diff options
Diffstat (limited to 'es-es/julia-es.html.markdown')
-rw-r--r-- | es-es/julia-es.html.markdown | 940 |
1 files changed, 940 insertions, 0 deletions
diff --git a/es-es/julia-es.html.markdown b/es-es/julia-es.html.markdown new file mode 100644 index 00000000..e4181609 --- /dev/null +++ b/es-es/julia-es.html.markdown @@ -0,0 +1,940 @@ +--- +language: Julia +contributors: + - ["Leah Hanson", "http://leahhanson.us"] +translators: + - ["Guillermo Garza", "http://github.com/ggarza"] + - ["Ismael Venegas Castelló", "https://github.com/Ismael-VC"] +filename: learnjulia-es.jl +lang: es-es +--- + +![JuliaLang](http://s13.postimg.org/z89djuwyf/julia_small.png) + +[Julia](http://julialanges.github.io) es un [lenguaje de programación](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n) [multiplataforma](http://es.wikipedia.org/wiki/Multiplataforma) y [multiparadigma](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n_multiparadigma) de [tipado dinámico](http://es.wikipedia.org/wiki/Tipado_din%C3%A1mico), [alto nivel](http://es.wikipedia.org/wiki/Lenguaje_de_alto_nivel) y [alto desempeño](http://es.wikipedia.org/wiki/Computaci%C3%B3n_de_alto_rendimiento) para la computación [genérica](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n_de_prop%C3%B3sito_general), [técnica y científica](http://es.wikipedia.org/wiki/Computaci%C3%B3n_cient%C3%ADfica), con una sintaxis que es familiar para los usuarios de otros entornos de computación técnica y científica. Provee de un [sofisticado compilador JIT](http://es.wikipedia.org/wiki/Compilaci%C3%B3n_en_tiempo_de_ejecuci%C3%B3n), [ejecución distribuida y paralela](http://docs.julialang.org/en/release-0.3/manual/parallel-computing), [precisión numérica](http://julia.readthedocs.org/en/latest/manual/integers-and-floating-point-numbers) y de una [extensa librería con funciones matemáticas](http://docs.julialang.org/en/release-0.3/stdlib). La librería estándar, escrita casi completamente en Julia, también integra las mejores y más maduras librerías de C y Fortran para el [álgebra lineal](http://docs.julialang.org/en/release-0.3/stdlib/linalg), [generación de números aleatorios](http://docs.julialang.org/en/release-0.3/stdlib/numbers/?highlight=random#random-numbers), [procesamiento de señales](http://docs.julialang.org/en/release-0.3/stdlib/math/?highlight=signal#signal-processing), y [procesamiento de cadenas](http://docs.julialang.org/en/release-0.3/stdlib/strings). Adicionalmente, la comunidad de [desarrolladores de Julia](https://github.com/JuliaLang/julia/graphs/contributors) contribuye un número de [paquetes externos](http://pkg.julialang.org) a través del gestor de paquetes integrado de Julia a un paso acelerado. [IJulia](https://github.com/JuliaLang/IJulia.jl), una colaboración entre las comunidades de [IPython](http://ipython.org) y Julia, provee de una poderosa interfaz gráfica basada en el [navegador para Julia](https://juliabox.org). + +En Julia los programas están organizados entorno al [despacho múltiple](http://docs.julialang.org/en/release-0.3/manual/methods/#man-methods); definiendo funciones y sobrecargándolas para diferentes combinaciones de tipos de argumentos, los cuales también pueden ser definidos por el usuario. + +### ¡Prueba Julia ahora mismo! + +* [TryJupyter](https://try.jupyter.org) +* [JuliaBox](https://juliabox.org) +* [SageMathCloud](https://cloud.sagemath.com) + +### Resumen de Características: + +* [Despacho múltiple](http://en.wikipedia.org/wiki/Multiple_dispatch): permite definir el comportamiento de las funciones a través de múltiples combinaciones de tipos de argumentos (**métodos**). +* Sistema de **tipado dinámico**: tipos para la documentación, la optimización y el despacho. +* [Buen desempeño](http://julialang.org/benchmarks), comparado al de lenguajes **estáticamente compilados** como C. +* [Gestor de paquetes](http://docs.julialang.org/en/release-0.3/stdlib/pkg) integrado. +* [Macros tipo Lisp](http://docs.julialang.org/en/release-0.3/manual/metaprogramming/#macros) y otras comodidades para la [meta programación](http://docs.julialang.org/en/release-0.3/manual/metaprogramming). +* Llamar funciones de otros lenguajes, mediante paquetes como: **Python** ([PyCall](https://github.com/stevengj/PyCall.jl)), [Mathematica](http://github.com/one-more-minute/Mathematica.jl), **Java** ([JavaCall](http://github.com/aviks/JavaCall.jl)), **R** ([Rif](http://github.com/lgautier/Rif.jl) y [RCall](http://github.com/JuliaStats/RCall.jl)) y **Matlab** ([MATLAB](http://github.com/JuliaLang/MATLAB.jl)). +* [Llamar funciones de C y Fortran](http://docs.julialang.org/en/release-0.3/manual/calling-c-and-fortran-code) **directamente**: sin necesidad de usar envoltorios u APIs especiales. +* Poderosas características de **línea de comandos** para [gestionar otros procesos](http://docs.julialang.org/en/release-0.3/manual/running-external-programs). +* Diseñado para la [computación paralela y distribuida](http://docs.julialang.org/en/release-0.3/manual/parallel-computing) **desde el principio**. +* [Corrutinas](http://en.wikipedia.org/wiki/Coroutine): hilos ligeros "**verdes**". +* Los [tipos definidos por el usuario](http://docs.julialang.org/en/release-0.3/manual/types) son tan **rápidos y compactos** como los tipos estándar integrados. +* [Generación automática de código](http://docs.julialang.org/en/release-0.3/stdlib/base/?highlight=%40code#internals) **eficiente y especializado** para diferentes tipos de argumentos. +* [Conversiones y promociones](http://docs.julialang.org/en/release-0.3/manual/conversion-and-promotion) para tipos numéricos y de otros tipos, **elegantes y extensibles**. +* Soporte eficiente para [Unicode](http://es.wikipedia.org/wiki/Unicode), incluyendo [UTF-8](http://es.wikipedia.org/wiki/UTF-8) pero sin limitarse solo a este. +* [Licencia MIT](https://github.com/JuliaLang/julia/blob/master/LICENSE.md): libre y de código abierto. + +Esto se basa en la versión `0.3.11`. + +```ruby +# Los comentarios de una línea comienzan con una almohadilla (o signo de gato). + +#= + Los comentarios multilínea pueden escribirse + usando '#=' antes de el texto y '=#' + después del texto. También se pueden anidar. +=# + + +############################################## +# 1. Tipos de datos primitivos y operadores. # +############################################## + +# Todo en Julia es una expresión (Expr). + +# Hay varios tipos básicos de números. +3 # => 3 # Int64 +3.2 # => 3.2 # Float64 +2 + 1im # => 2 + 1im # Complex{Int64} +2 // 3 # => 2//3 # Rational{Int64} + +# Todos los operadores infijos normales están disponibles. +1 + 1 # => 2 +8 - 1 # => 7 +10 * 2 # => 20 +35 / 5 # => 7.0 # dividir un Int por un Int siempre resulta + # en un Float +5 / 2 # => 2.5 +div(5, 2) # => 2 # para un resultado truncado, usa la función div +5 \ 35 # => 7.0 +2 ^ 2 # => 4 # exponente, no es XOR +12 % 10 # => 2 + +# Refuerza la precedencia con paréntesis. +(1 + 3) * 2 # => 8 + +# Operadores a nivel de bit. +~2 # => -3 # bitwise NOT +3 & 5 # => 1 # bitwise AND +2 | 4 # => 6 # bitwise OR +2 $ 4 # => 6 # bitwise XOR +2 >>> 1 # => 1 # desplazamiento lógico hacia la derecha +2 >> 1 # => 1 # desplazamiento aritmético hacia la derecha +2 << 1 # => 4 # desplazamiento lógico/aritmético hacia la izquierda + +# Se puede utilizar la función bits para ver la representación +# binaria de un número. +bits(12345) +# => "0000000000000000000000000000000000000000000000000011000000111001" + +bits(12345.0) +# => "0100000011001000000111001000000000000000000000000000000000000000" + +# Los valores booleanos (Bool) son primitivos. +true # => true +false # => false + +# Operadores booleanos. +!true # => false +!false # => true +1 == 1 # => true +2 == 1 # => false +1 != 1 # => false +2 != 1 # => true +1 < 10 # => true +1 > 10 # => false +2 <= 2 # => true +2 >= 2 # => true + +# ¡Las comparaciones pueden ser concatenadas! +1 < 2 < 3 # => true +2 < 3 < 2 # => false + +# Los literales de cadenas (String) se crean con la comilla doble: " +"Esto es una cadena." + +# Los literales de caracteres (Char) se crean con la comilla simple: ' +'a' + +# Una cadena puede ser indexada como una arreglo de caracteres. +"Esto es un string."[1] # => 'E' # Los índices en Julia comienzan en: 1 + +# Sin embargo, esto no va a funcionar bien para las cadenas UTF8 (UTF8String), +# Lo que se recomienda es la iteración (map, for, etc). + +# $ puede ser utilizado para la interpolación de cadenas, se puede poner +# cualquier expresión de Julia dentro los paréntesis. +"2 + 2 = $(2 + 2)" # => "2 + 2 = 4" + +# Otra forma para formatear cadenas es usando el macro printf. +@printf "%d es menor de %f\n" 4.5 5.3 # 5 es menor de 5.300000 + +# ¡Imprimir es muy fácil! +println("¡Hola Julia!") # ¡Hola Julia! + + +############################## +# 2. Variables y Colecciones # +############################## + +# No hay necesidad de declarar las variables antes de asignarlas. +una_variable = 5 # => 5 +una_variable # => 5 + +# Acceder a una variable no asignada previamente es una excepción. +try + otra_variable # ERROR: otra_variable not defined +catch e + println(e) # UndefVarError(:otra_variable) +end + +# Los nombres de variables comienzan con una letra o guion bajo: _. +# Después de eso, puedes utilizar letras, dígitos, guiones bajos y signos de +# exclamación. +otraVariable_123! = 6 # => 6 + +# También puedes utilizar caracteres Unicode. +☃ = 8 # => 8 + +# Estos son especialmente útiles para la notación matemática +# (multiplicación implicita). +2π # => 6.283185307179586 + +#= + Una nota sobre las convenciones de nomenclatura de Julia: + + * Los nombres de las variables aparecen en minúsculas, con separación de + palabra indicado por un guion bajo: + + otra_variable + + * Los nombres de los tipos comienzan con una letra mayúscula y separación de + palabras se muestra con CamelCase en vez de guión bajo: + + OtroTipo + + * Los nombres de las funciones y los macros están en minúsculas, sin + underscore: + + otromacro + + * Funciones que modifican sus entradas tienen nombres que terminan en: !. + Estas funciones a veces se les llaman funciones transformadoras o + funciones in situ: + + otra_funcion! +=# + +# Los arreglos (Array) almacenan una secuencia de valores indexados de entre 1 hasta n. +a = Int64[] # => 0-element Array{Int64,1} + +# Los literales de arregos unidimensionales se pueden escribir con valores +# separados por comas. +b = [4, 5, 6] +#= + => 3-element Array{Int64,1}: + 4 + 5 + 6 +=# +b[1] # => 4 +b[end] # => 6 + +# Los arreglos bidimensionales usan valores separados por espacios y filas +# separadas por punto y coma. +matrix = [1 2; 3 4] +#= + => 2x2 Array{Int64,2}: + 1 2 + 3 4 +=# + +# Añadir cosas al final de un arreglo con push! y append!. +push!(a, 1) # => [1] +push!(a, 2) # => [1,2] +push!(a, 4) # => [1,2,4] +push!(a, 3) # => [1,2,4,3] +append!(a, b) # => [1,2,4,3,4,5,6] + +# Eliminar del final con pop!. +pop!(b) # => 6 y b ahora es: [4,5] + +# Vamos a ponerlo de nuevo. +push!(b, 6) # b es ahora [4,5,6] de nuevo + +a[1] # => 1 # recuerda, los índices de Julia empiezan desde 1, no desde 0! + +# end es una abreviatura para el último índice. Se puede utilizar en cualquier +# expresión de indexación. +a[end] # => 6 + +# También hay shift! y unshift!. +shift!(a) # => 1 y a es ahora: [2,4,3,4,5,6] +unshift!(a, 7) # => [7,2,4,3,4,5,6] + +# Los nombres de funciones que terminan en exclamaciones indican que modifican +# su o sus argumentos de entrada. +arr = [5, 4, 6] # => 3-element Array{Int64,1}: [5,4,6] +sort(arr) # => [4,5,6] y arr es todavía: [5,4,6] +sort!(arr) # => [4,5,6] y arr es ahora: [4,5,6] + +# Buscando fuera de límites es un BoundsError. +try + a[0] # ERROR: BoundsError() in getindex at array.jl:270 + a[end+1] # ERROR: BoundsError() in getindex at array.jl:270 +catch e + println(e) # BoundsError() +end + +# Las excepciones y los errores dan la línea y el archivo de su procedencia, +# aunque provenga de la librería estándar. Si compilas Julia del código fuente, +# puedes buscar en el código para encontrar estos archivos. + +# Se puede inicializar un arreglo con un rango (Range). +a = [1:5] # => 5-element Array{Int64,1}: [1,2,3,4,5] + +# Puedes mirar en los rangos con la sintaxis de rebanada. +a[1:3] # => [1,2,3] +a[2:end] # => [2,3,4,5] + +# Eliminar elementos de un arreglo por índice con splice! +arr = [3, 4, 5] +splice!(arr, 2) # => 4 y arr es ahora: [3,5] + +# Concatenar arreglos con append! +b = [1, 2, 3] +append!(a, b) # a ahora es: [1,2,3,4,5,1,2,3] + +# Comprueba la existencia de un elemento en un arreglo con in. +in(1, a) # => true + +# Examina la longitud con length. +length(a) # => 8 + +# Las tuplas (Tuple) son inmutables. +tup = (1, 2, 3) # => (1,2,3) # una tupla tipo (Int64,Int64,Int64) +tup[1] # => 1 + +try: + tup[1] = 3 # ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64) +catch e + println(e) # MethodError(setindex!,(:tup,3,1)) +end + +# Muchas funciones de arreglos también trabajan en con las tuplas. +length(tup) # => 3 +tup[1:2] # => (1,2) +in(2, tup) # => true + +# Se pueden desempacar las tuplas en variables individuales. +a, b, c = (1, 2, 3) # => (1,2,3) # ahora a es 1, b es 2 y c es 3 + +# Los tuplas se crean, incluso si se omiten los paréntesis. +d, e, f = 4, 5, 6 # => (4,5,6) + +# Una tupla de un elemento es distinta del valor que contiene. +(1,) == 1 # => false +(1) == 1 # => true + +# Mira que fácil es cambiar dos valores! +e, d = d, e # => (5,4) # ahora d es 5 y e es 4 + +# Los diccionarios (Dict) son arreglos asociativos. +dicc_vacio = Dict() # => Dict{Any,Any} with 0 entries + +# Se puede crear un diccionario usando una literal. +dicc_lleno = ["uno" => 1, "dos" => 2, "tres" => 3] +#= + => Dict{ASCIIString,Int64} with 3 entries: + "tres" => 3 + "dos" => 2 + "uno" => 1 +=# + +# Busca valores con: []. +dicc_lleno["uno"] # => 1 + +# Obtén todas las claves con. +keys(dicc_lleno) +#= + => KeyIterator for a Dict{ASCIIString,Int64} with 3 entries. Keys: + "tres" + "dos" + "uno" +=# + +# Nota: los elementos del diccionario no están ordenados y no se guarda el orden +# en que se insertan. + +# Obtén todos los valores. +values(dicc_lleno) +#= + => ValueIterator for a Dict{ASCIIString,Int64} with 3 entries. Values: + 3 + 2 + 1 +=# + +# Nota: igual que el anterior en cuanto a ordenamiento de los elementos. + +# Comprueba si una clave existe en un diccionario con in y haskey. +in(("uno", 1), dicc_lleno) # => true +in(("tres", 3), dicc_lleno) # => false + +haskey(dicc_lleno, "uno") # => true +haskey(dicc_lleno, 1) # => false + +# Tratar de obtener un valor con una clave que no existe producirá un error. +try + # ERROR: key not found: cuatro in getindex at dict.jl:489 + dicc_lleno["cuatro"] +catch e + println(e) # KeyError("cuatro") +end + +# Utiliza el método get para evitar este error proporcionando un valor +# predeterminado: get(diccionario, clave, valor_predeterminado). +get(dicc_lleno, "uno", 4) # => 1 +get(dicc_lleno, "cuatro", 4) # => 4 + +# Usa conjuntos (Set) para representar colecciones de valores únicos, no +# ordenados. +conjunto_vacio = Set() # => Set{Any}({}) + +# Iniciar una conjunto de valores. +conjunto_lleno = Set(1, 2, 2, 3, 4) # => Set{Int64}({4,2,3,1}) + +# Añadir más valores a un conjunto. +push!(conjunto_lleno, 5) # => Set{Int64}({4,2,3,5,1}) +push!(conjunto_lleno, 5) # => Set{Int64}({4,2,3,5,1}) + +# Comprobar si los valores están en el conjunto. +in(2, conjunto_lleno) # => true +in(10, conjunto_lleno) # => false + +# Hay funciones de intersección, unión y diferencia de conjuntos. +otro_conjunto = Set(3, 4, 5, 6) # => Set{Int64}({6,4,5,3}) +intersect(conjunto_lleno, otro_conjunto) # => Set{Int64}({3,4,5}) +union(conjunto_lleno, otro_conjunto) # => Set{Int64}({1,2,3,4,5,6}) +setdiff(Set(1, 2, 3, 4), Set(2, 3, 5)) # => Set{Int64}({1,4}) + + +####################### +# 3. Control de Flujo # +####################### + +# Hagamos una variable. +una_variable = 5 + +# Aquí está la declaración de un if. La indentación no es significativa en +# Julia. +if una_variable > 10 + println("una_variable es completamente mayor que 10.") +elseif una_variable < 10 # esta condición elseif es opcional + println("una_variable es menor que 10.") +else # esto también es opcional + println("De echo una_variable es 10.") +end +# imprime: una_variable es menor que 10. + +# El bucle for itera sobre tipos iterables, ie. Range, Array, Set, +# Dict y String. +for animal in ["perro", "gato", "ratón"] + # Se puede usar $ para interpolar variables o expresiones en ls cadenas. + println("$animal es un mamífero.") +end +#= + imprime: + perro es un mamífero. + gato es un mamífero. + ratón es un mamífero. +=# + +for a in ["perro" => "mamífero", "gato" => "mamífero", "ratón" => "mamífero"] + println("$(a[1]) es un $(a[2]).") +end +#= + imprime: + perro es un mamífero. + gato es un mamífero. + ratón es un mamífero. +=# + +for (k,v) in ["perro"=>"mamífero", "gato"=>"mamífero", "ratón"=>"mamífero"] + println("$k es un $v.") +end +#= + imprime: + perro es un mamífero. + gato es un mamífero. + ratón es un mamífero. +=# + +# El bucle while itera hasta que una condición se deje de cumplir. +x = 0 +while x < 4 + println(x) + x += 1 # versión corta de: x = x + 1 +end +#= +imprime: + 0 + 1 + 2 + 3 +=# + +# Maneja excepciones con un bloque try/catch. +try # intentar + error("Ooops!") +catch e + println("capturando: $e") # capturando: ErrorException("Ooops!") +end + + +################ +# 4. Funciones # +################ + +# Usa function para crear nuevas funciones. + +#= + function nombre(arglist) + cuerpo... + end +=# +function suma(x, y) + println("x es $x e y es $y") + + # las funciones devuelven el valor de su última expresión + x + y +end +# => suma (generic function with 1 method) + +suma(5, 6) # => 11 # después de imprimir: x es 5 e y es 6 + +# También puedes usar esta otra sintaxis para definir funciones! +resta(x, y) = x - y # => resta (generic function with 1 method) + +# Puedes definir funciones que toman un número variable de +# argumentos posicionales (el ... se llama un splat). +function varargs(args...) + # Usa la palabra clave return para regresar desde cualquier + # lugar de la función. + return args +end +# => varargs (generic function with 1 method) + +varargs(1, 2, 3) # => (1,2,3) +varargs([1, 2, 3]) # => ([1,2,3],) + +# Acabamos de utilizar el splat (...) en la definición de una función. También +# se puede utilizar al llamar a una función, donde se esparce un arreglo, tupla +# o en general una secuencia iterable en la tupla de argumentos. +varargs([1, 2, 3]...) # => (1,2,3) # igual que: varargs(1, 2, 3) + +x = (1, 2, 3) # => (1,2,3) +varargs(x) # => ((1,2,3),) +varargs(x...) # => (1,2,3) + +varargs("abc"...) # => ('a','b','c') + +# Puedes definir funciones con argumentos posicionales opcionales. +function defaults(a, b, x=5, y=6) + return "$a $b y $x $y" +end +# => defaults (generic function with 3 methods) + +defaults('h', 'g') # => "h g y 5 6" +defaults('h', 'g', 'j') # => "h g y j 6" +defaults('h', 'g', 'j', 'k') # => "h g y j k" + +try + defaults('h') # ERROR: `defaults` has no method matching defaults(::Char) + defaults() # ERROR: `defaults` has no method matching defaults() +catch e + println(e) # MethodError(defaults,('h',)) +end + +# Puedes definir funciones que tomen argumentos de palabras clave. +function args_clave(;k1=4, nombre2="hola") # nota el punto y coma: ; + return ["k1" => k1, "nombre2" => nombre2] +end +# => args_clave (generic function with 1 method) + +args_clave(nombre2="ness") # => ["nombre2"=>"ness","k1"=>4] +args_clave(k1="mine") # => ["k1"=>"mine","nombre2"=>"hola"] +args_clave() # => ["nombre2"=>"hola","k1"=>4] + +# Puedes combinar todo tipo de argumentos en la misma función. +function todos_los_args(arg_posicional, arg_opcional=2; arg_clave="foo") + println("argumento posicional: $arg_posicional") + println(" argumento opcional: $arg_opcional") + println(" argumento clave: $arg_clave") +end +# => todos_los_args (generic function with 2 methods) + +# No se necesita punto y coma ; al llamar la función usando un argumento clave, +# esto solo es necesario en la definición de la función. +todos_los_args(1, 3, arg_clave=4) +#= + imprime: + argumento posicional: 1 + argumento opcional: 3 + argumento clave: 4 +=# + +# Julia tiene funciones de primera clase. +function crear_suma(x) + suma = function (y) # función anónima + return x + y + end + return suma +end +# => crear_suma (generic function with 1 method) + +# Esta es otra sintaxis (estilo cálculo lambda), para crear funciones anónimas. +(x -> x > 2)(3) # => true + +# Esta función es idéntica a la crear_suma implementación anterior. +crear_suma(x) = y -> x + y + +# También puedes nombrar la función interna, si quieres. +function crear_suma(x) + function suma(y) + x + y + end + suma +end +# => crear_suma (generic function with 1 method) + +suma_10 = crear_suma(10) # => suma (generic function with 1 method) +suma_10(3) # => 13 + +# Hay funciones integradas de orden superior. +map(suma_10, [1, 2, 3]) # => [11,12,13] +filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6,7] + +# Se puede pasar un bloque a las funciones cuyo primer argumento posicional +# es otra función, como en map y filter. +map([1, 2, 3]) do arr + suma_10(arr) +end +#= + => 3-element Array{Int64,1}: + 11 + 12 + 13 +=# + +filter([3, 4, 5, 6, 7]) do arr + (x -> x > 5)(arr) +end +#= + => 2-element Array{Int64,1}: + 6 + 7 +=# + +# Podemos usar comprensiones de listas multidimensionales. +[suma_10(i) for i = [1, 2, 3]] # => [11, 12, 13] # 1D +[suma_10(i) for i in [1, 2, 3]] # => [11, 12, 13] + +[i*j for i = [1:3], j in [1:3]] # 2D +#= + => 3x3 Array{Int64,2}: + 1 2 3 + 2 4 6 + 3 6 9 +=# + +[i*j/k for i = [1:3], j = [1:3], k in [1:3]] # 3D +#= + => 3x3x3 Array{Float64,3}: + [:, :, 1] = + 1.0 2.0 3.0 + 2.0 4.0 6.0 + 3.0 6.0 9.0 + + [:, :, 2] = + 0.5 1.0 1.5 + 1.0 2.0 3.0 + 1.5 3.0 4.5 + + [:, :, 3] = + 0.333333 0.666667 1.0 + 0.666667 1.33333 2.0 + 1.0 2.0 3.0 +=# + + +############ +# 5. Tipos # +############ + +# Cada valor tiene un tipo y las variables no tienen propios tipos. +# Se puede utilizar la función typeof para obtener el tipo de un valor. +typeof(5) # => Int64 # en un sistema de 64 bits, de lo contrario: Int32 + +# Los tipos son valores de primera clase, DataType es el tipo que representa a +# los tipos, incluyéndose a sí mismo. +typeof(Int64) # => DataType +typeof(DataType) # => DataType + +# Los tipos se usan para la documentación, para optimizaciones +# y el despacho múltiple. No están comprobados estáticamente. + +# Los usuarios pueden definir sus propios tipos. +# Son como registros o estructuras en otros idiomas. +# Un nuevo tipos se define utilizado la palabra clave type. + +# type Nombre +# atributo::UnTipo # las anotaciones de tipos son opcionales +# ... +# end +type Tigre + longitud_cola::Float64 + color_pelaje # sin una anotación de tipo, es lo mismo que `::Any` +end + +# Los argumentos del constructor por defecto son los atributos +# del tipo, en el orden en que están listados en la definición. +tigre = Tigre(3.5, "anaranjado") # => Tigre(3.5,"anaranjado") + +# El tipo funciona como método constructor para los valores de ese tipo. +sherekhan = typeof(tigre)(5.6, "fuego") # => Tigre(5.6,"fuego") + + +# Este estilo de tipos son llamados tipos concretos. +# Se pueden crear instancias de estos, pero no pueden tener subtipos. +# La otra clase de tipos son los tipos abstractos. + +# abstract Nombre +abstract Gato # sólo un nombre y un punto en la jerarquía de tipos + +# No se pueden crear instancias de los tipos abstractos, pero pueden tener +# subtipos. Por ejemplo, Number es un tipo abstracto. +subtypes(Number) +#= + => 2-element Array{Any,1}: + Complex{T<:Real} + Real +=# + +subtypes(Gato) # => 0-element Array{Any,1} + +# Cada tipo tiene un supertipo, utiliza la función súper para conseguirlo. +typeof(5) # => Int64 +super(Int64) # => Signed +super(Signed) # => Integer +super(Integer) # => Real +super(Real) # => Number +super(Number) # => Any +super(super(Signed)) # => Real +super(Any) # => Any + +# Todos estos tipos, a excepción de Int64, son abstractos. + +# <: es el operador de subtipos. +type Leon <: Gato # Leon es un subtipo de Gato + color_crin + rugido::String +end + +# Se pueden definir más constructores para un tipo. +# Sólo define una función del mismo nombre que el tipo y llama al constructor +# existente para obtener un valor del tipo correcto. + +# Este es un constructor externo porque está fuera de la definición del tipo. +Leon(rugido::String) = Leon("verde", rugido) + +type Pantera <: Gato # Pantera también es un a subtipo de Gato + color_ojos + + # Pantera sólo tendrá este constructor, y ningún constructor predeterminado. + Pantera() = new("verde") +end + +# Utilizar constructores internos, como se hace en Pantera, te da control sobre +# cómo se pueden crear valores de este tipo. Cuando sea posible, debes utilizar +# constructores externos en lugar de internos. + + +######################## +# 6. Despacho Múltiple # +######################## + +# En Julia, todas las funciones nombradas son funciones genéricas. +# Esto significa que se construyen a partir de muchos métodos más pequeños. +# Cada constructor de Leon es un método de la función genérica Leon. + +# Por ejemplo, vamos a hacer métodos para Leon, Pantera, y Tigre de una +# función genérica maullar: + +# acceso utilizando notación de puntos +maullar(animal::Leon) = animal.rugido +# => maullar (generic function with 1 method) +maullar(animal::Pantera) = "grrr" +# => maullar (generic function with 2 methods) +maullar(animal::Tigre) = "rawwwr" +# => maullar (generic function with 3 methods) + +# Se puede obtener una lista de métodos con la función methods. +methods(maullar) +#= + # 3 methods for generic function "maullar": + maullar(animal::Leon) at none:1 + maullar(animal::Pantera) at none:1 + maullar(animal::Tigre) at none:1 +=# + +# Prueba de la función maullar. +maullar(tigre) # => "rawwwr" +maullar(Leon("cafe", "ROAAR")) # => "ROAAR" +maullar(Pantera()) # => "grrr" + +# Revisar la jerarquía de tipos locales. +issubtype(Tigre, Gato) # => false # igual que: Tigre <: Gato +issubtype(Leon, Gato) # => true # igual que: Leon <: Gato +issubtype(Pantera, Gato) # => true + +# Definición de una función que acepta argumentos de tipo Gato. +mascota(gato::Gato) = println("El gato dice $(maullar(gato))") + +mascota(Leon("42")) # El gato dice 42 + +try + mascota(tigre) # ERROR: `mascota` has no method matching mascota(::Tigre) +catch e + println(e) # MethodError(mascota,(Tigre(3.5,"anaranjado"),)) +end + +# En los lenguajes orientados a objetos, el despacho simple es común. Esto +# significa que la implementación del método a llamar se selecciona en base +# al tipo del primer argumento. + +# En Julia, los tipos de todos los argumentos contribuyen a seleccionar método +# más específico. + +# Vamos a definir una función con más argumentos, para que podamos ver la +# diferencia +pelear(t::Tigre, c::Gato) = println("¡El tigre $(t.color_pelaje) gana!") +# => pelear (generic function with 1 method) + +pelear(tigre, Pantera()) # ¡El tigre anaranjado gana! +pelear(tigre, Leon("ROAR")) # ¡El tigre anaranjado gana! + +# Vamos a cambiar el comportamiento cuando el Gato sea específicamente un Leon. +pelear(t::Tigre, l::Leon) = println("El león con melena $(l.color_crin) gana.") +# => pelear (generic function with 2 methods) + +pelear(tigre, Pantera()) # ¡El tigre anaranjado gana! +pelear(tigre, Leon("ROAR")) # El león con melena verde gana. + +# No necesitamos un tigre para poder luchar. +pelear(l::Leon, c::Gato) = println("El gato victorioso dice $(maullar(c)).") +# => pelear (generic function with 3 methods) + +methods(pelear) +#= + # 3 methods for generic function "pelear": + pelear(t::Tigre,l::Leon) at none:2 + pelear(t::Tigre,c::Gato) at none:1 + pelear(l::Leon,c::Gato) at none:2 +=# + +pelear(Leon("balooga!"), Pantera()) # El gato victorioso dice grrr. +try + # ERROR: `pelear` has no method matching pelear(::Pantera, ::Leon) + pelear(Pantera(),Leon("RAWR")) +catch # no hacer nada con la excepción atrapada +end + +# Un metodo con el tipo Gato primero. +pelear(c::Gato,l::Leon) = println("El gato le gana al León") +#= + Warning: New definition + pelear(Gato,Leon) at none:1 + is ambiguous with: + pelear(Leon,Gato) at none:1. + To fix, define + pelear(Leon,Leon) + before the new definition. + pelear (generic function with 4 methods) +=# + +# Esta advertencia se debe a que no está claro que método de pelear +# será llamado en: +pelear(Leon("RAR"),Leon("cafe","rar")) # El gato victorioso dice rar. + +# El resultado puede ser diferente en otras versiones de Julia +pelear(l::Leon,l2::Leon) = println("Los leones llegan a un empate") + +pelear(Leon("GR"),Leon("cafe","rar")) # Los leones llegan a un empate + + +################################ +# 7. Un vistazo de bajo nivel. # +################################ + +# Se puede echar un vistazo al código IR de LLVM y al código +# ensamblador generado. +area_cuadrado(l) = l * l # => area_cuadrado (generic function with 1 method) + +area_cuadrado(5) # => 25 + +# ¿Qué sucede cuando damos area_cuadrada diferentes tipos de argumentos? +code_native(area_cuadrado, (Int32,)) +#= + .section __TEXT,__text,regular,pure_instructions + Filename: none + Source line: 1 # prólogo + push RBP + mov RBP, RSP + Source line: 1 + imul RDI, RDI # elevar l al cuadrado + mov RAX, RDI # almacenar el resultado en RAX + pop RBP # restaurar el puntero base anterior + ret # el resultado estará en RAX +=# + +code_native(area_cuadrado, (Float32,)) +#= + .section __TEXT,__text,regular,pure_instructions + Filename: none + Source line: 1 + push RBP + mov RBP, RSP + Source line: 1 + mulss XMM0, XMM0 # multiplicación escalar de presición simple (AVX) + pop RBP + ret +=# + +code_native(area_cuadrado, (Float64,)) +#= + .section __TEXT,__text,regular,pure_instructions + Filename: none + Source line: 1 + push RBP + mov RBP, RSP + Source line: 1 + mulsd XMM0, XMM0 # multiplicación escalar de presición doble (AVX) + pop RBP + ret +=# + +# Ten en cuenta que Julia usará instrucciones de punto flotante si el tipo de +# alguno de los argumentos es flotante. + +# Vamos a calcular el área de un círculo. +area_circulo(r) = π * r * r # area_circulo (generic function with 1 method) +area_circulo(5) # 78.53981633974483 + +code_native(area_circulo, (Int32,)) +#= + .section __TEXT,__text,regular,pure_instructions + Filename: none + Source line: 1 + push RBP + mov RBP, RSP + Source line: 1 + cvtsi2sd XMM1, EDI # cargar entero r de la memoria + movabs RAX, 4477117456 # cargar constante matemática π + movsd XMM0, QWORD PTR [RAX] + mulsd XMM0, XMM1 # π * r + mulsd XMM0, XMM1 # (π * r) * r + pop RBP + ret +=# + +code_native(area_circulo, (Float64,)) +#= + .section __TEXT,__text,regular,pure_instructions + Filename: none + Source line: 1 + push RBP + mov RBP, RSP + movabs RAX, 4477120336 + movsd XMM1, QWORD PTR [RAX] + Source line: 1 + mulsd XMM1, XMM0 + mulsd XMM1, XMM0 + movaps XMM0, XMM1 + pop RBP + ret +=# +``` + +![Julia-tan](http://s27.postimg.org/x37ndhz0j/julia_tan_small.png) + +## ¿Listo para más? + +Para más detalles, lee el [manual de Julia](http://docs.julialang.org/en/release-0.3). + +El mejor lugar para obtener ayuda con Julia, es en su amigable [lista de correos](https://groups.google.com/forum/#!forum/julia-users). |