 2;  -    float f1 = 1.0, f2 = 2.0; - -    int a, b, c; -    a = b = c = 0; - -    // Arithmetic is straightforward -    i1 + i2; // => 3 -    i2 - i1; // => 1 -    i2 * i1; // => 2 -    i1 / i2; // => 0 (0.5, but truncated towards 0) - -    f1 / f2; // => 0.5, plus or minus epsilon -    // Floating-point numbers and calculations are not exact - -    // Modulo is there as well -    11 % 3; // => 2 - -    // Comparison operators are probably familiar, but -    // there is no Boolean type in c. We use ints instead. -    // (Or _Bool or bool in C99.) -    // 0 is false, anything else is true. (The comparison  -    // operators always yield 0 or 1.) -    3 == 2; // => 0 (false) -    3 != 2; // => 1 (true) -    3 > 2; // => 1 -    3 < 2; // => 0 -    2 <= 2; // => 1 -    2 >= 2; // => 1 - -    // C is not Python - comparisons don't chain. -    int a = 1; -    // WRONG: -    int between_0_and_2 = 0 < a < 2; -    // Correct: -    int between_0_and_2 = 0 < a && a < 2; - -    // Logic works on ints -    !3; // => 0 (Logical not) -    !0; // => 1 -    1 && 1; // => 1 (Logical and) -    0 && 1; // => 0 -    0 || 1; // => 1 (Logical or) -    0 || 0; // => 0 - -    //Conditional expression ( ? : ) -    int a = 5; -    int b = 10; -    int z; -    z = (a > b) ? a : b; // => 10 "if a > b return a, else return b."  - -    //Increment and decrement operators: -    char *s = "iLoveC"; -    int j = 0; -    s[j++]; // => "i". Returns the j-th item of s THEN increments value of j. -    j = 0;  -    s[++j]; // => "L". Increments value of j THEN returns j-th value of s.  -    // same with j-- and --j - -    // Bitwise operators! -    ~0x0F; // => 0xF0 (bitwise negation, "1's complement") -    0x0F & 0xF0; // => 0x00 (bitwise AND) -    0x0F | 0xF0; // => 0xFF (bitwise OR) -    0x04 ^ 0x0F; // => 0x0B (bitwise XOR) -    0x01 << 1; // => 0x02 (bitwise left shift (by 1)) -    0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) - -    // Be careful when shifting signed integers - the following are undefined: -    // - shifting into the sign bit of a signed integer (int a = 1 << 32) -    // - left-shifting a negative number (int a = -1 << 2) -    // - shifting by an offset which is >= the width of the type of the LHS: -    //   int a = 1 << 32; // UB if int is 32 bits wide - -    /////////////////////////////////////// -    // Control Structures -    /////////////////////////////////////// - -    if (0) { -      printf("I am never run\n"); -    } else if (0) { -      printf("I am also never run\n"); -    } else { -      printf("I print\n"); -    } - -    // While loops exist -    int ii = 0; -    while (ii < 10) { //ANY value not zero is true.  -        printf("%d, ", ii++); // ii++ increments ii AFTER using its current value. -    } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -    printf("\n"); - -    int kk = 0; -    do { -        printf("%d, ", kk); -    } while (++kk < 10); // ++kk increments kk BEFORE using its current value. -    // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -    printf("\n"); - -    // For loops too -    int jj; -    for (jj=0; jj < 10; jj++) { -        printf("%d, ", jj); -    } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " - -    printf("\n"); - -    // *****NOTES*****: -    // Loops and Functions MUST have a body. If no body is needed: -    int i; -    for (i = 0; i <= 5; i++) { -        ; // use semicolon to act as the body (null statement) -    } +int main(void) { +  // your program +} -    // branching with multiple choices: switch() -    switch (some_integral_expression) { -    case 0: // labels need to be integral *constant* expressions -        do_stuff(); -        break; // if you don't break, control flow falls over labels -    case 1: -        do_something_else(); -        break; -    default: -        // if `some_integral_expression` didn't match any of the labels -        fputs("error!\n", stderr); -        exit(-1); -        break; -    } -     - -    /////////////////////////////////////// -    // Typecasting -    /////////////////////////////////////// - -    // Every value in C has a type, but you can cast one value into another type -    // if you want (with some constraints). - -    int x_hex = 0x01; // You can assign vars with hex literals - -    // Casting between types will attempt to preserve their numeric values -    printf("%d\n", x_hex); // => Prints 1 -    printf("%d\n", (short) x_hex); // => Prints 1 -    printf("%d\n", (char) x_hex); // => Prints 1 - -    // Types will overflow without warning -    printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long) - -    // For determining the max value of a `char`, a `signed char` and an `unsigned char`, -    // respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h> - -    // Integral types can be cast to floating-point types, and vice-versa. -    printf("%f\n", (float)100); // %f formats a float -    printf("%lf\n", (double)100); // %lf formats a double -    printf("%d\n", (char)100.0); - -    /////////////////////////////////////// -    // Pointers -    /////////////////////////////////////// - -    // A pointer is a variable declared to store a memory address. Its declaration will -    // also tell you the type of data it points to. You can retrieve the memory address  -    // of your variables, then mess with them. - -    int x = 0; -    printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable -    // (%p formats an object pointer of type void *) -    // => Prints some address in memory; - - -    // Pointers start with * in their declaration -    int *px, not_a_pointer; // px is a pointer to an int -    px = &x; // Stores the address of x in px -    printf("%p\n", (void *)px); // => Prints some address in memory -    printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer)); -    // => Prints "8, 4" on a typical 64-bit system - -    // To retrieve the value at the address a pointer is pointing to, -    // put * in front to dereference it. -    // Note: yes, it may be confusing that '*' is used for _both_ declaring a -    // pointer and dereferencing it. -    printf("%d\n", *px); // => Prints 0, the value of x - -    // You can also change the value the pointer is pointing to. -    // We'll have to wrap the dereference in parenthesis because -    // ++ has a higher precedence than *. -    (*px)++; // Increment the value px is pointing to by 1 -    printf("%d\n", *px); // => Prints 1 -    printf("%d\n", x); // => Prints 1 - -    // Arrays are a good way to allocate a contiguous block of memory -    int x_array[20]; //declares array of size 20 (cannot change size) -    int xx; -    for (xx = 0; xx < 20; xx++) { -        x_array[xx] = 20 - xx; -    } // Initialize x_array to 20, 19, 18,... 2, 1 - -    // Declare a pointer of type int and initialize it to point to x_array -    int* x_ptr = x_array; -    // x_ptr now points to the first element in the array (the integer 20).  -    // This works because arrays often decay into pointers to their first element. -    // For example, when an array is passed to a function or is assigned to a pointer, -    // it decays into (implicitly converted to) a pointer. -    // Exceptions: when the array is the argument of the `&` (address-of) operator: -    int arr[10]; -    int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`! -                                  // It's of type "pointer to array" (of ten `int`s). -    // or when the array is a string literal used for initializing a char array: -    char arr[] = "foobarbazquirk"; -    // or when it's the argument of the `sizeof` or `alignof` operator: -    int arr[10]; -    int *ptr = arr; // equivalent with int *ptr = &arr[0]; -    printf("%zu, %zu\n", sizeof arr, sizeof ptr); // probably prints "40, 4" or "40, 8" - - -    // Pointers are incremented and decremented based on their type -    // (this is called pointer arithmetic) -    printf("%d\n", *(x_ptr + 1)); // => Prints 19 -    printf("%d\n", x_array[1]); // => Prints 19 - -    // You can also dynamically allocate contiguous blocks of memory with the -    // standard library function malloc, which takes one argument of type size_t -    // representing the number of bytes to allocate (usually from the heap, although this -    // may not be true on e.g. embedded systems - the C standard says nothing about it). -    int *my_ptr = malloc(sizeof(*my_ptr) * 20); -    for (xx = 0; xx < 20; xx++) { -        *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx -    } // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) - -    // Dereferencing memory that you haven't allocated gives -    // "unpredictable results" - the program is said to invoke "undefined behavior" -    printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash. - -    // When you're done with a malloc'd block of memory, you need to free it,  -    // or else no one else can use it until your program terminates -    // (this is called a "memory leak"): -    free(my_ptr); - -    // Strings are arrays of char, but they are usually represented as a -    // pointer-to-char (which is a pointer to the first element of the array). -    // It's good practice to use `const char *' when referring to a string literal, -    // since string literals shall not be modified (i.e. "foo"[0] = 'a' is ILLEGAL.) -    const char *my_str = "This is my very own string literal"; -    printf("%c\n", *my_str); // => 'T' - -    // This is not the case if the string is an array -    // (potentially initialized with a string literal) -    // that resides in writable memory, as in: -    char foo[] = "foo"; -    foo[0] = 'a'; // this is legal, foo now contains "aoo" - -    function_1(); +// The command line arguments used to run your program are also passed to main +// argc being the number of arguments - your program's name counts as 1 +// argv is an array of character arrays - containing the arguments themselves +// argv[0] = name of your program, argv[1] = first argument, etc. +int main (int argc, char** argv) +{ +  // print output using printf, for "print formatted" +  // %d is an integer, \n is a newline +  printf("%d\n", 0); // => Prints 0 + +  /////////////////////////////////////// +  // Types +  /////////////////////////////////////// + +  // All variables MUST be declared at the top of the current block scope +  // we declare them dynamically along the code for the sake of the tutorial + +  // ints are usually 4 bytes +  int x_int = 0; + +  // shorts are usually 2 bytes +  short x_short = 0; + +  // chars are guaranteed to be 1 byte +  char x_char = 0; +  char y_char = 'y'; // Char literals are quoted with '' + +  // longs are often 4 to 8 bytes; long longs are guaranteed to be at least +  // 64 bits +  long x_long = 0; +  long long x_long_long = 0; + +  // floats are usually 32-bit floating point numbers +  float x_float = 0.0f; // 'f' suffix here denotes floating point literal + +  // doubles are usually 64-bit floating-point numbers +  double x_double = 0.0; // real numbers without any suffix are doubles + +  // integer types may be unsigned (greater than or equal to zero) +  unsigned short ux_short; +  unsigned int ux_int; +  unsigned long long ux_long_long; + +  // chars inside single quotes are integers in machine's character set. +  '0'; // => 48 in the ASCII character set. +  'A'; // => 65 in the ASCII character set. + +  // sizeof(T) gives you the size of a variable with type T in bytes +  // sizeof(obj) yields the size of the expression (variable, literal, etc.). +  printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words) + + +  // If the argument of the `sizeof` operator is an expression, then its argument +  // is not evaluated (except VLAs (see below)). +  // The value it yields in this case is a compile-time constant. +  int a = 1; +  // size_t is an unsigned integer type of at least 2 bytes used to represent +  // the size of an object. +  size_t size = sizeof(a++); // a++ is not evaluated +  printf("sizeof(a++) = %zu where a = %d\n", size, a); +  // prints "sizeof(a++) = 4 where a = 1" (on a 32-bit architecture) + +  // Arrays must be initialized with a concrete size. +  char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes +  int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes +  // (assuming 4-byte words) + + +  // You can initialize an array to 0 thusly: +  char my_array[20] = {0}; + +  // Indexing an array is like other languages -- or, +  // rather, other languages are like C +  my_array[0]; // => 0 + +  // Arrays are mutable; it's just memory! +  my_array[1] = 2; +  printf("%d\n", my_array[1]); // => 2 + +  // In C99 (and as an optional feature in C11), variable-length arrays (VLAs) +  // can be declared as well. The size of such an array need not be a compile +  // time constant: +  printf("Enter the array size: "); // ask the user for an array size +  int size; +  fscanf(stdin, "%d", &size); +  int var_length_array[size]; // declare the VLA +  printf("sizeof array = %zu\n", sizeof var_length_array); + +  // Example: +  // > Enter the array size: 10 +  // > sizeof array = 40 + +  // Strings are just arrays of chars terminated by a NULL (0x00) byte, +  // represented in strings as the special character '\0'. +  // (We don't have to include the NULL byte in string literals; the compiler +  //  inserts it at the end of the array for us.) +  char a_string[20] = "This is a string"; +  printf("%s\n", a_string); // %s formats a string + +  printf("%d\n", a_string[16]); // => 0 +  // i.e., byte #17 is 0 (as are 18, 19, and 20) + +  // If we have characters between single quotes, that's a character literal. +  // It's of type `int`, and *not* `char` (for historical reasons). +  int cha = 'a'; // fine +  char chb = 'a'; // fine too (implicit conversion from int to char) + +  // Multi-dimensional arrays: +  int multi_array[2][5] = { +    {1, 2, 3, 4, 5}, +    {6, 7, 8, 9, 0} +  }; +  // access elements: +  int array_int = multi_array[0][2]; // => 3 + +  /////////////////////////////////////// +  // Operators +  /////////////////////////////////////// + +  // Shorthands for multiple declarations: +  int i1 = 1, i2 = 2; +  float f1 = 1.0, f2 = 2.0; + +  int b, c; +  b = c = 0; + +  // Arithmetic is straightforward +  i1 + i2; // => 3 +  i2 - i1; // => 1 +  i2 * i1; // => 2 +  i1 / i2; // => 0 (0.5, but truncated towards 0) + +  // You need to cast at least one integer to float to get a floating-point result +  (float)i1 / i2; // => 0.5f +  i1 / (double)i2; // => 0.5 // Same with double +  f1 / f2; // => 0.5, plus or minus epsilon +  // Floating-point numbers and calculations are not exact + +  // Modulo is there as well +  11 % 3; // => 2 + +  // Comparison operators are probably familiar, but +  // there is no Boolean type in c. We use ints instead. +  // (Or _Bool or bool in C99.) +  // 0 is false, anything else is true. (The comparison +  // operators always yield 0 or 1.) +  3 == 2; // => 0 (false) +  3 != 2; // => 1 (true) +  3 > 2; // => 1 +  3 < 2; // => 0 +  2 <= 2; // => 1 +  2 >= 2; // => 1 + +  // C is not Python - comparisons don't chain. +  // Warning: The line below will compile, but it means `(0 < a) < 2`. +  // This expression is always true, because (0 < a) could be either 1 or 0. +  // In this case it's 1, because (0 < 1). +  int between_0_and_2 = 0 < a < 2; +  // Instead use: +  int between_0_and_2 = 0 < a && a < 2; + +  // Logic works on ints +  !3; // => 0 (Logical not) +  !0; // => 1 +  1 && 1; // => 1 (Logical and) +  0 && 1; // => 0 +  0 || 1; // => 1 (Logical or) +  0 || 0; // => 0 + +  // Conditional ternary expression ( ? : ) +  int e = 5; +  int f = 10; +  int z; +  z = (e > f) ? e : f; // => 10 "if e > f return e, else return f." + +  // Increment and decrement operators: +  char *s = "ILoveC"; +  int j = 0; +  s[j++]; // => "i". Returns the j-th item of s THEN increments value of j. +  j = 0; +  s[++j]; // => "L". Increments value of j THEN returns j-th value of s. +  // same with j-- and --j + +  // Bitwise operators! +  ~0x0F; // => 0xFFFFFFF0 (bitwise negation, "1's complement", example result for 32-bit int) +  0x0F & 0xF0; // => 0x00 (bitwise AND) +  0x0F | 0xF0; // => 0xFF (bitwise OR) +  0x04 ^ 0x0F; // => 0x0B (bitwise XOR) +  0x01 << 1; // => 0x02 (bitwise left shift (by 1)) +  0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) + +  // Be careful when shifting signed integers - the following are undefined: +  // - shifting into the sign bit of a signed integer (int a = 1 << 31) +  // - left-shifting a negative number (int a = -1 << 2) +  // - shifting by an offset which is >= the width of the type of the LHS: +  //   int a = 1 << 32; // UB if int is 32 bits wide + +  /////////////////////////////////////// +  // Control Structures +  /////////////////////////////////////// + +  if (0) { +    printf("I am never run\n"); +  } else if (0) { +    printf("I am also never run\n"); +  } else { +    printf("I print\n"); +  } + +  // While loops exist +  int ii = 0; +  while (ii < 10) { //ANY value not zero is true. +    printf("%d, ", ii++); // ii++ increments ii AFTER using its current value. +  } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +  printf("\n"); + +  int kk = 0; +  do { +    printf("%d, ", kk); +  } while (++kk < 10); // ++kk increments kk BEFORE using its current value. +  // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +  printf("\n"); + +  // For loops too +  int jj; +  for (jj=0; jj < 10; jj++) { +    printf("%d, ", jj); +  } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " + +  printf("\n"); + +  // *****NOTES*****: +  // Loops and Functions MUST have a body. If no body is needed: +  int i; +  for (i = 0; i <= 5; i++) { +    ; // use semicolon to act as the body (null statement) +  } +  // Or +  for (i = 0; i <= 5; i++); + +  // branching with multiple choices: switch() +  switch (a) { +  case 0: // labels need to be integral *constant* expressions +    printf("Hey, 'a' equals 0!\n"); +    break; // if you don't break, control flow falls over labels +  case 1: +    printf("Huh, 'a' equals 1!\n"); +    break; +    // Be careful - without a "break", execution continues until the +    // next "break" is reached. +  case 3: +  case 4: +    printf("Look at that.. 'a' is either 3, or 4\n"); +    break; +  default: +    // if `some_integral_expression` didn't match any of the labels +    fputs("Error!\n", stderr); +    exit(-1); +    break; +  } +  /* +  using "goto" in C +  */ +  typedef enum { false, true } bool; +  // for C don't have bool as data type :( +  bool disaster = false; +  int i, j; +  for(i=0;i<100;++i) +  for(j=0;j<100;++j) +  { +    if((i + j) >= 150) +        disaster = true; +    if(disaster) +        goto error; +  } +  error : +  printf("Error occured at i = %d & j = %d.\n", i, j); +  /* +  https://ideone.com/GuPhd6 +  this will print out "Error occured at i = 52 & j = 99." +  */ + + +  /////////////////////////////////////// +  // Typecasting +  /////////////////////////////////////// + +  // Every value in C has a type, but you can cast one value into another type +  // if you want (with some constraints). + +  int x_hex = 0x01; // You can assign vars with hex literals + +  // Casting between types will attempt to preserve their numeric values +  printf("%d\n", x_hex); // => Prints 1 +  printf("%d\n", (short) x_hex); // => Prints 1 +  printf("%d\n", (char) x_hex); // => Prints 1 + +  // Types will overflow without warning +  printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long) + +  // For determining the max value of a `char`, a `signed char` and an `unsigned char`, +  // respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h> + +  // Integral types can be cast to floating-point types, and vice-versa. +  printf("%f\n", (float)100); // %f formats a float +  printf("%lf\n", (double)100); // %lf formats a double +  printf("%d\n", (char)100.0); + +  /////////////////////////////////////// +  // Pointers +  /////////////////////////////////////// + +  // A pointer is a variable declared to store a memory address. Its declaration will +  // also tell you the type of data it points to. You can retrieve the memory address +  // of your variables, then mess with them. + +  int x = 0; +  printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable +  // (%p formats an object pointer of type void *) +  // => Prints some address in memory; + + +  // Pointers start with * in their declaration +  int *px, not_a_pointer; // px is a pointer to an int +  px = &x; // Stores the address of x in px +  printf("%p\n", (void *)px); // => Prints some address in memory +  printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer)); +  // => Prints "8, 4" on a typical 64-bit system + +  // To retrieve the value at the address a pointer is pointing to, +  // put * in front to dereference it. +  // Note: yes, it may be confusing that '*' is used for _both_ declaring a +  // pointer and dereferencing it. +  printf("%d\n", *px); // => Prints 0, the value of x + +  // You can also change the value the pointer is pointing to. +  // We'll have to wrap the dereference in parenthesis because +  // ++ has a higher precedence than *. +  (*px)++; // Increment the value px is pointing to by 1 +  printf("%d\n", *px); // => Prints 1 +  printf("%d\n", x); // => Prints 1 + +  // Arrays are a good way to allocate a contiguous block of memory +  int x_array[20]; //declares array of size 20 (cannot change size) +  int xx; +  for (xx = 0; xx < 20; xx++) { +    x_array[xx] = 20 - xx; +  } // Initialize x_array to 20, 19, 18,... 2, 1 + +  // Declare a pointer of type int and initialize it to point to x_array +  int* x_ptr = x_array; +  // x_ptr now points to the first element in the array (the integer 20). +  // This works because arrays often decay into pointers to their first element. +  // For example, when an array is passed to a function or is assigned to a pointer, +  // it decays into (implicitly converted to) a pointer. +  // Exceptions: when the array is the argument of the `&` (address-of) operator: +  int arr[10]; +  int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`! +  // It's of type "pointer to array" (of ten `int`s). +  // or when the array is a string literal used for initializing a char array: +  char otherarr[] = "foobarbazquirk"; +  // or when it's the argument of the `sizeof` or `alignof` operator: +  int arraythethird[10]; +  int *ptr = arraythethird; // equivalent with int *ptr = &arr[0]; +  printf("%zu, %zu\n", sizeof arraythethird, sizeof ptr); +  // probably prints "40, 4" or "40, 8" + + +  // Pointers are incremented and decremented based on their type +  // (this is called pointer arithmetic) +  printf("%d\n", *(x_ptr + 1)); // => Prints 19 +  printf("%d\n", x_array[1]); // => Prints 19 + +  // You can also dynamically allocate contiguous blocks of memory with the +  // standard library function malloc, which takes one argument of type size_t +  // representing the number of bytes to allocate (usually from the heap, although this +  // may not be true on e.g. embedded systems - the C standard says nothing about it). +  int *my_ptr = malloc(sizeof(*my_ptr) * 20); +  for (xx = 0; xx < 20; xx++) { +    *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx +  } // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) + +  // Note that there is no standard way to get the length of a +  // dynamically allocated array in C. Because of this, if your arrays are +  // going to be passed around your program a lot, you need another variable +  // to keep track of the number of elements (size) of an array. See the +  // functions section for more info. +  int size = 10; +  int *my_arr = malloc(sizeof(int) * size); +  // Add an element to the array +  my_arr = realloc(my_arr, ++size); +  my_arr[10] = 5; + +  // Dereferencing memory that you haven't allocated gives +  // "unpredictable results" - the program is said to invoke "undefined behavior" +  printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash. + +  // When you're done with a malloc'd block of memory, you need to free it, +  // or else no one else can use it until your program terminates +  // (this is called a "memory leak"): +  free(my_ptr); + +  // Strings are arrays of char, but they are usually represented as a +  // pointer-to-char (which is a pointer to the first element of the array). +  // It's good practice to use `const char *' when referring to a string literal, +  // since string literals shall not be modified (i.e. "foo"[0] = 'a' is ILLEGAL.) +  const char *my_str = "This is my very own string literal"; +  printf("%c\n", *my_str); // => 'T' + +  // This is not the case if the string is an array +  // (potentially initialized with a string literal) +  // that resides in writable memory, as in: +  char foo[] = "foo"; +  foo[0] = 'a'; // this is legal, foo now contains "aoo" + +  function_1();  } // end main function  /////////////////////////////////////// @@ -427,16 +492,16 @@ int main() {  int add_two_ints(int x1, int x2)  { -    return x1 + x2; // Use return to return a value +  return x1 + x2; // Use return to return a value  }  /* -Functions are call by value. When a function is called, the arguments passed to  -the function are copies of the original arguments (except arrays). Anything you   -do to the arguments in the function do not change the value of the original  -argument where the function was called.  +Functions are call by value. When a function is called, the arguments passed to +the function are copies of the original arguments (except arrays). Anything you +do to the arguments in the function do not change the value of the original +argument where the function was called. -Use pointers if you need to edit the original argument values.  +Use pointers if you need to edit the original argument values.  Example: in-place string reversal  */ @@ -444,14 +509,14 @@ Example: in-place string reversal  // A void function returns no value  void str_reverse(char *str_in)  { -    char tmp; -    int ii = 0; -    size_t len = strlen(str_in); // `strlen()` is part of the c standard library -    for (ii = 0; ii < len / 2; ii++) { -        tmp = str_in[ii]; -        str_in[ii] = str_in[len - ii - 1]; // ii-th char from end -        str_in[len - ii - 1] = tmp; -    } +  char tmp; +  int ii = 0; +  size_t len = strlen(str_in); // `strlen()` is part of the c standard library +  for (ii = 0; ii < len / 2; ii++) { +    tmp = str_in[ii]; +    str_in[ii] = str_in[len - ii - 1]; // ii-th char from end +    str_in[len - ii - 1] = tmp; +  }  }  /* @@ -459,17 +524,57 @@ char c[] = "This is a test.";  str_reverse(c);  printf("%s\n", c); // => ".tset a si sihT"  */ +/* +as we can return only one variable +to change values of more than one variables we use call by reference +*/ +void swapTwoNumbers(int *a, int *b) +{ +    int temp = *a; +    *a = *b; +    *b = temp; +} +/* +int first = 10; +int second = 20; +printf("first: %d\nsecond: %d\n", first, second); +swapTwoNumbers(&first, &second); +printf("first: %d\nsecond: %d\n", first, second); +// values will be swapped +*/ -//if referring to external variables outside function, must use extern keyword. +/* +With regards to arrays, they will always be passed to functions +as pointers. Even if you statically allocate an array like `arr[10]`, +it still gets passed as a pointer to the first element in any function calls. +Again, there is no standard way to get the size of a dynamically allocated +array in C. +*/ +// Size must be passed! +// Otherwise, this function has no way of knowing how big the array is. +void printIntArray(int *arr, int size) { +    int i; +    for (i = 0; i < size; i++) { +        printf("arr[%d] is: %d\n", i, arr[i]); +    } +} +/* +int my_arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; +int size = 10; +printIntArray(my_arr, size); +// will print "arr[0] is: 1" etc +*/ + +// if referring to external variables outside function, must use extern keyword.  int i = 0;  void testFunc() { -    extern int i; //i here is now using external variable i +  extern int i; //i here is now using external variable i  } -//make external variables private to source file with static: -static int i = 0; //other files using testFunc() cannot access variable i -void testFunc() { -    extern int i; +// make external variables private to source file with static: +static int j = 0; //other files using testFunc2() cannot access variable j +void testFunc2() { +  extern int j;  }  //**You may also declare functions as static to make them private** @@ -486,8 +591,8 @@ my_type my_type_var = 0;  // Structs are just collections of data, the members are allocated sequentially,  // in the order they are written:  struct rectangle { -    int width; -    int height; +  int width; +  int height;  };  // It's not generally true that @@ -497,20 +602,20 @@ struct rectangle {  void function_1()  { -    struct rectangle my_rec; +  struct rectangle my_rec; -    // Access struct members with . -    my_rec.width = 10; -    my_rec.height = 20; +  // Access struct members with . +  my_rec.width = 10; +  my_rec.height = 20; -    // You can declare pointers to structs -    struct rectangle *my_rec_ptr = &my_rec; +  // You can declare pointers to structs +  struct rectangle *my_rec_ptr = &my_rec; -    // Use dereferencing to set struct pointer members... -    (*my_rec_ptr).width = 30; +  // Use dereferencing to set struct pointer members... +  (*my_rec_ptr).width = 30; -    // ... or even better: prefer the -> shorthand for the sake of readability -    my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10; +  // ... or even better: prefer the -> shorthand for the sake of readability +  my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10;  }  // You can apply a typedef to a struct for convenience @@ -518,34 +623,34 @@ typedef struct rectangle rect;  int area(rect r)  { -    return r.width * r.height; +  return r.width * r.height;  }  // if you have large structs, you can pass them "by pointer" to avoid copying  // the whole struct: -int area(const rect *r) +int areaptr(const rect *r)  { -    return r->width * r->height; +  return r->width * r->height;  }  /////////////////////////////////////// -// Function pointers  +// Function pointers  ///////////////////////////////////////  /*  At run time, functions are located at known memory addresses. Function pointers are -much like any other pointer (they just store a memory address), but can be used  +much like any other pointer (they just store a memory address), but can be used  to invoke functions directly, and to pass handlers (or callback functions) around.  However, definition syntax may be initially confusing.  Example: use str_reverse from a pointer  */  void str_reverse_through_pointer(char *str_in) { -    // Define a function pointer variable, named f.  -    void (*f)(char *); // Signature should exactly match the target function. -    f = &str_reverse; // Assign the address for the actual function (determined at run time) -    // f = str_reverse; would work as well - functions decay into pointers, similar to arrays -    (*f)(str_in); // Just calling the function through the pointer -    // f(str_in); // That's an alternative but equally valid syntax for calling it. +  // Define a function pointer variable, named f. +  void (*f)(char *); // Signature should exactly match the target function. +  f = &str_reverse; // Assign the address for the actual function (determined at run time) +  // f = str_reverse; would work as well - functions decay into pointers, similar to arrays +  (*f)(str_in); // Just calling the function through the pointer +  // f(str_in); // That's an alternative but equally valid syntax for calling it.  }  /* @@ -557,39 +662,40 @@ typedef void (*my_fnp_type)(char *);  // Then used when declaring the actual pointer variable:  // ... -// my_fnp_type f;  +// my_fnp_type f;  //Special characters: -'\a' // alert (bell) character -'\n' // newline character -'\t' // tab character (left justifies text) -'\v' // vertical tab -'\f' // new page (form feed) -'\r' // carriage return -'\b' // backspace character -'\0' // NULL character. Usually put at end of strings in C.  -     //   hello\n\0. \0 used by convention to mark end of string.  -'\\' // backslash -'\?' // question mark -'\'' // single quote -'\"' // double quote -'\xhh' // hexadecimal number. Example: '\xb' = vertical tab character -'\ooo' // octal number. Example: '\013' = vertical tab character +/* +'\a'; // alert (bell) character +'\n'; // newline character +'\t'; // tab character (left justifies text) +'\v'; // vertical tab +'\f'; // new page (form feed) +'\r'; // carriage return +'\b'; // backspace character +'\0'; // NULL character. Usually put at end of strings in C. +//   hello\n\0. \0 used by convention to mark end of string. +'\\'; // backslash +'\?'; // question mark +'\''; // single quote +'\"'; // double quote +'\xhh'; // hexadecimal number. Example: '\xb' = vertical tab character +'\0oo'; // octal number. Example: '\013' = vertical tab character  //print formatting: -"%d"    // integer -"%3d"   // integer with minimum of length 3 digits (right justifies text) -"%s"    // string -"%f"    // float -"%ld"   // long -"%3.2f" // minimum 3 digits left and 2 digits right decimal float  -"%7.4s" // (can do with strings too) -"%c"    // char -"%p"    // pointer -"%x"    // hexadecimal -"%o"    // octal -"%%"    // prints %  - +"%d";    // integer +"%3d";   // integer with minimum of length 3 digits (right justifies text) +"%s";    // string +"%f";    // float +"%ld";   // long +"%3.2f"; // minimum 3 digits left and 2 digits right decimal float +"%7.4s"; // (can do with strings too) +"%c";    // char +"%p";    // pointer +"%x";    // hexadecimal +"%o";    // octal +"%%";    // prints % +*/  ///////////////////////////////////////  // Order of Evaluation  /////////////////////////////////////// @@ -614,15 +720,63 @@ typedef void (*my_fnp_type)(char *);  // ,                                 | left to right //  //---------------------------------------------------// -``` +/******************************* Header Files ********************************** + +Header files are an important part of c as they allow for the connection of c +source files and can simplify code and definitions by seperating them into +seperate files. +Header files are syntactically similar to c source files but reside in ".h" +files. They can be included in your c source file by using the precompiler +command #include "example.h", given that example.h exists in the same directory +as the c file. +*/ + +/* A safe guard to prevent the header from being defined too many times. This */ +/* happens in the case of circle dependency, the contents of the header is    */ +/* already defined.                                                           */ +#ifndef EXAMPLE_H /* if EXAMPLE_H is not yet defined. */ +#define EXAMPLE_H /* Define the macro EXAMPLE_H. */ + +/* Other headers can be included in headers and therefore transitively */ +/* included into files that include this header.                       */ +#include <string.h> + +/* Like c source files macros can be defined in headers and used in files */ +/* that include this header file.                                         */ +#define EXAMPLE_NAME "Dennis Ritchie" +/* Function macros can also be defined. */ +#define ADD(a, b) (a + b) + +/* Structs and typedefs can be used for consistency between files. */ +typedef struct node +{ +    int val; +    struct node *next; +} Node; + +/* So can enumerations. */ +enum traffic_light_state {GREEN, YELLOW, RED}; + +/* Function prototypes can also be defined here for use in multiple files,  */ +/* but it is bad practice to define the function in the header. Definitions */ +/* should instead be put in a c file.                                       */ +Node createLinkedList(int *vals, int len); + +/* Beyond the above elements, other definitions should be left to a c source */ +/* file. Excessive includeds or definitions should, also not be contained in */ +/* a header file but instead put into separate headers or a c file.          */ + +#endif /* End of the if precompiler directive. */ + +```  ## Further Reading  Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language) -It is *the* book about C, written by the creators of C. Be careful, though - it's ancient and it contains some +It is *the* book about C, written by Dennis Ritchie, the creator of C, and Brian Kernighan. Be careful, though - it's ancient and it contains some  inaccuracies (well, ideas that are not considered good anymore) or now-changed practices. -Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/). +Another good resource is [Learn C The Hard Way](http://c.learncodethehardway.org/book/).  If you have a question, read the [compl.lang.c Frequently Asked Questions](http://c-faq.com). | 
