summaryrefslogtreecommitdiffhomepage
path: root/es-es
diff options
context:
space:
mode:
Diffstat (limited to 'es-es')
-rw-r--r--es-es/c++-es.html.markdown829
-rw-r--r--es-es/git-es.html.markdown64
-rw-r--r--es-es/go-es.html.markdown618
-rw-r--r--es-es/javascript-es.html.markdown9
-rw-r--r--es-es/julia-es.html.markdown1268
-rw-r--r--es-es/python-es.html.markdown120
6 files changed, 2057 insertions, 851 deletions
diff --git a/es-es/c++-es.html.markdown b/es-es/c++-es.html.markdown
new file mode 100644
index 00000000..bcc775e5
--- /dev/null
+++ b/es-es/c++-es.html.markdown
@@ -0,0 +1,829 @@
+---
+language: c++
+filename: learncpp.cpp
+contributors:
+ - ["Steven Basart", "http://github.com/xksteven"]
+ - ["Matt Kline", "https://github.com/mrkline"]
+ - ["Geoff Liu", "http://geoffliu.me"]
+ - ["Connor Waters", "http://github.com/connorwaters"]
+translators:
+ - ["Gerson Lázaro", "https://gersonlazaro.com"]
+lang: es-es
+---
+
+C++ es un lenguaje de programación de sistemas que,
+[de acuerdo a su inventor Bjarne Stroustrup](http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2014/Keynote),
+fue diseñado para
+
+- ser un "mejor C"
+- soportar abstracción de datos
+- soportar programación orientada a objetos
+- soportar programación genérica
+
+Aunque su sintaxis puede ser más difícil o compleja que los nuevos lenguajes,
+es ampliamente utilizado, ya que compila instrucciones nativas que pueden ser
+directamente ejecutadas por el procesador y ofrece un estricto control sobre
+el hardware (como C), mientras ofrece características de alto nivel como
+genericidad, excepciones, y clases. Esta combinación de velocidad y
+funcionalidad hace de C ++ uno de los lenguajes de programación más utilizados.
+
+```c++
+////////////////////
+// Comparación con C
+////////////////////
+
+// C ++ es _casi_ un superconjunto de C y comparte su sintaxis básica para las
+// declaraciones de variables, tipos primitivos y funciones.
+
+// Al igual que en C, el punto de entrada de tu programa es una función llamada
+// main con un retorno de tipo entero.
+// Este valor sirve como código de salida del programa.
+// Mira http://en.wikipedia.org/wiki/Exit_status para mayor información.
+int main(int argc, char** argv)
+{
+ // Los argumentos de la línea de comandos se pasan por argc y argv de la
+ // misma manera que en C.
+ // argc indica el número de argumentos,
+ // y argv es un arreglo de strings de estilo C (char*)
+ // representando los argumentos.
+ // El primer argumento es el nombre con el que el programa es llamado.
+ // argc y argv pueden omitirse si no te preocupan los argumentos,
+ // dejando la definición de la función como int main ()
+
+ // Un estado de salida 0 indica éxito.
+ return 0;
+}
+
+// Sin embargo, C ++ varía en algunas de las siguientes maneras:
+
+// En C++, los caracteres literales son caracteres
+sizeof('c') == sizeof(char) == 1
+
+// En C, los caracteres literales son enteros
+sizeof('c') == sizeof(int)
+
+
+// C++ tiene prototipado estricto
+void func(); // función que no acepta argumentos
+
+// En C
+void func(); // función que puede aceptar cualquier número de argumentos
+
+// Use nullptr en lugar de NULL en C++
+int* ip = nullptr;
+
+// Las cabeceras (headers) estándar de C están disponibles en C ++,
+// pero tienen el prefijo "c" y no tienen sufijo .h.
+#include <cstdio>
+
+int main()
+{
+ printf("Hola mundo!\n");
+ return 0;
+}
+
+//////////////////////////
+// Sobrecarga de funciones
+//////////////////////////
+
+// C++ soporta sobrecarga de funciones
+// siempre que cada función tenga diferentes parámetros.
+
+void print(char const* myString)
+{
+ printf("String %s\n", myString);
+}
+
+void print(int myInt)
+{
+ printf("Mi entero es %d", myInt);
+}
+
+int main()
+{
+ print("Hello"); // Resolves to void print(const char*)
+ print(15); // Resolves to void print(int)
+}
+
+////////////////////////////////////
+// Argumentos de función por defecto
+////////////////////////////////////
+
+// Puedes proporcionar argumentos por defecto para una función si no son
+// proporcionados por quien la llama.
+
+void doSomethingWithInts(int a = 1, int b = 4)
+{
+ // Hacer algo con los enteros aqui
+}
+
+int main()
+{
+ doSomethingWithInts(); // a = 1, b = 4
+ doSomethingWithInts(20); // a = 20, b = 4
+ doSomethingWithInts(20, 5); // a = 20, b = 5
+}
+
+// Los argumentos predeterminados deben estar al final de la lista de argumentos.
+
+void invalidDeclaration(int a = 1, int b) // Error!
+{
+}
+
+/////////////////////
+// Espacios de nombre
+/////////////////////
+
+// Espacios de nombres proporcionan ámbitos separados para variable, función y
+// otras declaraciones.
+// Los espacios de nombres se pueden anidar.
+
+namespace First {
+ namespace Nested {
+ void foo()
+ {
+ printf("Esto es First::Nested::foo\n");
+ }
+ } // fin del nombre de espacio Nested
+} // fin del nombre de espacio First
+
+namespace Second {
+ void foo()
+ {
+ printf("Esto es Second::foo\n")
+ }
+}
+
+void foo()
+{
+ printf("Este es global: foo\n");
+}
+
+int main()
+{
+
+ // Incluye todos los símbolos del espacio de nombre Second en el ámbito
+ // actual. Tenga en cuenta que simplemente foo() no funciona, ya que ahora
+ // es ambigua si estamos llamando a foo en espacio de nombres Second o en
+ // el nivel superior.
+ using namespace Second;
+
+ Second::foo(); // imprime "Esto es Second::foo"
+ First::Nested::foo(); // imprime "Esto es First::Nested::foo"
+ ::foo(); // imprime "Este es global: foo"
+}
+
+/////////////////
+// Entrada/Salida
+/////////////////
+
+// La entrada y salida de C++ utiliza flujos (streams)
+// cin, cout, y cerr representan a stdin, stdout, y stderr.
+// << es el operador de inserción >> es el operador de extracción.
+
+
+#include <iostream> // Incluir para el flujo de entrada/salida
+
+using namespace std; // Los streams estan en std namespace (libreria estandar)
+
+int main()
+{
+ int myInt;
+
+ // Imprime a la stdout (o terminal/pantalla)
+ cout << "Ingresa tu número favorito:\n";
+ // Toma una entrada
+ cin >> myInt;
+
+ // cout puede también ser formateado
+ cout << "Tu número favorito es " << myInt << "\n";
+ // imprime "Tu número favorito es <myInt>"
+
+ cerr << "Usado para mensajes de error";
+}
+////////////////////
+// Cadenas (Strings)
+////////////////////
+
+// Las cadenas en C++ son objetos y tienen muchas funciones
+#include <string>
+
+using namespace std; // Strings también estan en namespace std
+
+string myString = "Hola";
+string myOtherString = " Mundo";
+
+// + es usado para concatenar.
+cout << myString + myOtherString; // "Hola Mundo"
+
+cout << myString + " Tu"; // "Hola Tu"
+
+// Las cadenas en C++ son mutables y tienen valor semántico.
+myString.append(" Perro");
+cout << myString; // "Hola Perro"
+
+
+//////////////
+// Referencias
+//////////////
+
+// Además de punteros como los de C,
+// C++ tiene _references_.
+// Estos tipos de puntero no pueden ser reasignados una vez establecidos
+// Y no pueden ser nulos.
+// También tienen la misma sintaxis que la propia variable:
+// No es necesaria * para eliminar la referencia y
+// & (dirección) no se utiliza para la asignación.
+
+using namespace std;
+
+string foo = "Yo soy foo";
+string bar = "Yo soy bar";
+
+string& fooRef = foo; // Crea una referencia a foo.
+fooRef += ". Hola!"; // Modifica foo través de la referencia
+cout << fooRef; // Imprime "Yo soy foo. Hola!"
+
+// No trate de reasignar "fooRef". Esto es lo mismo que "foo = bar", y
+// foo == "Yo soy bar"
+// después de esta linea.
+fooRef = bar;
+
+const string& barRef = bar; // Crea una referencia constante a bar.
+// Como en C, los valores constantes (y punteros y referencias) no pueden ser
+// modificados.
+barRef += ". Hola!"; // Error, referencia constante no puede ser modificada.
+
+// Sidetrack: Antes de hablar más sobre referencias, hay que introducir un
+// concepto llamado objeto temporal. Supongamos que tenemos el siguiente código:
+string tempObjectFun() { ... }
+string retVal = tempObjectFun();
+
+// Lo que pasa en la segunda línea es en realidad:
+// - Un objeto de cadena es retornado desde tempObjectFun
+// - Una nueva cadena se construye con el objeto devuelto como argumento al
+// constructor
+// - El objeto devuelto es destruido
+// El objeto devuelto se llama objeto temporal. Objetos temporales son
+// creados cada vez que una función devuelve un objeto, y es destruido en el
+// fin de la evaluación de la expresión que encierra (Bueno, esto es lo que la
+// norma dice, pero los compiladores están autorizados a cambiar este
+// comportamiento. Busca "return value optimization" para ver mas detalles).
+// Así que en este código:
+foo(bar(tempObjectFun()))
+
+// Suponiendo que foo y bar existen, el objeto retornado de tempObjectFun es
+// pasado al bar, y se destruye antes de llamar foo.
+
+// Ahora, de vuelta a las referencias. La excepción a la regla "en el extremo
+// de la expresión encerrada" es si un objeto temporal se une a una
+// referencia constante, en cuyo caso su vida se extiende al ámbito actual:
+
+void constReferenceTempObjectFun() {
+ // ConstRef obtiene el objeto temporal, y es válido hasta el final de esta
+  // función.
+ const string& constRef = tempObjectFun();
+ ...
+}
+
+// Otro tipo de referencia introducida en C ++ 11 es específicamente para
+// objetos temporales. No se puede tener una variable de este tipo, pero tiene
+// prioridad en resolución de sobrecarga:
+
+void someFun(string& s) { ... } // Referencia regular
+void someFun(string&& s) { ... } // Referencia a objeto temporal
+
+string foo;
+someFun(foo); // Llama la función con referencia regular
+someFun(tempObjectFun()); // Llama la versión con referencia temporal
+
+// Por ejemplo, puedes ver estas dos versiones de constructores para
+// std::basic_string:
+basic_string(const basic_string& other);
+basic_string(basic_string&& other);
+
+// La idea es que si estamos construyendo una nueva cadena de un objeto temporal
+// (que va a ser destruido pronto de todos modos), podemos tener un constructor
+// mas eficiente que "rescata" partes de esa cadena temporal. Usted verá este
+// Concepto denominado "movimiento semántico".
+
+////////////////////////////////////////////
+// Clases y programación orientada a objetos
+////////////////////////////////////////////
+
+// Primer ejemplo de clases
+#include <iostream>
+
+// Declara una clase.
+// Las clases son usualmente declaradas en archivos de cabeceras (.h o .hpp)
+class Dog {
+ // Variables y funciones de la clase son privados por defecto.
+ std::string name;
+ int weight;
+
+// Todos los miembros siguientes de este son públicos
+// Hasta que se encuentre "private" o "protected".
+// All members following this are public
+// until "private:" or "protected:" is found.
+public:
+
+ // Constructor por defecto
+ Dog();
+
+ // Declaraciones de funciones de la clase (implementaciones a seguir)
+    // Nota que usamos std::string aquí en lugar de colocar
+    // using namespace std;
+    // arriba.
+    // Nunca ponga una declaración "using namespace" en un encabezado.
+ void setName(const std::string& dogsName);
+
+ void setWeight(int dogsWeight);
+ // Funciones que no modifican el estado del objeto
+ // Deben marcarse como const.
+ // Esto le permite llamarlas si se envia una referencia constante al objeto.
+ // También tenga en cuenta que las funciones deben ser declaradas
+ // explícitamente como _virtual_ para que sea reemplazada en las clases
+ // derivadas.
+ // Las funciones no son virtuales por defecto por razones de rendimiento.
+ virtual void print() const;
+
+ // Las funciones también se pueden definir en el interior
+ // del cuerpo de la clase.
+ // Funciones definidas como tales están entre líneas automáticamente.
+ void bark() const { std::cout << name << " barks!\n"; }
+
+ // Junto a los constructores, C++ proporciona destructores.
+ // Estos son llamados cuando un objeto se elimina o está fuera del ámbito.
+ // Esto permite paradigmas potentes como RAII
+ // (mira abajo)
+ // El destructor debe ser virtual si una clase es dervada desde el;
+ // Si no es virtual, entonces la clase derivada destructor
+ // No será llamada si el objeto se destruye a través de una referencia de
+ // la clase base o puntero.
+ virtual ~Dog();
+
+
+
+}; // Un punto y coma debe seguir la definición de clase.
+
+// Las funciones de una clase son normalmente implementados en archivos .cpp.
+Dog::Dog()
+{
+ std::cout << "Un perro ha sido construido\n";
+}
+
+// Objetos (tales como cadenas) deben ser pasados por referencia
+// Si los estas modificando o referencia constante en caso contrario.
+void Dog::setName(const std::string& dogsName)
+{
+ name = dogsName;
+}
+
+void Dog::setWeight(int dogsWeight)
+{
+ weight = dogsWeight;
+}
+
+// Nota que "virtual" sólo se necesita en la declaración, no en la definición.
+void Dog::print() const
+{
+ std::cout << "El perro es " << name << " y pesa " << weight << "kg\n";
+}
+
+Dog::~Dog()
+{
+ cout << "Adiós " << name << "\n";
+}
+
+int main() {
+ Dog myDog; // imprime "Un perro ha sido construido"
+ myDog.setName("Barkley");
+ myDog.setWeight(10);
+ myDog.print(); // imprime "El perro es Barkley y pesa 10 kg"
+ return 0;
+} // imprime "Adiós Barkley"
+
+// Herencia:
+
+// Esta clase hereda todo lo público y protegido de la clase Dog
+class OwnedDog : public Dog {
+
+ void setOwner(const std::string& dogsOwner);
+
+ // Reemplaza el comportamiento de la función de impresión
+ // de todos los OwnedDogs. Mira
+ // http://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Subtyping
+ // Para una introducción más general si no está familiarizado con el
+ // polimorfismo de subtipo.
+ // La palabra clave override es opcional, pero asegura que estás
+ // reemplazando el método de una clase base.
+ void print() const override;
+
+private:
+ std::string owner;
+};
+
+// Mientras tanto, en el archivo .cpp correspondiente:
+
+void OwnedDog::setOwner(const std::string& dogsOwner)
+{
+ owner = dogsOwner;
+}
+
+void OwnedDog::print() const
+{
+ Dog::print(); // Llama a la función de impresión en la clase base Dog
+ std::cout << "El perro es de " << owner << "\n";
+ // Imprime "El perro es <name> y pesa <weight>"
+ // "El perro es de <owner>"
+}
+
+////////////////////////////////////////////
+// Inicialización y sobrecarga de operadores
+////////////////////////////////////////////
+
+// En C ++ se puede sobrecargar el comportamiento
+// de los operadores como +, -, *, /, etc.
+// Esto se hace mediante la definición de una función que es llamada
+// cada vez que se utiliza el operador.
+
+#include <iostream>
+using namespace std;
+
+class Point {
+public:
+ // Las variables de la clase pueden dar valores por defecto de esta manera.
+ double x = 0;
+ double y = 0;
+
+ // Define un constructor por defecto que no hace nada
+ // pero inicializa el punto al valor por defecto (0, 0)
+ Point() { };
+
+ // The following syntax is known as an initialization list
+ // and is the proper way to initialize class member values
+ Point (double a, double b) :
+ x(a),
+ y(b)
+ { /* No hace nada excepto inicializar los valores */ }
+
+ // Sobrecarga el operador +
+ Point operator+(const Point& rhs) const;
+
+ // Sobrecarga el operador +=
+ Point& operator+=(const Point& rhs);
+
+ // También tendría sentido añadir los operadores - y -=,
+    // Pero vamos a omitirlos por razones de brevedad.
+};
+
+Point Point::operator+(const Point& rhs) const
+{
+ // Crea un nuevo punto que es la suma de este y rhs.
+ return Point(x + rhs.x, y + rhs.y);
+}
+
+Point& Point::operator+=(const Point& rhs)
+{
+ x += rhs.x;
+ y += rhs.y;
+ return *this;
+}
+
+int main () {
+ Point up (0,1);
+ Point right (1,0);
+ // Llama al operador + de Point
+ // Point llama la función + con right como parámetro
+ Point result = up + right;
+ // Prints "Result is upright (1,1)"
+ cout << "Result is upright (" << result.x << ',' << result.y << ")\n";
+ return 0;
+}
+
+/////////////////////////
+// Plantillas (Templates)
+/////////////////////////
+
+// Las plantillas en C++ se utilizan sobre todo en la programación genérica,
+// a pesar de que son mucho más poderoso que los constructores genéricos
+// en otros lenguajes. Ellos también soportan especialización explícita y
+// parcial y clases de tipo estilo funcional; de hecho, son un lenguaje
+// funcional Turing-completo incrustado en C ++!
+
+// Empezamos con el tipo de programación genérica que podría estar
+// familiarizado.
+// Para definir una clase o función que toma un parámetro de tipo:
+template<class T>
+class Box {
+public:
+ // En este caso, T puede ser usado como cualquier otro tipo.
+ void insert(const T&) { ... }
+};
+
+// Durante la compilación, el compilador realmente genera copias de cada
+// plantilla con parámetros sustituidos, por lo que la definición completa
+// de la clase debe estar presente en cada invocación.
+// Es por esto que usted verá clases de plantilla definidas
+// Enteramente en archivos de cabecera.
+
+//Para crear una instancia de una clase de plantilla en la pila:
+Box<int> intBox;
+
+y puedes utilizarlo como era de esperar:
+intBox.insert(123);
+
+// Puedes, por supuesto, anidar plantillas:
+Box<Box<int> > boxOfBox;
+boxOfBox.insert(intBox);
+
+// Hasta C++11, había que colocar un espacio entre los dos '>'s,
+// de lo contrario '>>' serían analizados como el operador de desplazamiento
+// a la derecha.
+
+
+// A veces verás
+// template<typename T>
+// en su lugar. La palabra clave "class" y las palabras clave "typename" son
+// mayormente intercambiables en este caso. Para la explicación completa, mira
+// http://en.wikipedia.org/wiki/Typename
+// (sí, esa palabra clave tiene su propia página de Wikipedia).
+
+// Del mismo modo, una plantilla de función:
+template<class T>
+void barkThreeTimes(const T& input)
+{
+ input.bark();
+ input.bark();
+ input.bark();
+}
+
+// Observe que no se especifica nada acerca de los tipos de parámetros aquí.
+// El compilador generará y comprobará cada invocación de la plantilla,
+// por lo que la función anterior funciona con cualquier tipo "T"
+// que tenga un método 'bark' constante!
+
+
+Dog fluffy;
+fluffy.setName("Fluffy")
+barkThreeTimes(fluffy); // Imprime "Fluffy barks" 3 veces.
+
+Los parámetros de la plantilla no tienen que ser las clases:
+template<int Y>
+void printMessage() {
+ cout << "Aprende C++ en " << Y << " minutos!" << endl;
+}
+
+// Y usted puede especializar explícitamente plantillas
+// para código más eficiente.
+// Por supuesto, la mayor parte del mundo real que utiliza una especialización
+// no son tan triviales como esta.
+// Tenga en cuenta que usted todavía tiene que declarar la función (o clase)
+// como plantilla incluso si ha especificado de forma explícita todos
+// los parámetros.
+
+template<>
+void printMessage<10>() {
+ cout << "Aprende C++ rapido en solo 10 minutos!" << endl;
+}
+
+printMessage<20>(); // Prints "Aprende C++ en 20 minutos!"
+printMessage<10>(); // Prints "Aprende C++ rapido en solo 10 minutos!"
+
+
+/////////////////////
+// Manejador de excepciones
+/////////////////////
+
+// La biblioteca estándar proporciona algunos tipos de excepción
+// (mira http://en.cppreference.com/w/cpp/error/exception)
+// pero cualquier tipo puede ser lanzado como una excepción
+#include <exception>
+#include <stdexcept>
+
+//Todas las excepciones lanzadas dentro del bloque _try_ pueden ser
+// capturados por los siguientes manejadores _catch_.
+try {
+ // No asignar excepciones en el heap usando _new_.
+ throw std::runtime_error("Ocurrió un problema");
+}
+
+// Captura excepciones por referencia const si son objetos
+catch (const std::exception& ex)
+{
+ std::cout << ex.what();
+}
+********************************************************************************
+// Captura cualquier excepción no capturada por bloques _catch_ anteriores
+catch (...)
+{
+ std::cout << "Excepción desconocida capturada";
+ throw; // Re-lanza la excepción
+}
+
+///////
+// RAII
+///////
+
+// RAII significa "Resource Acquisition Is Initialization"
+// (Adquisición de recursos es inicialización).
+// A menudo se considera el paradigma más poderoso en C++
+// Y el concepto es simple: un constructor de un objeto
+// Adquiere recursos de ese objeto y el destructor les libera.
+
+// Para entender cómo esto es útil,
+// Considere una función que utiliza un identificador de archivo C:
+void doSomethingWithAFile(const char* filename)
+{
+ // Para empezar, asuma que nada puede fallar.
+
+ FILE* fh = fopen(filename, "r"); // Abre el archivo en modo lectura
+
+ doSomethingWithTheFile(fh);
+ doSomethingElseWithIt(fh);
+
+ fclose(fh); // Cierra el manejador de archivos
+}
+
+// Por desgracia, las cosas se complican rápidamente por el control de errores.
+// Supongamos que fopen puede fallar, y que doSomethingWithTheFile y
+// DoSomethingElseWithIt retornan códigos de error si fallan.
+// (Excepciones son la mejor forma de manejar los fallos,
+// pero algunos programadores, especialmente los que tienen un fondo C,
+// estan en desacuerdo sobre la utilidad de las excepciones).
+// Ahora tenemos que comprobar cada llamado por fallos y cerrar el manejador
+// del archivo si se ha producido un problema.
+bool doSomethingWithAFile(const char* filename)
+{
+ FILE* fh = fopen(filename, "r"); // Abre el archivo en modo lectura
+ if (fh == nullptr) // El puntero retornado es nulo o falla.
+ return false; // Reporta el fallo a quien hizo el llamado.
+
+ // Asume que cada función retorna falso si falla
+ if (!doSomethingWithTheFile(fh)) {
+ fclose(fh); // Cierre el manejador de archivo para que no se filtre.
+ return false; // Propaga el error.
+ }
+ if (!doSomethingElseWithIt(fh)) {
+ fclose(fh); // Cierre el manejador de archivo para que no se filtre.
+ return false; // Propaga el error.
+ }
+
+ fclose(fh); // Cierre el archivo.
+ return true; // Indica que todo funcionó correctamente.
+}
+
+// Programadores C suelen limpiar esto un poco usando goto:
+bool doSomethingWithAFile(const char* filename)
+{
+ FILE* fh = fopen(filename, "r");
+ if (fh == nullptr)
+ return false;
+
+ if (!doSomethingWithTheFile(fh))
+ goto failure;
+
+ if (!doSomethingElseWithIt(fh))
+ goto failure;
+
+ fclose(fh); // Cierre el archivo.
+ return true; // Indica que todo funcionó correctamente.
+
+failure:
+ fclose(fh);
+ return false; // Propagate el error
+}
+
+// Si las funciones indican errores mediante excepciones,
+// Las cosas son un poco más claras, pero pueden optimizarse mas.
+void doSomethingWithAFile(const char* filename)
+{
+ FILE* fh = fopen(filename, "r"); // Abrir el archivo en modo lectura
+ if (fh == nullptr)
+ throw std::runtime_error("No puede abrirse el archivo.");
+
+ try {
+ doSomethingWithTheFile(fh);
+ doSomethingElseWithIt(fh);
+ }
+ catch (...) {
+ fclose(fh); // Asegúrese de cerrar el archivo si se produce un error.
+ throw; // Luego vuelve a lanzar la excepción.
+ }
+
+ fclose(fh); // Cierra el archivo
+}
+
+// Compare esto con el uso de la clase de flujo de archivos de C++ (fstream)
+// fstream utiliza su destructor para cerrar el archivo.
+// Los destructores son llamados automáticamente
+// cuando un objeto queda fuera del ámbito.
+void doSomethingWithAFile(const std::string& filename)
+{
+ // ifstream es la abreviatura de el input file stream
+ std::ifstream fh(filename); // Abre el archivo
+
+ // Hacer algo con el archivo
+ doSomethingWithTheFile(fh);
+ doSomethingElseWithIt(fh);
+
+} // El archivo se cierra automáticamente aquí por el destructor
+
+
+// Esto tiene ventajas _enormes_:
+// 1. No importa lo que pase,
+// El recurso (en este caso el manejador de archivo) será limpiado.
+// Una vez que escribes el destructor correctamente,
+// Es _imposible_ olvidar cerrar el identificador y permitir
+// fugas del recurso.
+// 2. Tenga en cuenta que el código es mucho más limpio.
+// El destructor se encarga de cerrar el archivo detrás de cámaras
+// Sin que tenga que preocuparse por ello.
+// 3. El código es seguro.
+// Una excepción puede ser lanzado en cualquier lugar de la función
+// y la limpieza ocurrirá.
+
+// Todo el código idiomático C++ utiliza RAII ampliamente para todos los
+// recursos.
+// Otros ejemplos incluyen
+// - Memoria usando unique_ptr y shared_ptr
+// - Contenedores (Containers) - la biblioteca estándar linked list,
+// vector (es decir, array con auto-cambio de tamaño), hash maps, etc.
+// Destruimos todos sus contenidos de forma automática
+// cuando quedan fuera del ámbito.
+// - Mutex utilizando lock_guard y unique_lock
+
+
+/////////////////////
+// Cosas divertidas
+/////////////////////
+
+// Aspectos de C ++ que pueden sorprender a los recién llegados
+// (e incluso algunos veteranos).
+// Esta sección es, por desgracia, salvajemente incompleta;
+// C++ es uno de los lenguajes con los que mas facil te disparas en el pie.
+
+// Tu puedes sobreescribir métodos privados!
+class Foo {
+ virtual void bar();
+};
+class FooSub : public Foo {
+ virtual void bar(); // Sobreescribe Foo::bar!
+};
+
+
+// 0 == false == NULL (La mayoria de las veces)!
+bool* pt = new bool;
+*pt = 0; // Establece los puntos de valor de 'pt' en falso.
+pt = 0; // Establece 'pt' al apuntador nulo. Ambas lineas compilan sin error.
+
+// nullptr se supone que arregla un poco de ese tema:
+int* pt2 = new int;
+*pt2 = nullptr; // No compila
+pt2 = nullptr; // Establece pt2 como null.
+
+// Hay una excepción para los valores bool.
+// Esto es para permitir poner a prueba punteros nulos con if (!ptr),
+// pero como consecuencia se puede asignar nullptr a un bool directamente!
+*pt = nullptr; // Esto todavía compila, a pesar de que '*pt' es un bool!
+
+// '=' != '=' != '='!
+// Llama Foo::Foo(const Foo&) o alguna variante (mira movimientos semanticos)
+// copia del constructor.
+Foo f2;
+Foo f1 = f2;
+
+// Llama Foo::Foo(const Foo&) o variante, pero solo copia el 'Foo' parte de
+// 'fooSub'. Cualquier miembro extra de 'fooSub' se descarta. Este
+// comportamiento horrible se llama "Corte de objetos."
+FooSub fooSub;
+Foo f1 = fooSub;
+
+// Llama a Foo::operator=(Foo&) o variantes.
+Foo f1;
+f1 = f2;
+
+
+// Cómo borrar realmente un contenedor:
+class Foo { ... };
+vector<Foo> v;
+for (int i = 0; i < 10; ++i)
+ v.push_back(Foo());
+// La siguiente línea establece el tamaño de v en 0,
+// pero los destructores no son llamados y los recursos no se liberan!
+
+v.empty();
+v.push_back(Foo()); // Nuevo valor se copia en el primer Foo que insertamos
+
+// En verdad destruye todos los valores en v.
+// Consulta la sección acerca de los objetos temporales para la
+// explicación de por qué esto funciona.
+v.swap(vector<Foo>());
+
+```
+Otras lecturas:
+
+Una referencia del lenguaje hasta a la fecha se puede encontrar en
+<http://cppreference.com/w/cpp>
+
+Recursos adicionales se pueden encontrar en <http://cplusplus.com>
diff --git a/es-es/git-es.html.markdown b/es-es/git-es.html.markdown
index 73853a9d..51812447 100644
--- a/es-es/git-es.html.markdown
+++ b/es-es/git-es.html.markdown
@@ -11,15 +11,15 @@ lang: es-es
---
Git es un sistema de control de versiones distribuido diseñado para manejar
-cualquier tipo de proyecto ya sea largos o pequeños, con velocidad y eficiencia.
+cualquier tipo de proyecto, ya sea largo o pequeño, con velocidad y eficiencia.
Git realiza esto haciendo "snapshots" del proyecto, con ello permite
versionar y administrar nuestro código fuente.
## Versionamiento, conceptos.
-### Que es el control de versiones?
-El control de versiones es un sistema que guarda todos los cambios realizados a
+### Qué es el control de versiones?
+El control de versiones es un sistema que guarda todos los cambios realizados en
uno o varios archivos, a lo largo del tiempo.
### Versionamiento centralizado vs Versionamiento Distribuido.
@@ -31,15 +31,15 @@ uno o varios archivos, a lo largo del tiempo.
+ El versionamiento distribuido no tiene una estructura definida, incluso se
puede mantener el estilo de los repositorios SVN con git.
-[Informacion adicional](http://git-scm.com/book/es/Empezando-Acerca-del-control-de-versiones)
+[Información adicional](http://git-scm.com/book/es/Empezando-Acerca-del-control-de-versiones)
-### Por que usar Git?
+### Por qué usar Git?
* Se puede trabajar sin conexion.
* Colaborar con otros es sencillo!.
-* Derivar, Crear ramas del proyecto (aka: Branching) es facil!.
+* Derivar, Crear ramas del proyecto (aka: Branching) es fácil!.
* Combinar (aka: Merging)
-* Git es rapido.
+* Git es rápido.
* Git es flexible.
## Arquitectura de Git.
@@ -48,10 +48,10 @@ uno o varios archivos, a lo largo del tiempo.
Un repositorio es un conjunto de archivos, directorios, registros, cambios (aka:
comits), y encabezados (aka: heads). Imagina que un repositorio es una clase,
-y que sus atributos otorgan acceso al historial del elemento, ademas de otras
+y que sus atributos otorgan acceso al historial del elemento, además de otras
cosas.
-Un repositorio esta compuesto por la carpeta .git y un "arbol de trabajo".
+Un repositorio esta compuesto por la carpeta .git y un "árbol de trabajo".
### Directorio .git (componentes del repositorio)
@@ -62,38 +62,38 @@ y mas.
### Directorio de trabajo (componentes del repositorio)
-Es basicamente los directorios y archivos dentro del repositorio. La mayorioa de
+Es basicamente los directorios y archivos dentro del repositorio. La mayoría de
las veces se le llama "directorio de trabajo".
-### Inidice (componentes del directorio .git)
+### Índice (componentes del directorio .git)
-El inidice es la area de inicio en git. Es basicamente la capa que separa el
+El índice es el área de inicio en git. Es basicamente la capa que separa el
directorio de trabajo, del repositorio en git. Esto otorga a los desarrolladores
-mas poder sobre lo que envia y recibe en el repositorio.
+mas poder sobre lo que envía y recibe en el repositorio.
### Commit (aka: cambios)
Un commit es una captura de un conjunto de cambios, o modificaciones hechas en
el directorio de trabajo. Por ejemplo, si se añaden 5 archivos, se remueven 2,
-estos cambios se almacenaran en un commit (aka: captura). Este commit puede ser o
+estos cambios se almacenarán en un commit (aka: captura). Este commit puede ser o
no ser enviado (aka: "pusheado") hacia un repositorio.
### Branch (rama)
-Un "branch", es escencialmente un apuntador hacia el ultimo commit (cambio
-registrado) que se ha realizado. A medida que se realizan mas commits, este
-apuntador se actualizara automaticamente hacia el ultimo commit.
+Un "branch", es escencialmente un apuntador hacia el último commit (cambio
+registrado) que se ha realizado. A medida que se realizan más commits, este
+apuntador se actualizará automaticamente hacia el ultimo commit.
### "HEAD" y "head" (component of .git dir)
"HEAD" es un apuntador hacia la rama (branch) que se esta utilizando. Un
repositorio solo puede tener un HEAD activo. En cambio "head", es un apuntador a
-cualquier commit realizado, un repositorio puede tener cualquier numero de
+cualquier commit realizado, un repositorio puede tener cualquier número de
"heads".
### conceptos - recursos.
-* [Git para informaticos](http://eagain.net/articles/git-for-computer-scientists/)
+* [Git para informáticos](http://eagain.net/articles/git-for-computer-scientists/)
* [Git para diseñadores](http://hoth.entp.com/output/git_for_designers.html)
@@ -102,8 +102,8 @@ cualquier commit realizado, un repositorio puede tener cualquier numero de
### init
-Crear un repositorio de git vacio. Las configuraciones, informacion almacenada y
-demas son almacenadas en el directorio ".git".
+Crear un repositorio de git vacio. Las configuraciones, información almacenada y
+demás son almacenadas en el directorio ".git".
```bash
$ git init
@@ -127,7 +127,7 @@ $ git config --global user.name "nombre"
### help
-Otorga un accceso rapido a una guia extremadamente detallada de cada comando en
+Otorga un accceso rápido a una guía extremadamente detallada de cada comando en
git. O puede ser usada simplemente como un recordatorio de estos.
```bash
@@ -146,7 +146,7 @@ $ git help init
### status
-Muestra las diferencias entre el archivo indice y el commit al cual apunta el
+Muestra las diferencias entre el archivo índice y el commit al cual apunta el
HEAD actualmente.
@@ -163,7 +163,7 @@ $ git help status
Para añadir archivos al arbol (directorio, repositorio) de trabajo. Si no se
utiliza `git add`, los nuevos archivos no se añadiran al arbol de trabajo, por
-lo que no se incluiran en los commits (cambios).
+lo que no se incluirán en los commits (cambios).
```bash
# Añade un archivo en el directorio de trabajo actual.
@@ -202,7 +202,7 @@ $ git branch master --edit-description
### checkout
Actualiza todos los archivos en el directorio de trabajo para que sean igual que
-las versiones almacenadas en el indice, o en un arbol de trabajo especificado.
+las versiones almacenadas en el índice, o en un árbol de trabajo especificado.
```bash
# Despachar un repositorio. - Por defecto la master branch. (la rama principal llamada 'master')
@@ -215,8 +215,8 @@ $ git checkout -b jdei
### clone
-Clona, o copia, una repo existente en un nuevo directorio. Tambien añada el
-seguimiento hacia las ramas existentes del repo que ha sido clonada, lo que
+Clona, o copia, un repositorio existente en un nuevo directorio. También añade el
+seguimiento hacia las ramas existentes del repositorio que ha sido clonado, lo que
permite subir (push) los archivos hacia una rama remota.
```bash
@@ -226,8 +226,8 @@ $ git clone https://github.com/jquery/jquery.git
### commit
-Almacena los cambios que almacenados en el indice en un nuevo "commit". Este
-commit contiene los cambios hechos mas un resumen hecho por el desarrollador.
+Almacena el contenido actual del índice en un nuevo "commit". Este
+commit contiene los cambios hechos más un resumen proporcionado por el desarrollador.
```bash
# commit with a message
@@ -237,8 +237,8 @@ $ git commit -m "jedi anakin wil be - jedis.list"
### diff
-Muestra las diferencias entre un archivo en el directorio de trabajo, el indice
-y commits.
+Muestra las diferencias entre un archivo en el directorio de trabajo, el índice
+y los commits.
```bash
# Muestra la diferencia entre un directorio de trabajo y el indice.
@@ -253,7 +253,7 @@ $ git diff HEAD
### grep
-Permite realizar una busqueda rapida en un repositorio.
+Permite realizar una busqueda rápida en un repositorio.
Configuracion opcionales:
diff --git a/es-es/go-es.html.markdown b/es-es/go-es.html.markdown
index 86de33ec..c41d693d 100644
--- a/es-es/go-es.html.markdown
+++ b/es-es/go-es.html.markdown
@@ -1,326 +1,450 @@
---
+name: Go
+category: language
language: Go
lang: es-es
filename: learngo-es.go
contributors:
- ["Sonia Keys", "https://github.com/soniakeys"]
+ - ["Christopher Bess", "https://github.com/cbess"]
+ - ["Jesse Johnson", "https://github.com/holocronweaver"]
+ - ["Quint Guvernator", "https://github.com/qguv"]
+ - ["Jose Donizetti", "https://github.com/josedonizetti"]
+ - ["Alexej Friesen", "https://github.com/heyalexej"]
translators:
- ["Adrian Espinosa", "http://www.adrianespinosa.com"]
- ["Jesse Johnson", "https://github.com/holocronweaver"]
+ - ["Nacho Pacheco -- Feb/2015", "https://github.com/gitnacho"]
---
-Go fue creado por la necesidad de hacer el trabajo rápidamente. No es
-la última tendencia en informática, pero es la forma nueva y más
-rápida de resolver problemas reales.
+Go fue creado por la necesidad de hacer el trabajo rápidamente. No es la
+última tendencia en informática, pero es la forma nueva y más rápida de
+resolver problemas reales.
-Tiene conceptos familiares de lenguajes imperativos con tipado
-estático. Es rápido compilando y rápido al ejecutar, añade una
-concurrencia fácil de entender para las CPUs de varios núcleos de hoy
-en día, y tiene características que ayudan con la programación a gran
-escala.
+Tiene conceptos familiares de lenguajes imperativos con tipado estático.
+Es rápido compilando y rápido al ejecutar, añade una concurrencia fácil de
+entender para las CPUs de varios núcleos de hoy día, y tiene
+características que ayudan con la programación a gran escala.
-Go viene con una librería estándar muy buena y una comunidad entusiasta.
+Go viene con una biblioteca estándar muy buena y una entusiasta comunidad.
```go
// Comentario de una sola línea
-/* Comentario
- multi línea */
+/* Comentario
+ multilínea */
-// La cláusula package aparece al comienzo de cada archivo fuente.
-// Main es un nombre especial que declara un ejecutable en vez de una librería.
+// La cláusula `package` aparece al comienzo de cada fichero fuente.
+// `main` es un nombre especial que declara un ejecutable en vez de una
+// biblioteca.
package main
-// La declaración Import declara los paquetes de librerías
-// referenciados en este archivo.
+// La instrucción `import` declara los paquetes de bibliotecas referidos
+// en este fichero.
import (
- "fmt" // Un paquete en la librería estándar de Go.
- "net/http" // Sí, un servidor web!
- "strconv" // Conversiones de cadenas.
- m "math" // Librería matemáticas con alias local m.
+ "fmt" // Un paquete en la biblioteca estándar de Go.
+ "io/ioutil" // Implementa algunas útiles funciones de E/S.
+ m "math" // Biblioteca de matemáticas con alias local m.
+ "net/http" // Sí, ¡un servidor web!
+ "strconv" // Conversiones de cadenas.
)
-// Definición de una función. Main es especial. Es el punto de
-// entrada para el ejecutable. Te guste o no, Go utiliza llaves.
+// Definición de una función. `main` es especial. Es el punto de entrada
+// para el ejecutable. Te guste o no, Go utiliza llaves.
func main() {
- // Println imprime una línea a stdout.
- // Cualificalo con el nombre del paquete, fmt.
- fmt.Println("Hello world!")
+ // Println imprime una línea a stdout.
+ // Cualificalo con el nombre del paquete, fmt.
+ fmt.Println("¡Hola mundo!")
- // Llama a otra función de este paquete.
- beyondHello()
+ // Llama a otra función de este paquete.
+ másAlláDelHola()
}
// Las funciones llevan parámetros entre paréntesis.
// Si no hay parámetros, los paréntesis siguen siendo obligatorios.
-func beyondHello() {
- var x int // Declaración de una variable.
- // Las variables se deben declarar antes de utilizarlas.
- x = 3 // Asignación de variables.
- // Declaración "corta" con := para inferir el tipo, declarar y asignar.
- y := 4
- sum, prod := learnMultiple(x, y) // Función devuelve dos valores.
- fmt.Println("sum:", sum, "prod:", prod) // Simple salida.
- learnTypes() // < y minutes, learn more!
+func másAlláDelHola() {
+ var x int // Declaración de una variable.
+ // Las variables se deben declarar antes de utilizarlas.
+ x = 3 // Asignación de variable.
+ // Declaración "corta" con := para inferir el tipo, declarar y asignar.
+ y := 4
+ suma, producto := aprendeMúltiple(x, y) // La función devuelve dos
+ // valores.
+ fmt.Println("suma:", suma, "producto:", producto) // Simple salida.
+ aprendeTipos() // < y minutos, ¡aprende más!
}
-// Las funciones pueden tener parámetros y (múltiples!) valores de retorno.
-func learnMultiple(x, y int) (sum, prod int) {
- return x + y, x * y // Devolver dos valores.
+// Las funciones pueden tener parámetros y (¡múltiples!) valores de
+// retorno.
+func aprendeMúltiple(x, y int) (suma, producto int) {
+ return x + y, x * y // Devuelve dos valores.
}
// Algunos tipos incorporados y literales.
-func learnTypes() {
- // La declaración corta suele darte lo que quieres.
- s := "Learn Go!" // tipo cadena
-
- s2 := ` Un tipo cadena "puro" puede incluir
+func aprendeTipos() {
+ // La declaración corta suele darte lo que quieres.
+ s := "¡Aprende Go!" // tipo cadena.
+ s2 := `Un tipo cadena "puro" puede incluir
saltos de línea.` // mismo tipo cadena
- // Literal no ASCII. Los fuentes de Go son UTF-8.
- g := 'Σ' // Tipo rune, un alias de int32, alberga un punto unicode.
- f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
- c := 3 + 4i // complex128, representado internamente por dos float64.
- // Sintaxis Var con inicializadores.
- var u uint = 7 // Sin signo, pero la implementación depende del
- // tamaño como en int.
- var pi float32 = 22. / 7
-
- // Sintáxis de conversión con una declaración corta.
- n := byte('\n') // byte es un alias de uint8.
-
- // Los Arrays tienen un tamaño fijo a la hora de compilar.
- var a4 [4]int // Un array de 4 ints, inicializados a 0.
- a3 := [...]int{3, 1, 5} // Un array de 3 ints, inicializados como se indica.
-
- // Los Slices tienen tamaño dinámico. Los arrays y slices tienen sus ventajas
- // y desventajas pero los casos de uso para los slices son más comunes.
- s3 := []int{4, 5, 9} // Comparar con a3. No hay puntos suspensivos.
- s4 := make([]int, 4) // Asigna slices de 4 ints, inicializados a 0.
- var d2 [][]float64 // Solo declaración, sin asignación.
- bs := []byte("a slice") // Sintaxis de conversión de tipo.
-
- p, q := learnMemory() // Declara p, q para ser un tipo puntero a int.
- fmt.Println(*p, *q) // * sigue un puntero. Esto imprime dos ints.
-
- // Los Maps son arrays asociativos dinámicos, como los hash o
- // diccionarios de otros lenguajes.
- m := map[string]int{"three": 3, "four": 4}
- m["one"] = 1
-
- // Las variables no utilizadas en Go producen error.
- // El guión bajo permite "utilizar" una variable, pero descartar su valor.
- _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
- // Esto cuenta como utilización de variables.
- fmt.Println(s, c, a4, s3, d2, m)
-
- learnFlowControl() // Vuelta al flujo.
+ // Literal no ASCII. Los ficheros fuente de Go son UTF-8.
+ g := 'Σ' // Tipo rune, un alias de int32, alberga un carácter unicode.
+ f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
+ c := 3 + 4i // complex128, representado internamente por dos float64.
+ // Sintaxis Var con iniciadores.
+ var u uint = 7 // Sin signo, pero la implementación depende del tamaño
+ // como en int.
+ var pi float32 = 22. / 7
+
+ // Sintáxis de conversión con una declaración corta.
+ n := byte('\n') // byte es un alias para uint8.
+
+ // Los Arreglos tienen un tamaño fijo a la hora de compilar.
+ var a4 [4]int // Un arreglo de 4 ints, iniciados a 0.
+ a3 := [...]int{3, 1, 5} // Un arreglo iniciado con un tamaño fijo de tres
+ // elementos, con valores 3, 1 y 5.
+ // Los Sectores tienen tamaño dinámico. Los arreglos y sectores tienen
+ // sus ventajas y desventajas pero los casos de uso para los sectores
+ // son más comunes.
+ s3 := []int{4, 5, 9} // Comparar con a3. No hay puntos suspensivos.
+ s4 := make([]int, 4) // Asigna sectores de 4 ints, iniciados a 0.
+ var d2 [][]float64 // Solo declaración, sin asignación.
+ bs := []byte("a sector") // Sintaxis de conversión de tipo.
+ // Debido a que son dinámicos, los sectores pueden crecer bajo demanda.
+ // Para añadir elementos a un sector, se utiliza la función incorporada
+ // append().
+ // El primer argumento es el sector al que se está anexando. Comúnmente,
+ // la variable del arreglo se actualiza en su lugar, como en el
+ // siguiente ejemplo.
+ sec := []int{1, 2 , 3} // El resultado es un sector de longitud 3.
+ sec = append(sec, 4, 5, 6) // Añade 3 elementos. El sector ahora tiene una
+ // longitud de 6.
+ fmt.Println(sec) // El sector actualizado ahora es [1 2 3 4 5 6]
+ // Para anexar otro sector, en lugar de la lista de elementos atómicos
+ // podemos pasar una referencia a un sector o un sector literal como
+ // este, con elipsis al final, lo que significa tomar un sector y
+ // desempacar sus elementos, añadiéndolos al sector sec.
+ sec = append(sec, []int{7, 8, 9} ...) // El segundo argumento es un
+ // sector literal.
+ fmt.Println(sec) // El sector actualizado ahora es [1 2 3 4 5 6 7 8 9]
+ p, q := aprendeMemoria() // Declara p, q para ser un tipo puntero a
+ // int.
+ fmt.Println(*p, *q) // * sigue un puntero. Esto imprime dos ints.
+
+ // Los Mapas son arreglos asociativos dinámicos, como los hash o
+ // diccionarios de otros lenguajes.
+ m := map[string]int{"tres": 3, "cuatro": 4}
+ m["uno"] = 1
+
+ // Las variables no utilizadas en Go producen error.
+ // El guión bajo permite "utilizar" una variable, pero descartar su
+ // valor.
+ _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
+ // Esto cuenta como utilización de variables.
+ fmt.Println(s, c, a4, s3, d2, m)
+
+ aprendeControlDeFlujo() // Vuelta al flujo.
+}
+
+// Es posible, a diferencia de muchos otros lenguajes tener valores de
+// retorno con nombre en las funciones.
+// Asignar un nombre al tipo que se devuelve en la línea de declaración de
+// la función nos permite volver fácilmente desde múltiples puntos en una
+// función, así como sólo utilizar la palabra clave `return`, sin nada
+// más.
+func aprendeRetornosNombrados(x, y int) (z int) {
+ z = x * y
+ return // aquí z es implícito, porque lo nombramos antes.
}
-// Go posee recolector de basura. Tiene puntero pero no aritmética de
-// punteros. Puedes cometer un errores con un puntero nil, pero no
+// Go posee recolector de basura. Tiene punteros pero no aritmética de
+// punteros. Puedes cometer errores con un puntero nil, pero no
// incrementando un puntero.
-func learnMemory() (p, q *int) {
- // q y p tienen un tipo puntero a int.
- p = new(int) // Función incorporada que asigna memoria.
- // La asignación de int se inicializa a 0, p ya no es nil.
- s := make([]int, 20) // Asigna 20 ints a un solo bloque de memoria.
- s[3] = 7 // Asignar uno de ellos.
- r := -2 // Declarar otra variable local.
- return &s[3], &r // & toma la dirección de un objeto.
+func aprendeMemoria() (p, q *int) {
+ // Los valores de retorno nombrados q y p tienen un tipo puntero
+ // a int.
+ p = new(int) // Función incorporada que reserva memoria.
+ // La asignación de int se inicia a 0, p ya no es nil.
+ s := make([]int, 20) // Reserva 20 ints en un solo bloque de memoria.
+ s[3] = 7 // Asigna uno de ellos.
+ r := -2 // Declara otra variable local.
+ return &s[3], &r // & toma la dirección de un objeto.
}
-func expensiveComputation() float64 {
- return m.Exp(10)
+func cálculoCaro() float64 {
+ return m.Exp(10)
}
-func learnFlowControl() {
- // La declaración If requiere llaves, pero no paréntesis.
- if true {
- fmt.Println("told ya")
- }
- // El formato está estandarizado por el comando "go fmt."
- if false {
- // Pout.
- } else {
- // Gloat.
- }
- // Utiliza switch preferiblemente para if encadenados.
- x := 42.0
- switch x {
- case 0:
- case 1:
- case 42:
- // Los cases no se mezclan, no requieren de "break".
- case 43:
- // No llega.
+func aprendeControlDeFlujo() {
+ // La declaración If requiere llaves, pero no paréntesis.
+ if true {
+ fmt.Println("ya relatado")
+ }
+ // El formato está estandarizado por la orden "go fmt."
+ if false {
+ // Abadejo.
+ } else {
+ // Relamido.
+ }
+ // Utiliza switch preferentemente para if encadenados.
+ x := 42.0
+ switch x {
+ case 0:
+ case 1:
+ case 42:
+ // Los cases no se mezclan, no requieren de "break".
+ case 43:
+ // No llega.
+ }
+ // Como if, for no utiliza paréntesis tampoco.
+ // Variables declaradas en for e if son locales a su ámbito.
+ for x := 0; x < 3; x++ { // ++ es una instrucción.
+ fmt.Println("iteración", x)
+ }
+ // aquí x == 42.
+
+ // For es la única instrucción de bucle en Go, pero tiene formas
+ // alternativas.
+ for { // Bucle infinito.
+ break // ¡Solo bromeaba!
+ continue // No llega.
+ }
+
+ // Puedes usar `range` para iterar en un arreglo, un sector, una
+ // cadena, un mapa o un canal.
+ // `range` devuelve o bien, un canal o de uno a dos valores (arreglo,
+ // sector, cadena y mapa).
+ for clave, valor := range map[string]int{"uno": 1, "dos": 2, "tres": 3} {
+ // por cada par en el mapa, imprime la clave y el valor
+ fmt.Printf("clave=%s, valor=%d\n", clave, valor)
+ }
+
+ // Como en for, := en una instrucción if significa declarar y asignar
+ // primero, luego comprobar y > x.
+ if y := cálculoCaro(); y > x {
+ x = y
}
- // Como if, for no utiliza paréntesis tampoco.
- // Variables declaradas en for y if son locales de su ámbito local.
- for x := 0; x < 3; x++ { // ++ es una sentencia.
- fmt.Println("iteration", x)
- }
- // x == 42 aqui.
+ // Las funciones literales son "cierres".
+ granX := func() bool {
+ return x > 100 // Referencia a x declarada encima de la instrucción
+ // switch.
+ }
+ fmt.Println("granX:", granX()) // cierto (la última vez asignamos
+ // 1e6 a x).
+ x /= 1.3e3 // Esto hace a x == 1300
+ fmt.Println("granX:", granX()) // Ahora es falso.
+
+ // Es más las funciones literales se pueden definir y llamar en línea,
+ // actuando como un argumento para la función, siempre y cuando:
+ // a) la función literal sea llamada inmediatamente (),
+ // b) el tipo del resultado sea del tipo esperado del argumento
+ fmt.Println("Suma dos números + doble: ",
+ func(a, b int) int {
+ return (a + b) * 2
+ }(10, 2)) // Llamada con argumentos 10 y 2
+ // => Suma dos números + doble: 24
+
+ // Cuando lo necesites, te encantará.
+ goto encanto
+encanto:
+
+ aprendeFunciónFábrica() // func devolviendo func es divertido(3)(3)
+ aprendeADiferir() // Un rápido desvío a una importante palabra clave.
+ aprendeInterfaces() // ¡Buen material dentro de poco!
+}
- // For es la única sentencia de bucle en Go, pero tiene formas alternativas.
- for { // Bucle infinito.
- break // Solo bromeaba!
- continue // No llega.
- }
- // Como en for, := en una sentencia if significa declarar y asignar primero,
- // luego comprobar y > x.
- if y := expensiveComputation(); y > x {
- x = y
- }
- // Los literales de funciones son "closures".
- xBig := func() bool {
- return x > 100 // Referencia a x declarada encima de la sentencia switch.
- }
- fmt.Println("xBig:", xBig()) // verdadero (la última vez asignamos 1e6 a x).
- x /= m.Exp(9) // Esto lo hace x == e.
- fmt.Println("xBig:", xBig()) // Ahora es falso.
+func aprendeFunciónFábrica() {
+ // Las dos siguientes son equivalentes, la segunda es más práctica
+ fmt.Println(instrucciónFábrica("día")("Un bello", "de verano"))
+
+ d := instrucciónFábrica("atardecer")
+ fmt.Println(d("Un hermoso", "de verano"))
+ fmt.Println(d("Un maravilloso", "de verano"))
+}
- // Cuando lo necesites, te encantará.
- goto love
-love:
+// Los decoradores son comunes en otros lenguajes. Lo mismo se puede hacer
+// en Go con funciónes literales que aceptan argumentos.
+func instrucciónFábrica(micadena string) func(antes, después string) string {
+ return func(antes, después string) string {
+ return fmt.Sprintf("¡%s %s %s!", antes, micadena, después) // nueva cadena
+ }
+}
- learnInterfaces() // Buen material dentro de poco!
+func aprendeADiferir() (ok bool) {
+ // las instrucciones diferidas se ejecutan justo antes de que la
+ // función regrese.
+ defer fmt.Println("las instrucciones diferidas se ejecutan en orden inverso (PEPS).")
+ defer fmt.Println("\nEsta línea se imprime primero debido a que")
+ // Defer se usa comunmente para cerrar un fichero, por lo que la
+ // función que cierra el fichero se mantiene cerca de la función que lo
+ // abrió.
+ return true
}
// Define Stringer como un tipo interfaz con un método, String.
type Stringer interface {
- String() string
+ String() string
}
-// Define pair como un struct con dos campos int, x e y.
-type pair struct {
- x, y int
+// Define par como una estructura con dos campos int, x e y.
+type par struct {
+ x, y int
}
-// Define un método del tipo pair. Pair ahora implementa Stringer.
-func (p pair) String() string { // p se llama "recibidor"
- // Sprintf es otra función pública del paquete fmt.
- // La sintaxis con punto referencia campos de p.
- return fmt.Sprintf("(%d, %d)", p.x, p.y)
+// Define un método en el tipo par. Par ahora implementa a Stringer.
+func (p par) String() string { // p se conoce como el "receptor"
+ // Sprintf es otra función pública del paquete fmt.
+ // La sintaxis con punto se refiere a los campos de p.
+ return fmt.Sprintf("(%d, %d)", p.x, p.y)
}
-func learnInterfaces() {
- // La sintaxis de llaves es un "literal struct". Evalúa a un struct
- // inicializado. La sintaxis := declara e inicializa p a este struct.
- p := pair{3, 4}
- fmt.Println(p.String()) // Llamar al método String de p, de tipo pair.
- var i Stringer // Declarar i como interfaz tipo Stringer.
- i = p // Válido porque pair implementa Stringer.
- // Llamar al metodo String de i, de tipo Stringer. Misma salida que arriba.
- fmt.Println(i.String())
-
- // Las funciones en el paquete fmt llaman al método String para
- // preguntar a un objeto por una versión imprimible de si mismo.
- fmt.Println(p) // Salida igual que arriba. Println llama al método String.
- fmt.Println(i) // Salida igual que arriba.
-
- learnVariadicParams("great", "learning", "here!")
+func aprendeInterfaces() {
+ // La sintaxis de llaves es una "estructura literal". Evalúa a una
+ // estructura iniciada. La sintaxis := declara e inicia p a esta
+ // estructura.
+ p := par{3, 4}
+ fmt.Println(p.String()) // Llama al método String de p, de tipo par.
+ var i Stringer // Declara i como interfaz de tipo Stringer.
+ i = p // Válido porque par implementa Stringer.
+ // Llama al metodo String de i, de tipo Stringer. Misma salida que
+ // arriba.
+ fmt.Println(i.String())
+
+ // Las funciones en el paquete fmt llaman al método String para
+ // consultar un objeto por una representación imprimible de si
+ // mismo.
+ fmt.Println(p) // Salida igual que arriba. Println llama al método
+ // String.
+ fmt.Println(i) // Salida igual que arriba.
+ aprendeNúmeroVariableDeParámetros("¡gran", "aprendizaje", "aquí!")
}
// Las funciones pueden tener número variable de argumentos.
-func learnVariadicParams(myStrings ...interface{}) {
- // Iterar cada valor de la variadic.
- for _, param := range myStrings {
- fmt.Println("param:", param)
- }
-
- // Pasar valor variadic como parámetro variadic.
- fmt.Println("params:", fmt.Sprintln(myStrings...))
-
- learnErrorHandling()
+func aprendeNúmeroVariableDeParámetros(misCadenas ...interface{}) {
+ // Itera en cada valor de los argumentos variables.
+ // El espacio en blanco aquí omite el índice del argumento arreglo.
+ for _, parámetro := range misCadenas {
+ fmt.Println("parámetro:", parámetro)
+ }
+
+ // Pasa el valor de múltiples variables como parámetro variadic.
+ fmt.Println("parámetros:", fmt.Sprintln(misCadenas...))
+ aprendeManejoDeError()
}
-func learnErrorHandling() {
- // ", ok" forma utilizada para saber si algo funcionó o no.
- m := map[int]string{3: "three", 4: "four"}
- if x, ok := m[1]; !ok { // ok será falso porque 1 no está en el map.
- fmt.Println("no one there")
- } else {
- fmt.Print(x) // x sería el valor, si estuviera en el map.
- }
- // Un valor de error comunica más información sobre el problema aparte de "ok".
- if _, err := strconv.Atoi("non-int"); err != nil { // _ descarta el valor
- // Imprime "strconv.ParseInt: parsing "non-int": invalid syntax".
- fmt.Println(err)
- }
- // Revisarmeos las interfaces más tarde. Mientras tanto,
- learnConcurrency()
+func aprendeManejoDeError() {
+ // ", ok" forma utilizada para saber si algo funcionó o no.
+ m := map[int]string{3: "tres", 4: "cuatro"}
+ if x, ok := m[1]; !ok { // ok será falso porque 1 no está en el mapa.
+ fmt.Println("nada allí")
+ } else {
+ fmt.Print(x) // x sería el valor, si estuviera en el mapa.
+ }
+ // Un valor de error comunica más información sobre el problema aparte
+ // de "ok".
+ if _, err := strconv.Atoi("no-int"); err != nil { // _ descarta el
+ // valor
+ // Imprime "strconv.ParseInt: parsing "no-int": invalid syntax".
+ fmt.Println(err)
+ }
+ // Revisaremos las interfaces más adelante. Mientras tanto...
+ aprendeConcurrencia()
}
-// c es un canal, un objeto de comunicación de concurrencia segura.
+// c es un canal, un objeto de comunicación concurrente seguro.
func inc(i int, c chan int) {
- c <- i + 1 // <- es el operador "enviar" cuando un canal aparece a la izquierda.
+ c <- i + 1 // <- es el operador "enviar" cuando aparece un canal a la
+ // izquierda.
}
// Utilizaremos inc para incrementar algunos números concurrentemente.
-func learnConcurrency() {
- // Misma función make utilizada antes para crear un slice. Make asigna e
- // inicializa slices, maps, y channels.
- c := make(chan int)
- // Iniciar tres goroutines concurrentes. Los números serán incrementados
- // concurrentemente, quizás en paralelo si la máquina es capaz y
- // está correctamente configurada. Las tres envían al mismo channel.
- go inc(0, c) // go es una sentencia que inicia una nueva goroutine.
- go inc(10, c)
- go inc(-805, c)
- // Leer los tres resultados del channel e imprimirlos.
- // No se puede saber en que orden llegarán los resultados!
- fmt.Println(<-c, <-c, <-c) // Channel a la derecha, <- es el operador "recibir".
-
- cs := make(chan string) // Otro channel, este gestiona cadenas.
- ccs := make(chan chan string) // Un channel de cadenas de channels.
- go func() { c <- 84 }() // Iniciar una nueva goroutine solo para
- // enviar un valor.
- go func() { cs <- "wordy" }() // Otra vez, para cs en esta ocasión.
- // Select tiene una sintáxis parecida a la sentencia switch pero
- // cada caso involucra una operacion de channels. Selecciona un caso
- // de forma aleatoria de los casos que están listos para comunicarse.
- select {
- case i := <-c: // El valor recibido puede ser asignado a una variable,
- fmt.Printf("it's a %T", i)
- case <-cs: // o el valor puede ser descartado.
- fmt.Println("it's a string")
- case <-ccs: // Channel vacío, no está listo para la comunicación.
- fmt.Println("didn't happen.")
- }
-
- // En este punto un valor fue devuelvto de c o cs. Uno de las dos
- // goroutines que se iniciaron se ha completado, la otrá permancerá
- // bloqueada.
-
- learnWebProgramming() // Go lo hace. Tu también quieres hacerlo.
+func aprendeConcurrencia() {
+ // Misma función make utilizada antes para crear un sector. Make asigna
+ // e inicia sectores, mapas y canales.
+ c := make(chan int)
+ // Inicia tres rutinasgo concurrentes. Los números serán incrementados
+ // concurrentemente, quizás en paralelo si la máquina es capaz y está
+ // correctamente configurada. Las tres envían al mismo canal.
+ go inc(0, c) // go es una instrucción que inicia una nueva rutinago.
+ go inc(10, c)
+ go inc(-805, c)
+ // Lee los tres resultados del canal y los imprime.
+ // ¡No se puede saber en que orden llegarán los resultados!
+ fmt.Println(<-c, <-c, <-c) // Canal a la derecha, <- es el operador
+ // "recibe".
+
+ cs := make(chan string) // Otro canal, este gestiona cadenas.
+ ccs := make(chan chan string) // Un canal de canales cadena.
+ go func() { c <- 84 }() // Inicia una nueva rutinago solo para
+ // enviar un valor.
+ go func() { cs <- "verboso" }() // Otra vez, para cs en esta ocasión.
+ // Select tiene una sintáxis parecida a la instrucción switch pero cada
+ // caso involucra una operacion con un canal. Selecciona un caso de
+ // forma aleatoria de los casos que están listos para comunicarse.
+ select {
+ case i := <-c: // El valor recibido se puede asignar a una variable,
+ fmt.Printf("es un %T", i)
+ case <-cs: // o el valor se puede descartar.
+ fmt.Println("es una cadena")
+ case <-ccs: // Canal vacío, no está listo para la comunicación.
+ fmt.Println("no sucedió.")
+ }
+
+ // En este punto un valor fue devuelto de c o cs. Una de las dos
+ // rutinasgo que se iniciaron se ha completado, la otrá permancerá
+ // bloqueada.
+
+ aprendeProgramaciónWeb() // Go lo hace. Tú también quieres hacerlo.
}
// Una simple función del paquete http inicia un servidor web.
-func learnWebProgramming() {
- // El primer parámetro de la direccinón TCP a la que escuchar.
- // El segundo parámetro es una interfaz, concretamente http.Handler.
- err := http.ListenAndServe(":8080", pair{})
- fmt.Println(err) // no ignorar errores
+func aprendeProgramaciónWeb() {
+// El primer parámetro es la direccinón TCP a la que escuchar.
+ // El segundo parámetro es una interfaz, concretamente http.Handler.
+ go func() {
+ err := http.ListenAndServe(":8080", par{})
+ fmt.Println(err) // no ignora errores
+ }()
+ consultaAlServidor()
}
-// Haz pair un http.Handler implementando su único método, ServeHTTP.
-func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
- // Servir datos con un método de http.ResponseWriter.
- w.Write([]byte("You learned Go in Y minutes!"))
+// Hace un http.Handler de par implementando su único método, ServeHTTP.
+func (p par) ServeHTTP(w http.ResponseWriter, r *http.Request) {
+ // Sirve datos con un método de http.ResponseWriter.
+ w.Write([]byte("¡Aprendiste Go en Y minutos!"))
+}
+
+func consultaAlServidor() {
+ resp, err := http.Get("http://localhost:8080")
+ fmt.Println(err)
+ defer resp.Body.Close()
+ cuerpo, err := ioutil.ReadAll(resp.Body)
+ fmt.Printf("\nEl servidor web dijo: `%s`\n", string(cuerpo))
}
```
-## Para leer más
+## Más información
+
+La raíz de todas las cosas sobre Go es el
+[sitio web oficial de Go](http://golang.org/).
+Allí puedes seguir el tutorial, jugar interactivamente y leer mucho más.
-La raíz de todas las cosas de Go es la [web oficial de Go](http://golang.org/).
-Ahí puedes seguir el tutorial, jugar interactivamente y leer mucho.
+La definición del lenguaje es altamente recomendada. Es fácil de leer y
+sorprendentemente corta (como la definición del lenguaje Go en estos
+días).
-La propia definición del lenguaje también está altamente
-recomendada. Es fácil de leer e increíblemente corta (como otras
-definiciones de lenguajes hoy en día)
+Puedes jugar con el código en el
+[parque de diversiones Go](https://play.golang.org/p/ncRC2Zevag). ¡Trata
+de cambiarlo y ejecutarlo desde tu navegador! Ten en cuenta que puedes
+utilizar [https://play.golang.org]( https://play.golang.org) como un
+[REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) para probar
+cosas y el código en el navegador, sin ni siquiera instalar Go.
-En la lista de lectura de estudiantes de Go está el código fuente de
-la librería estándar. Muy bien documentada, demuestra lo mejor de Go
-leíble, comprendible, estilo Go y formas Go. Pincha en el nombre de
-una función en la documentación y te aparecerá el código fuente!
+En la lista de lecturas para estudiantes de Go está el
+[código fuente de la biblioteca estándar](http://golang.org/src/pkg/).
+Ampliamente documentado, que demuestra lo mejor del legible y comprensible
+Go, con su característico estilo y modismos. ¡O puedes hacer clic en un
+nombre de función en [la documentación](http://golang.org/pkg/) y
+aparecerá el código fuente!
+Otro gran recurso para aprender Go está en
+[Go con ejemplos](http://goconejemplos.com/).
diff --git a/es-es/javascript-es.html.markdown b/es-es/javascript-es.html.markdown
index a1348508..fd01e7b9 100644
--- a/es-es/javascript-es.html.markdown
+++ b/es-es/javascript-es.html.markdown
@@ -16,8 +16,7 @@ con Java para aplicaciones más complejas. Debido a su integracion estrecha con
web y soporte por defecto de los navegadores modernos se ha vuelto mucho más común
para front-end que Java.
-JavaScript no sólo se limita a los navegadores web:
-* Node.js: Un proyecto que provee con un ambiente para el motor V8 de Google Chrome.
+JavaScript no sólo se limita a los navegadores web, aunque: Node.js, Un proyecto que proporciona un entorno de ejecución independiente para el motor V8 de Google Chrome, se está volviendo más y más popular.
¡La retroalimentación es bienvenida! Puedes encontrarme en:
[@adambrenecki](https://twitter.com/adambrenecki), o
@@ -49,6 +48,7 @@ hazAlgo()
// Toda la aritmética básica funciona como uno esperaría.
1 + 1; // = 2
+0.1 + 0.2; // = 0.30000000000000004
8 - 1; // = 7
10 * 2; // = 20
35 / 5; // = 7
@@ -102,9 +102,11 @@ false;
// Los tipos no importan con el operador ==...
"5" == 5; // = true
+null == undefined; // = true
// ...a menos que uses ===
"5" === 5; // = false
+null === undefined; // false
// Los Strings funcionan como arreglos de caracteres
// Puedes accesar a cada caracter con la función charAt()
@@ -126,7 +128,7 @@ undefined; // usado para indicar que un valor no está presente actualmente
// Aunque 0 === "0" sí es false.
///////////////////////////////////
-// 2. Variables, Arreglos y Objetos
+// 2. Variables, Arrays y Objetos
// Las variables se declaran con la palabra var. JavaScript cuenta con tipado dinámico,
// así que no se necesitan aplicar tipos. La asignación se logra con el operador =.
@@ -220,7 +222,6 @@ for (var i = 0; i < 5; i++){
}
// && es un "y" lógico, || es un "o" lógico
-var casa = {tamano:"grande",casa:"color"};
if (casa.tamano == "grande" && casa.color == "azul"){
casa.contiene = "oso";
}
diff --git a/es-es/julia-es.html.markdown b/es-es/julia-es.html.markdown
index 203ee3bb..e4181609 100644
--- a/es-es/julia-es.html.markdown
+++ b/es-es/julia-es.html.markdown
@@ -4,757 +4,937 @@ contributors:
- ["Leah Hanson", "http://leahhanson.us"]
translators:
- ["Guillermo Garza", "http://github.com/ggarza"]
+ - ["Ismael Venegas Castelló", "https://github.com/Ismael-VC"]
filename: learnjulia-es.jl
lang: es-es
---
-Julia es un nuevo lenguaje funcional homoiconic enfocado en computación técnica.
-Aunque que tiene todo el poder de macros homoiconic, funciones de primera
-clase, y control de bajo nivel, Julia es tan fácil de aprender y utilizar como
-Python.
+![JuliaLang](http://s13.postimg.org/z89djuwyf/julia_small.png)
-Esto se basa en la versión de desarrollo actual de Julia, del 18 de octubre de
-2013.
+[Julia](http://julialanges.github.io) es un [lenguaje de programación](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n) [multiplataforma](http://es.wikipedia.org/wiki/Multiplataforma) y [multiparadigma](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n_multiparadigma) de [tipado dinámico](http://es.wikipedia.org/wiki/Tipado_din%C3%A1mico), [alto nivel](http://es.wikipedia.org/wiki/Lenguaje_de_alto_nivel) y [alto desempeño](http://es.wikipedia.org/wiki/Computaci%C3%B3n_de_alto_rendimiento) para la computación [genérica](http://es.wikipedia.org/wiki/Lenguaje_de_programaci%C3%B3n_de_prop%C3%B3sito_general), [técnica y científica](http://es.wikipedia.org/wiki/Computaci%C3%B3n_cient%C3%ADfica), con una sintaxis que es familiar para los usuarios de otros entornos de computación técnica y científica. Provee de un [sofisticado compilador JIT](http://es.wikipedia.org/wiki/Compilaci%C3%B3n_en_tiempo_de_ejecuci%C3%B3n), [ejecución distribuida y paralela](http://docs.julialang.org/en/release-0.3/manual/parallel-computing), [precisión numérica](http://julia.readthedocs.org/en/latest/manual/integers-and-floating-point-numbers) y de una [extensa librería con funciones matemáticas](http://docs.julialang.org/en/release-0.3/stdlib). La librería estándar, escrita casi completamente en Julia, también integra las mejores y más maduras librerías de C y Fortran para el [álgebra lineal](http://docs.julialang.org/en/release-0.3/stdlib/linalg), [generación de números aleatorios](http://docs.julialang.org/en/release-0.3/stdlib/numbers/?highlight=random#random-numbers), [procesamiento de señales](http://docs.julialang.org/en/release-0.3/stdlib/math/?highlight=signal#signal-processing), y [procesamiento de cadenas](http://docs.julialang.org/en/release-0.3/stdlib/strings). Adicionalmente, la comunidad de [desarrolladores de Julia](https://github.com/JuliaLang/julia/graphs/contributors) contribuye un número de [paquetes externos](http://pkg.julialang.org) a través del gestor de paquetes integrado de Julia a un paso acelerado. [IJulia](https://github.com/JuliaLang/IJulia.jl), una colaboración entre las comunidades de [IPython](http://ipython.org) y Julia, provee de una poderosa interfaz gráfica basada en el [navegador para Julia](https://juliabox.org).
-```ruby
+En Julia los programas están organizados entorno al [despacho múltiple](http://docs.julialang.org/en/release-0.3/manual/methods/#man-methods); definiendo funciones y sobrecargándolas para diferentes combinaciones de tipos de argumentos, los cuales también pueden ser definidos por el usuario.
+
+### ¡Prueba Julia ahora mismo!
+
+* [TryJupyter](https://try.jupyter.org)
+* [JuliaBox](https://juliabox.org)
+* [SageMathCloud](https://cloud.sagemath.com)
+
+### Resumen de Características:
-# Comentarios de una línea comienzan con una almohadilla (o signo gato)
+* [Despacho múltiple](http://en.wikipedia.org/wiki/Multiple_dispatch): permite definir el comportamiento de las funciones a través de múltiples combinaciones de tipos de argumentos (**métodos**).
+* Sistema de **tipado dinámico**: tipos para la documentación, la optimización y el despacho.
+* [Buen desempeño](http://julialang.org/benchmarks), comparado al de lenguajes **estáticamente compilados** como C.
+* [Gestor de paquetes](http://docs.julialang.org/en/release-0.3/stdlib/pkg) integrado.
+* [Macros tipo Lisp](http://docs.julialang.org/en/release-0.3/manual/metaprogramming/#macros) y otras comodidades para la [meta programación](http://docs.julialang.org/en/release-0.3/manual/metaprogramming).
+* Llamar funciones de otros lenguajes, mediante paquetes como: **Python** ([PyCall](https://github.com/stevengj/PyCall.jl)), [Mathematica](http://github.com/one-more-minute/Mathematica.jl), **Java** ([JavaCall](http://github.com/aviks/JavaCall.jl)), **R** ([Rif](http://github.com/lgautier/Rif.jl) y [RCall](http://github.com/JuliaStats/RCall.jl)) y **Matlab** ([MATLAB](http://github.com/JuliaLang/MATLAB.jl)).
+* [Llamar funciones de C y Fortran](http://docs.julialang.org/en/release-0.3/manual/calling-c-and-fortran-code) **directamente**: sin necesidad de usar envoltorios u APIs especiales.
+* Poderosas características de **línea de comandos** para [gestionar otros procesos](http://docs.julialang.org/en/release-0.3/manual/running-external-programs).
+* Diseñado para la [computación paralela y distribuida](http://docs.julialang.org/en/release-0.3/manual/parallel-computing) **desde el principio**.
+* [Corrutinas](http://en.wikipedia.org/wiki/Coroutine): hilos ligeros "**verdes**".
+* Los [tipos definidos por el usuario](http://docs.julialang.org/en/release-0.3/manual/types) son tan **rápidos y compactos** como los tipos estándar integrados.
+* [Generación automática de código](http://docs.julialang.org/en/release-0.3/stdlib/base/?highlight=%40code#internals) **eficiente y especializado** para diferentes tipos de argumentos.
+* [Conversiones y promociones](http://docs.julialang.org/en/release-0.3/manual/conversion-and-promotion) para tipos numéricos y de otros tipos, **elegantes y extensibles**.
+* Soporte eficiente para [Unicode](http://es.wikipedia.org/wiki/Unicode), incluyendo [UTF-8](http://es.wikipedia.org/wiki/UTF-8) pero sin limitarse solo a este.
+* [Licencia MIT](https://github.com/JuliaLang/julia/blob/master/LICENSE.md): libre y de código abierto.
+
+Esto se basa en la versión `0.3.11`.
+
+```ruby
+# Los comentarios de una línea comienzan con una almohadilla (o signo de gato).
-#= Commentarios multilinea pueden escribirse
- usando '#=' antes de el texto y '=#'
- después del texto. También se pueden anidar.
+#=
+ Los comentarios multilínea pueden escribirse
+ usando '#=' antes de el texto y '=#'
+ después del texto. También se pueden anidar.
=#
-####################################################
-## 1. Tipos de datos primitivos y operadores.
-####################################################
-# Todo en Julia es una expresión.
+##############################################
+# 1. Tipos de datos primitivos y operadores. #
+##############################################
+
+# Todo en Julia es una expresión (Expr).
# Hay varios tipos básicos de números.
-3 # => 3 (Int64)
-3.2 # => 3.2 (Float64)
-2 + 1im # => 2 + 1im (Complex{Int64})
-2//3 # => 2//3 (Rational{Int64})
+3 # => 3 # Int64
+3.2 # => 3.2 # Float64
+2 + 1im # => 2 + 1im # Complex{Int64}
+2 // 3 # => 2//3 # Rational{Int64}
# Todos los operadores infijos normales están disponibles.
-1 + 1 # => 2
-8 - 1 # => 7
-10 * 2 # => 20
-35 / 5 # => 7.0
-5/2 # => 2.5 # dividir un Int por un Int siempre resulta en un Float
-div (5, 2) # => 2 # para un resultado truncado, usa div
-5 \ 35 # => 7.0
-2 ^ 2 # => 4 # exponente, no es xor
-12 % 10 # => 2
-
-# Refuerza la precedencia con paréntesis
-(1 + 3) * 2 # => 8
-
-# Operadores a nivel de bit
-~2 # => -3 # bitwise not
-3 & 5 # => 1 # bitwise and
-2 | 4 # => 6 # bitwise or
-2 $ 4 # => 6 # bitwise xor
-2 >>> 1 # => 1 # logical shift right
-2 >> 1 # => 1 # arithmetic shift right
-2 << 1 # => 4 # logical/arithmetic shift left
-
-# Se puede utilizar la función bits para ver la representación binaria de un
-# número.
+1 + 1 # => 2
+8 - 1 # => 7
+10 * 2 # => 20
+35 / 5 # => 7.0 # dividir un Int por un Int siempre resulta
+ # en un Float
+5 / 2 # => 2.5
+div(5, 2) # => 2 # para un resultado truncado, usa la función div
+5 \ 35 # => 7.0
+2 ^ 2 # => 4 # exponente, no es XOR
+12 % 10 # => 2
+
+# Refuerza la precedencia con paréntesis.
+(1 + 3) * 2 # => 8
+
+# Operadores a nivel de bit.
+~2 # => -3 # bitwise NOT
+3 & 5 # => 1 # bitwise AND
+2 | 4 # => 6 # bitwise OR
+2 $ 4 # => 6 # bitwise XOR
+2 >>> 1 # => 1 # desplazamiento lógico hacia la derecha
+2 >> 1 # => 1 # desplazamiento aritmético hacia la derecha
+2 << 1 # => 4 # desplazamiento lógico/aritmético hacia la izquierda
+
+# Se puede utilizar la función bits para ver la representación
+# binaria de un número.
bits(12345)
# => "0000000000000000000000000000000000000000000000000011000000111001"
+
bits(12345.0)
# => "0100000011001000000111001000000000000000000000000000000000000000"
-# Valores 'boolean' (booleanos) son primitivos
-true
-false
-
-# Operadores Boolean (booleanos)
-!true # => false
-!false # => true
-1 == 1 # => true
-2 == 1 # => false
-1 != 1 # => false
-2 != 1 # => true
-1 < 10 # => true
-1 > 10 # => false
-2 <= 2 # => true
-2 >= 2 # => true
+# Los valores booleanos (Bool) son primitivos.
+true # => true
+false # => false
+
+# Operadores booleanos.
+!true # => false
+!false # => true
+1 == 1 # => true
+2 == 1 # => false
+1 != 1 # => false
+2 != 1 # => true
+1 < 10 # => true
+1 > 10 # => false
+2 <= 2 # => true
+2 >= 2 # => true
+
# ¡Las comparaciones pueden ser concatenadas!
-1 < 2 < 3 # => true
-2 < 3 < 2 # => false
+1 < 2 < 3 # => true
+2 < 3 < 2 # => false
-# Strings se crean con "
-"Esto es un string."
+# Los literales de cadenas (String) se crean con la comilla doble: "
+"Esto es una cadena."
-# Literales de caracteres se escriben con '
+# Los literales de caracteres (Char) se crean con la comilla simple: '
'a'
-# Una string puede ser indexado como una array de caracteres
-"Esto es un string."[1] # => 'E' # Índices en Julia empiezen del 1
-# Sin embargo, esto no va a funcionar bien para strings UTF8,
+# Una cadena puede ser indexada como una arreglo de caracteres.
+"Esto es un string."[1] # => 'E' # Los índices en Julia comienzan en: 1
+
+# Sin embargo, esto no va a funcionar bien para las cadenas UTF8 (UTF8String),
# Lo que se recomienda es la iteración (map, for, etc).
-# $ puede ser utilizado para la interpolación de strings:
-"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
-# Se puede poner cualquier expresión de Julia dentro los paréntesis.
+# $ puede ser utilizado para la interpolación de cadenas, se puede poner
+# cualquier expresión de Julia dentro los paréntesis.
+"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
-# Otro forma de formatear strings es el macro printf
-@printf "%d es menor de %f" 4.5 5.3 # 5 es menor de 5.300000
+# Otra forma para formatear cadenas es usando el macro printf.
+@printf "%d es menor de %f\n" 4.5 5.3 # 5 es menor de 5.300000
-# Imprimir es muy fácil
-println("Soy Julia. ¡Encantado de conocerte!")
+# ¡Imprimir es muy fácil!
+println("¡Hola Julia!") # ¡Hola Julia!
-####################################################
-## 2. Variables y Colecciones
-####################################################
+
+##############################
+# 2. Variables y Colecciones #
+##############################
# No hay necesidad de declarar las variables antes de asignarlas.
-una_variable = 5 # => 5
-una_variable # => 5
+una_variable = 5 # => 5
+una_variable # => 5
-# Acceder a variables no asignadas previamente es una excepción.
+# Acceder a una variable no asignada previamente es una excepción.
try
- otra_variable # => ERROR: some_other_var not defined
+ otra_variable # ERROR: otra_variable not defined
catch e
- println(e)
+ println(e) # UndefVarError(:otra_variable)
end
-# Los nombres de variables comienzan con una letra.
-# Después de eso, puedes utilizar letras, dígitos, guiones y signos de
+# Los nombres de variables comienzan con una letra o guion bajo: _.
+# Después de eso, puedes utilizar letras, dígitos, guiones bajos y signos de
# exclamación.
-OtraVariable123! = 6 # => 6
+otraVariable_123! = 6 # => 6
+
+# También puedes utilizar caracteres Unicode.
+☃ = 8 # => 8
-# También puede utilizar caracteres unicode
-☃ = 8 # => 8
# Estos son especialmente útiles para la notación matemática
-2 * π # => 6.283185307179586
-
-# Una nota sobre las convenciones de nomenclatura de Julia:
-#
-# * Los nombres de las variables aparecen en minúsculas, con separación de
-# palabra indicado por underscore ('\ _').
-#
-# * Los nombres de los tipos comienzan con una letra mayúscula y separación de
-# palabras se muestra con CamelCase en vez de underscore.
-#
-# * Los nombres de las funciones y los macros están en minúsculas, sin
-# underscore.
-#
-# * Funciones que modifican sus inputs tienen nombres que terminan en!. Estos
-# funciones a veces se llaman mutating functions o in-place functions.
-
-# Los Arrays almacenan una secuencia de valores indexados entre 1 hasta n
-a = Int64[] # => 0-element Int64 Array
-
-# Literales de arrays 1-dimensionales se pueden escribir con valores separados
-# por comas.
-b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6]
-b[1] # => 4
-b[end] # => 6
-
-# Los arrays 2-dimensionales usan valores separados por espacios y filas
-# separados por punto y coma.
-matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
-
-# Añadir cosas a la final de una lista con push! y append!
-push!(a,1) # => [1]
-push!(a,2) # => [1,2]
-push!(a,4) # => [1,2,4]
-push!(a,3) # => [1,2,4,3]
-append!(a,b) # => [1,2,4,3,4,5,6]
-
-# Eliminar de la final con pop
-pop!(b) # => 6 y b ahora es [4,5]
-
-# Vamos a ponerlo de nuevo
-push!(b, 6) # b es ahora [4,5,6] de nuevo.
-
-a[1] # => 1 # recuerdan que los índices de Julia empiezan desde 1, no desde 0!
-
-# end es una abreviatura para el último índice. Se puede utilizar en cualquier
-# expresión de indexación
-a[end] # => 6
-
-# tambien hay shift y unshift
-shift!(a) # => 1 y a es ahora [2,4,3,4,5,6]
-unshift!(a,7) # => [7,2,4,3,4,5,6]
-
-# Nombres de funciónes que terminan en exclamaciones indican que modifican
-# su argumento.
-arr = [5,4,6] # => 3-element Int64 Array: [5,4,6]
-sort(arr) # => [4,5,6]; arr es todavía [5,4,6]
-sort!(arr) # => [4,5,6]; arr es ahora [4,5,6]
-
-# Buscando fuera de límites es un BoundsError
+# (multiplicación implicita).
+2π # => 6.283185307179586
+
+#=
+ Una nota sobre las convenciones de nomenclatura de Julia:
+
+ * Los nombres de las variables aparecen en minúsculas, con separación de
+ palabra indicado por un guion bajo:
+
+ otra_variable
+
+ * Los nombres de los tipos comienzan con una letra mayúscula y separación de
+ palabras se muestra con CamelCase en vez de guión bajo:
+
+ OtroTipo
+
+ * Los nombres de las funciones y los macros están en minúsculas, sin
+ underscore:
+
+ otromacro
+
+ * Funciones que modifican sus entradas tienen nombres que terminan en: !.
+ Estas funciones a veces se les llaman funciones transformadoras o
+ funciones in situ:
+
+ otra_funcion!
+=#
+
+# Los arreglos (Array) almacenan una secuencia de valores indexados de entre 1 hasta n.
+a = Int64[] # => 0-element Array{Int64,1}
+
+# Los literales de arregos unidimensionales se pueden escribir con valores
+# separados por comas.
+b = [4, 5, 6]
+#=
+ => 3-element Array{Int64,1}:
+ 4
+ 5
+ 6
+=#
+b[1] # => 4
+b[end] # => 6
+
+# Los arreglos bidimensionales usan valores separados por espacios y filas
+# separadas por punto y coma.
+matrix = [1 2; 3 4]
+#=
+ => 2x2 Array{Int64,2}:
+ 1 2
+ 3 4
+=#
+
+# Añadir cosas al final de un arreglo con push! y append!.
+push!(a, 1) # => [1]
+push!(a, 2) # => [1,2]
+push!(a, 4) # => [1,2,4]
+push!(a, 3) # => [1,2,4,3]
+append!(a, b) # => [1,2,4,3,4,5,6]
+
+# Eliminar del final con pop!.
+pop!(b) # => 6 y b ahora es: [4,5]
+
+# Vamos a ponerlo de nuevo.
+push!(b, 6) # b es ahora [4,5,6] de nuevo
+
+a[1] # => 1 # recuerda, los índices de Julia empiezan desde 1, no desde 0!
+
+# end es una abreviatura para el último índice. Se puede utilizar en cualquier
+# expresión de indexación.
+a[end] # => 6
+
+# También hay shift! y unshift!.
+shift!(a) # => 1 y a es ahora: [2,4,3,4,5,6]
+unshift!(a, 7) # => [7,2,4,3,4,5,6]
+
+# Los nombres de funciones que terminan en exclamaciones indican que modifican
+# su o sus argumentos de entrada.
+arr = [5, 4, 6] # => 3-element Array{Int64,1}: [5,4,6]
+sort(arr) # => [4,5,6] y arr es todavía: [5,4,6]
+sort!(arr) # => [4,5,6] y arr es ahora: [4,5,6]
+
+# Buscando fuera de límites es un BoundsError.
try
- a[0] # => ERROR: BoundsError() in getindex at array.jl:270
- a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270
+ a[0] # ERROR: BoundsError() in getindex at array.jl:270
+ a[end+1] # ERROR: BoundsError() in getindex at array.jl:270
catch e
- println(e)
+ println(e) # BoundsError()
end
-# Errors dan la línea y el archivo de su procedencia, aunque sea en el standard
-# library. Si construyes Julia de source, puedes buscar en el source para
-# encontrar estos archivos.
+# Las excepciones y los errores dan la línea y el archivo de su procedencia,
+# aunque provenga de la librería estándar. Si compilas Julia del código fuente,
+# puedes buscar en el código para encontrar estos archivos.
-# Se puede inicializar arrays de un range
-a = [1:5] # => 5-element Int64 Array: [1,2,3,4,5]
+# Se puede inicializar un arreglo con un rango (Range).
+a = [1:5] # => 5-element Array{Int64,1}: [1,2,3,4,5]
-# Puedes mirar en ranges con sintaxis slice.
-a[1:3] # => [1, 2, 3]
-a[2:end] # => [2, 3, 4, 5]
+# Puedes mirar en los rangos con la sintaxis de rebanada.
+a[1:3] # => [1,2,3]
+a[2:end] # => [2,3,4,5]
-# Eliminar elementos de una array por índice con splice!
-arr = [3,4,5]
-splice!(arr,2) # => 4 ; arr es ahora [3,5]
+# Eliminar elementos de un arreglo por índice con splice!
+arr = [3, 4, 5]
+splice!(arr, 2) # => 4 y arr es ahora: [3,5]
-# Concatenar listas con append!
-b = [1,2,3]
-append!(a,b) # ahroa a es [1, 2, 3, 4, 5, 1, 2, 3]
+# Concatenar arreglos con append!
+b = [1, 2, 3]
+append!(a, b) # a ahora es: [1,2,3,4,5,1,2,3]
-# Comprueba la existencia en una lista con in
-in(1, a) # => true
+# Comprueba la existencia de un elemento en un arreglo con in.
+in(1, a) # => true
-# Examina la longitud con length
-length(a) # => 8
+# Examina la longitud con length.
+length(a) # => 8
+
+# Las tuplas (Tuple) son inmutables.
+tup = (1, 2, 3) # => (1,2,3) # una tupla tipo (Int64,Int64,Int64)
+tup[1] # => 1
-# Tuples son immutable.
-tup = (1, 2, 3) # => (1,2,3) # un (Int64,Int64,Int64) tuple.
-tup[1] # => 1
try:
- tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
+ tup[1] = 3 # ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
catch e
- println(e)
+ println(e) # MethodError(setindex!,(:tup,3,1))
end
-# Muchas funciones de lista también trabajan en las tuples
-length(tup) # => 3
-tup[1:2] # => (1,2)
-in(2, tup) # => true
+# Muchas funciones de arreglos también trabajan en con las tuplas.
+length(tup) # => 3
+tup[1:2] # => (1,2)
+in(2, tup) # => true
+
+# Se pueden desempacar las tuplas en variables individuales.
+a, b, c = (1, 2, 3) # => (1,2,3) # ahora a es 1, b es 2 y c es 3
+
+# Los tuplas se crean, incluso si se omiten los paréntesis.
+d, e, f = 4, 5, 6 # => (4,5,6)
-# Se puede desempacar tuples en variables
-a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3
+# Una tupla de un elemento es distinta del valor que contiene.
+(1,) == 1 # => false
+(1) == 1 # => true
-# Los tuples se crean, incluso si se omite el paréntesis
-d, e, f = 4, 5, 6 # => (4,5,6)
+# Mira que fácil es cambiar dos valores!
+e, d = d, e # => (5,4) # ahora d es 5 y e es 4
-# Un tuple 1-elemento es distinto del valor que contiene
-(1,) == 1 # => false
-(1) == 1 # => true
+# Los diccionarios (Dict) son arreglos asociativos.
+dicc_vacio = Dict() # => Dict{Any,Any} with 0 entries
-# Mira que fácil es cambiar dos valores
-e, d = d, e # => (5,4) # d is now 5 and e is now 4
+# Se puede crear un diccionario usando una literal.
+dicc_lleno = ["uno" => 1, "dos" => 2, "tres" => 3]
+#=
+ => Dict{ASCIIString,Int64} with 3 entries:
+ "tres" => 3
+ "dos" => 2
+ "uno" => 1
+=#
+# Busca valores con: [].
+dicc_lleno["uno"] # => 1
-# Dictionaries almanecan mapeos
-dict_vacio = Dict() # => Dict{Any,Any}()
+# Obtén todas las claves con.
+keys(dicc_lleno)
+#=
+ => KeyIterator for a Dict{ASCIIString,Int64} with 3 entries. Keys:
+ "tres"
+ "dos"
+ "uno"
+=#
-# Se puede crear un dictionary usando un literal
-dict_lleno = ["one"=> 1, "two"=> 2, "three"=> 3]
-# => Dict{ASCIIString,Int64}
+# Nota: los elementos del diccionario no están ordenados y no se guarda el orden
+# en que se insertan.
-# Busca valores con []
-dict_lleno["one"] # => 1
+# Obtén todos los valores.
+values(dicc_lleno)
+#=
+ => ValueIterator for a Dict{ASCIIString,Int64} with 3 entries. Values:
+ 3
+ 2
+ 1
+=#
-# Obtén todas las claves
-keys(dict_lleno)
-# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
-# Nota - claves del dictionary no están ordenados ni en el orden en que se
-# insertan.
+# Nota: igual que el anterior en cuanto a ordenamiento de los elementos.
-# Obtén todos los valores
-values(dict_lleno)
-# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
-# Nota - Igual que el anterior en cuanto a ordenamiento de claves.
+# Comprueba si una clave existe en un diccionario con in y haskey.
+in(("uno", 1), dicc_lleno) # => true
+in(("tres", 3), dicc_lleno) # => false
-# Compruebe si hay existencia de claves en un dictionary con in y haskey
-in(("uno", 1), dict_lleno) # => true
-in(("tres", 3), dict_lleno) # => false
-haskey(dict_lleno, "one") # => true
-haskey(dict_lleno, 1) # => false
+haskey(dicc_lleno, "uno") # => true
+haskey(dicc_lleno, 1) # => false
-# Tratando de buscar una clave que no existe producirá un error
+# Tratar de obtener un valor con una clave que no existe producirá un error.
try
- dict_lleno["dos"] # => ERROR: key not found: dos in getindex at dict.jl:489
+ # ERROR: key not found: cuatro in getindex at dict.jl:489
+ dicc_lleno["cuatro"]
catch e
- println(e)
+ println(e) # KeyError("cuatro")
end
-# Utilice el método get para evitar ese error proporcionando un valor
-# predeterminado
-# get(dictionary,key,default_value)
-get(dict_lleno,"one",4) # => 1
-get(dict_lleno,"four",4) # => 4
+# Utiliza el método get para evitar este error proporcionando un valor
+# predeterminado: get(diccionario, clave, valor_predeterminado).
+get(dicc_lleno, "uno", 4) # => 1
+get(dicc_lleno, "cuatro", 4) # => 4
-# Usa Sets para representar colecciones (conjuntos) de valores únicos, no
-# ordenadas
-conjunto_vacio = Set() # => Set{Any}()
-# Iniciar una set de valores
-conjunto_lleno = Set(1,2,2,3,4) # => Set{Int64}(1,2,3,4)
+# Usa conjuntos (Set) para representar colecciones de valores únicos, no
+# ordenados.
+conjunto_vacio = Set() # => Set{Any}({})
-# Añadir más valores a un conjunto
-push!(conjunto_lleno,5) # => Set{Int64}(5,4,2,3,1)
-push!(conjunto_lleno,5) # => Set{Int64}(5,4,2,3,1)
+# Iniciar una conjunto de valores.
+conjunto_lleno = Set(1, 2, 2, 3, 4) # => Set{Int64}({4,2,3,1})
-# Compruebe si los valores están en el conjunto
-in(2, conjunto_lleno) # => true
-in(10, conjunto_lleno) # => false
+# Añadir más valores a un conjunto.
+push!(conjunto_lleno, 5) # => Set{Int64}({4,2,3,5,1})
+push!(conjunto_lleno, 5) # => Set{Int64}({4,2,3,5,1})
-# Hay funciones de intersección de conjuntos, la unión, y la diferencia.
-conjunto_otro= Set(3, 4, 5, 6) # => Set{Int64}(6,4,5,3)
-intersect(conjunto_lleno, conjunto_otro) # => Set{Int64}(3,4,5)
-union(conjunto_lleno, conjunto_otro) # => Set{Int64}(1,2,3,4,5,6)
-setdiff(Set(1,2,3,4),Set(2,3,5)) # => Set{Int64}(1,4)
+# Comprobar si los valores están en el conjunto.
+in(2, conjunto_lleno) # => true
+in(10, conjunto_lleno) # => false
+# Hay funciones de intersección, unión y diferencia de conjuntos.
+otro_conjunto = Set(3, 4, 5, 6) # => Set{Int64}({6,4,5,3})
+intersect(conjunto_lleno, otro_conjunto) # => Set{Int64}({3,4,5})
+union(conjunto_lleno, otro_conjunto) # => Set{Int64}({1,2,3,4,5,6})
+setdiff(Set(1, 2, 3, 4), Set(2, 3, 5)) # => Set{Int64}({1,4})
-####################################################
-## 3. Control de Flujo
-####################################################
-# Hagamos una variable
+#######################
+# 3. Control de Flujo #
+#######################
+
+# Hagamos una variable.
una_variable = 5
-# Aquí está una declaración de un 'if'. La indentación no es significativa en
-# Julia
+# Aquí está la declaración de un if. La indentación no es significativa en
+# Julia.
if una_variable > 10
- println("una_variable es completamente mas grande que 10.")
-elseif una_variable < 10 # Este condición 'elseif' es opcional.
- println("una_variable es mas chica que 10.")
-else # Esto también es opcional.
- println("una_variable es de hecho 10.")
+ println("una_variable es completamente mayor que 10.")
+elseif una_variable < 10 # esta condición elseif es opcional
+ println("una_variable es menor que 10.")
+else # esto también es opcional
+ println("De echo una_variable es 10.")
end
-# => imprime "una_variable es mas chica que 10."
+# imprime: una_variable es menor que 10.
-# For itera sobre tipos iterables
-# Tipos iterables incluyen Range, Array, Set, Dict, y String.
-for animal=["perro", "gato", "raton"]
- println("$animal es un mamifero")
- # Se puede usar $ para interpolar variables o expresiónes en strings
+# El bucle for itera sobre tipos iterables, ie. Range, Array, Set,
+# Dict y String.
+for animal in ["perro", "gato", "ratón"]
+ # Se puede usar $ para interpolar variables o expresiones en ls cadenas.
+ println("$animal es un mamífero.")
end
-# imprime:
-# perro es un mamifero
-# gato es un mamifero
-# raton es un mamifero
+#=
+ imprime:
+ perro es un mamífero.
+ gato es un mamífero.
+ ratón es un mamífero.
+=#
-for a in ["perro"=>"mamifero","gato"=>"mamifero","raton"=>"mamifero"]
- println("$(a[1]) es un $(a[2])")
+for a in ["perro" => "mamífero", "gato" => "mamífero", "ratón" => "mamífero"]
+ println("$(a[1]) es un $(a[2]).")
end
-# imprime:
-# perro es un mamifero
-# gato es un mamifero
-# raton es un mamifero
+#=
+ imprime:
+ perro es un mamífero.
+ gato es un mamífero.
+ ratón es un mamífero.
+=#
-for (k,v) in ["perro"=>"mamifero", "gato"=>"mamifero", "raton"=>"mamifero"]
- println("$k es un $v")
+for (k,v) in ["perro"=>"mamífero", "gato"=>"mamífero", "ratón"=>"mamífero"]
+ println("$k es un $v.")
end
-# imprime:
-# perro es un mamifero
-# gato es un mamifero
-# raton es un mamifero
+#=
+ imprime:
+ perro es un mamífero.
+ gato es un mamífero.
+ ratón es un mamífero.
+=#
-# While itera hasta que una condición no se cumple.
+# El bucle while itera hasta que una condición se deje de cumplir.
x = 0
while x < 4
println(x)
- x += 1 # versión corta de x = x + 1
+ x += 1 # versión corta de: x = x + 1
end
-# imprime:
-# 0
-# 1
-# 2
-# 3
+#=
+imprime:
+ 0
+ 1
+ 2
+ 3
+=#
-# Maneja excepciones con un bloque try/catch
-try
- error("ayuda")
+# Maneja excepciones con un bloque try/catch.
+try # intentar
+ error("Ooops!")
catch e
- println("capturando $e")
+ println("capturando: $e") # capturando: ErrorException("Ooops!")
end
-# => capturando ErrorException("ayuda")
-####################################################
-## 4. Funciones
-####################################################
+################
+# 4. Funciones #
+################
-# Usa 'function' para crear nuevas funciones
+# Usa function para crear nuevas funciones.
-#function nombre(arglist)
-# cuerpo...
-#end
+#=
+ function nombre(arglist)
+ cuerpo...
+ end
+=#
function suma(x, y)
println("x es $x e y es $y")
- # Las funciones devuelven el valor de su última declaración
+ # las funciones devuelven el valor de su última expresión
x + y
end
+# => suma (generic function with 1 method)
+
+suma(5, 6) # => 11 # después de imprimir: x es 5 e y es 6
-suma(5, 6) # => 11 # después de imprimir "x es 5 e y es de 6"
+# También puedes usar esta otra sintaxis para definir funciones!
+resta(x, y) = x - y # => resta (generic function with 1 method)
# Puedes definir funciones que toman un número variable de
-# argumentos posicionales
+# argumentos posicionales (el ... se llama un splat).
function varargs(args...)
+ # Usa la palabra clave return para regresar desde cualquier
+ # lugar de la función.
return args
- # Usa la palabra clave return para devolver en cualquier lugar de la función
end
# => varargs (generic function with 1 method)
-varargs(1,2,3) # => (1,2,3)
+varargs(1, 2, 3) # => (1,2,3)
+varargs([1, 2, 3]) # => ([1,2,3],)
-# El ... se llama un splat.
-# Acabamos de utilizar lo en una definición de función.
-# También se puede utilizar en una llamada de función,
-# donde va splat un Array o el contenido de un Tuple en la lista de argumentos.
-Set([1,2,3]) # => Set{Array{Int64,1}}([1,2,3]) # Produce un Set de Arrays
-Set([1,2,3]...) # => Set{Int64}(1,2,3) # esto es equivalente a Set(1,2,3)
+# Acabamos de utilizar el splat (...) en la definición de una función. También
+# se puede utilizar al llamar a una función, donde se esparce un arreglo, tupla
+# o en general una secuencia iterable en la tupla de argumentos.
+varargs([1, 2, 3]...) # => (1,2,3) # igual que: varargs(1, 2, 3)
-x = (1,2,3) # => (1,2,3)
-Set(x) # => Set{(Int64,Int64,Int64)}((1,2,3)) # un Set de Tuples
-Set(x...) # => Set{Int64}(2,3,1)
+x = (1, 2, 3) # => (1,2,3)
+varargs(x) # => ((1,2,3),)
+varargs(x...) # => (1,2,3)
+varargs("abc"...) # => ('a','b','c')
-# Puede definir funciones con argumentos posicionales opcionales
-function defaults(a,b,x=5,y=6)
+# Puedes definir funciones con argumentos posicionales opcionales.
+function defaults(a, b, x=5, y=6)
return "$a $b y $x $y"
end
+# => defaults (generic function with 3 methods)
+
+defaults('h', 'g') # => "h g y 5 6"
+defaults('h', 'g', 'j') # => "h g y j 6"
+defaults('h', 'g', 'j', 'k') # => "h g y j k"
-defaults('h','g') # => "h g y 5 6"
-defaults('h','g','j') # => "h g y j 6"
-defaults('h','g','j','k') # => "h g y j k"
try
- defaults('h') # => ERROR: no method defaults(Char,)
- defaults() # => ERROR: no methods defaults()
+ defaults('h') # ERROR: `defaults` has no method matching defaults(::Char)
+ defaults() # ERROR: `defaults` has no method matching defaults()
catch e
- println(e)
+ println(e) # MethodError(defaults,('h',))
end
-# Puedes definir funciones que toman argumentos de palabra clave
-function args_clave(;k1=4,nombre2="hola") # note the ;
- return ["k1"=>k1,"nombre2"=>nombre2]
+# Puedes definir funciones que tomen argumentos de palabras clave.
+function args_clave(;k1=4, nombre2="hola") # nota el punto y coma: ;
+ return ["k1" => k1, "nombre2" => nombre2]
end
+# => args_clave (generic function with 1 method)
-args_clave(nombre2="ness") # => ["nombre2"=>"ness","k1"=>4]
-args_clave(k1="mine") # => ["k1"=>"mine","nombre2"=>"hola"]
-args_clave() # => ["nombre2"=>"hola","k1"=>4]
+args_clave(nombre2="ness") # => ["nombre2"=>"ness","k1"=>4]
+args_clave(k1="mine") # => ["k1"=>"mine","nombre2"=>"hola"]
+args_clave() # => ["nombre2"=>"hola","k1"=>4]
-# Puedes combinar todo tipo de argumentos en la misma función
-function todos_los_args(arg_normal, arg_posicional_opcional=2; arg_clave="foo")
- println("argumento normal: $arg_normal")
- println("argumento optional: $arg_posicional_opcional")
- println("argumento de clave: $arg_clave")
+# Puedes combinar todo tipo de argumentos en la misma función.
+function todos_los_args(arg_posicional, arg_opcional=2; arg_clave="foo")
+ println("argumento posicional: $arg_posicional")
+ println(" argumento opcional: $arg_opcional")
+ println(" argumento clave: $arg_clave")
end
+# => todos_los_args (generic function with 2 methods)
+# No se necesita punto y coma ; al llamar la función usando un argumento clave,
+# esto solo es necesario en la definición de la función.
todos_los_args(1, 3, arg_clave=4)
-# imprime:
-# argumento normal: 1
-# argumento optional: 3
-# argumento de clave: 4
+#=
+ imprime:
+ argumento posicional: 1
+ argumento opcional: 3
+ argumento clave: 4
+=#
-# Julia tiene funciones de primera clase
+# Julia tiene funciones de primera clase.
function crear_suma(x)
- suma = function (y)
+ suma = function (y) # función anónima
return x + y
end
return suma
end
+# => crear_suma (generic function with 1 method)
-# Esta es el sintaxis "stabby lambda" para crear funciones anónimas
-(x -> x > 2)(3) # => true
+# Esta es otra sintaxis (estilo cálculo lambda), para crear funciones anónimas.
+(x -> x > 2)(3) # => true
# Esta función es idéntica a la crear_suma implementación anterior.
-function crear_suma(x)
- y -> x + y
-end
+crear_suma(x) = y -> x + y
-# También puedes nombrar la función interna, si quieres
+# También puedes nombrar la función interna, si quieres.
function crear_suma(x)
function suma(y)
x + y
end
suma
end
+# => crear_suma (generic function with 1 method)
-suma_10 = crear_suma(10)
-suma_10(3) # => 13
+suma_10 = crear_suma(10) # => suma (generic function with 1 method)
+suma_10(3) # => 13
+# Hay funciones integradas de orden superior.
+map(suma_10, [1, 2, 3]) # => [11,12,13]
+filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6,7]
-# Hay funciones integradas de orden superior
-map(suma_10, [1,2,3]) # => [11, 12, 13]
-filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
+# Se puede pasar un bloque a las funciones cuyo primer argumento posicional
+# es otra función, como en map y filter.
+map([1, 2, 3]) do arr
+ suma_10(arr)
+end
+#=
+ => 3-element Array{Int64,1}:
+ 11
+ 12
+ 13
+=#
-# Podemos usar listas por comprensión para mapeos
-[suma_10(i) for i=[1, 2, 3]] # => [11, 12, 13]
-[suma_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
+filter([3, 4, 5, 6, 7]) do arr
+ (x -> x > 5)(arr)
+end
+#=
+ => 2-element Array{Int64,1}:
+ 6
+ 7
+=#
-####################################################
-## 5. Tipos
-####################################################
+# Podemos usar comprensiones de listas multidimensionales.
+[suma_10(i) for i = [1, 2, 3]] # => [11, 12, 13] # 1D
+[suma_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
+
+[i*j for i = [1:3], j in [1:3]] # 2D
+#=
+ => 3x3 Array{Int64,2}:
+ 1 2 3
+ 2 4 6
+ 3 6 9
+=#
+
+[i*j/k for i = [1:3], j = [1:3], k in [1:3]] # 3D
+#=
+ => 3x3x3 Array{Float64,3}:
+ [:, :, 1] =
+ 1.0 2.0 3.0
+ 2.0 4.0 6.0
+ 3.0 6.0 9.0
+
+ [:, :, 2] =
+ 0.5 1.0 1.5
+ 1.0 2.0 3.0
+ 1.5 3.0 4.5
+
+ [:, :, 3] =
+ 0.333333 0.666667 1.0
+ 0.666667 1.33333 2.0
+ 1.0 2.0 3.0
+=#
+
+
+############
+# 5. Tipos #
+############
-# Julia tiene sistema de tipos.
# Cada valor tiene un tipo y las variables no tienen propios tipos.
-# Se puede utilizar la función `typeof` para obtener el tipo de un valor.
-typeof(5) # => Int64
+# Se puede utilizar la función typeof para obtener el tipo de un valor.
+typeof(5) # => Int64 # en un sistema de 64 bits, de lo contrario: Int32
-# Los tipos son valores de primera clase
-typeof(Int64) # => DataType
-typeof(DataType) # => DataType
-# DataType es el tipo que representa los tipos, incluyéndose a sí mismo.
+# Los tipos son valores de primera clase, DataType es el tipo que representa a
+# los tipos, incluyéndose a sí mismo.
+typeof(Int64) # => DataType
+typeof(DataType) # => DataType
-# Los tipos se usan para la documentación, optimizaciones, y envio.
-# No están comprobados estáticamente.
+# Los tipos se usan para la documentación, para optimizaciones
+# y el despacho múltiple. No están comprobados estáticamente.
-# Los usuarios pueden definir tipos
-# Son como registros o estructuras en otros idiomas.
-# Nuevos tipos se definen utilizado la palabra clave `type`.
+# Los usuarios pueden definir sus propios tipos.
+# Son como registros o estructuras en otros idiomas.
+# Un nuevo tipos se define utilizado la palabra clave type.
# type Nombre
-# field::OptionalType
+# atributo::UnTipo # las anotaciones de tipos son opcionales
# ...
# end
type Tigre
- longituddecola::Float64
- colordelpelaje # no incluyendo una anotación de tipo es el mismo que `::Any`
+ longitud_cola::Float64
+ color_pelaje # sin una anotación de tipo, es lo mismo que `::Any`
end
-# Los argumentos del constructor por default son las propiedades
-# del tipo, en el orden en que están listados en la definición
-tigger = Tigre(3.5,"anaranjado") # => Tiger(3.5,"anaranjado")
+# Los argumentos del constructor por defecto son los atributos
+# del tipo, en el orden en que están listados en la definición.
+tigre = Tigre(3.5, "anaranjado") # => Tigre(3.5,"anaranjado")
-# El tipo funciona como la función constructora de valores de ese tipo
-sherekhan = typeof(tigger)(5.6,"fuego") # => Tiger(5.6,"fuego")
+# El tipo funciona como método constructor para los valores de ese tipo.
+sherekhan = typeof(tigre)(5.6, "fuego") # => Tigre(5.6,"fuego")
-# Este estilo de tipos son llamados tipos concrete
-# Se pueden crear instancias, pero no pueden tener subtipos.
-# La otra clase de tipos es tipos abstractos (abstract types).
+# Este estilo de tipos son llamados tipos concretos.
+# Se pueden crear instancias de estos, pero no pueden tener subtipos.
+# La otra clase de tipos son los tipos abstractos.
# abstract Nombre
-abstract Gato # sólo un nombre y un punto en la jerarquía de tipos
-
-# De los tipos Abstract no se pueden crear instancias, pero pueden tener
-# subtipos. Por ejemplo, Number es un tipo abstracto.
-subtypes(Number) # => 6-element Array{Any,1}:
- # Complex{Float16}
- # Complex{Float32}
- # Complex{Float64}
- # Complex{T<:Real}
- # Real
-subtypes(Gato) # => 0-element Array{Any,1}
-
-# Cada tipo tiene un supertipo, utilice la función `súper` para conseguirlo.
-typeof(5) # => Int64
-super(Int64) # => Signed
-super(Signed) # => Real
-super(Real) # => Number
-super(Number) # => Any
-super(super(Signed)) # => Number
-super(Any) # => Any
-# Todo de estos tipos, a excepción de Int64, son abstractos.
-
-# <: es el operador de subtipos
-type Leon <: Gato # Leon es un subtipo de Gato
- color_de_crin
- rugido::String
-end
+abstract Gato # sólo un nombre y un punto en la jerarquía de tipos
+
+# No se pueden crear instancias de los tipos abstractos, pero pueden tener
+# subtipos. Por ejemplo, Number es un tipo abstracto.
+subtypes(Number)
+#=
+ => 2-element Array{Any,1}:
+ Complex{T<:Real}
+ Real
+=#
+
+subtypes(Gato) # => 0-element Array{Any,1}
-# Se puede definir más constructores para su tipo.
-# Sólo defina una función del mismo nombre que el tipo
-# y llame a un constructor existente para obtener un valor del tipo correcto
-Leon(rugido::String) = Leon("verde",rugido)
-# Este es un constructor externo porque es fuera de la definición del tipo
-
-type Pantera <: Gato # Pantera tambien es un a subtipo de Cat
- color_de_ojos
- Pantera() = new("verde")
- # Panteras sólo tendrán este constructor, y ningún constructor
- # predeterminado.
+# Cada tipo tiene un supertipo, utiliza la función súper para conseguirlo.
+typeof(5) # => Int64
+super(Int64) # => Signed
+super(Signed) # => Integer
+super(Integer) # => Real
+super(Real) # => Number
+super(Number) # => Any
+super(super(Signed)) # => Real
+super(Any) # => Any
+
+# Todos estos tipos, a excepción de Int64, son abstractos.
+
+# <: es el operador de subtipos.
+type Leon <: Gato # Leon es un subtipo de Gato
+ color_crin
+ rugido::String
end
-# Utilizar constructores internos, como Panther hace, te da control sobre cómo
-# se pueden crear valores del tipo. Cuando sea posible, debes utilizar
-# constructores exteriores en lugar de los internos.
-####################################################
-## 6. Envio múltiple
-####################################################
+# Se pueden definir más constructores para un tipo.
+# Sólo define una función del mismo nombre que el tipo y llama al constructor
+# existente para obtener un valor del tipo correcto.
-# En Julia, todas las funciones nombradas son funciones genéricas.
-# Esto significa que se construyen a partir de muchos métodos pequeños
-# Cada constructor de Leon es un método de la función genérica Leon.
+# Este es un constructor externo porque está fuera de la definición del tipo.
+Leon(rugido::String) = Leon("verde", rugido)
-# Por ejemplo, vamos a hacer un maullar función:
+type Pantera <: Gato # Pantera también es un a subtipo de Gato
+ color_ojos
-# Definiciones para Leon, Pantera, y Tigre
-function maullar(animal::Leon)
- animal.rugido # acceso utilizando notación de puntos
+ # Pantera sólo tendrá este constructor, y ningún constructor predeterminado.
+ Pantera() = new("verde")
end
-function maullar(animal::Pantera)
- "grrr"
-end
+# Utilizar constructores internos, como se hace en Pantera, te da control sobre
+# cómo se pueden crear valores de este tipo. Cuando sea posible, debes utilizar
+# constructores externos en lugar de internos.
-function maullar(animal::Tigre)
- "rawwwr"
-end
-# Prueba de la función maullar
-maullar(tigger) # => "rawwr"
-maullar(Leon("cafe","ROAAR")) # => "ROAAR"
-maullar(Pantera()) # => "grrr"
+########################
+# 6. Despacho Múltiple #
+########################
-# Revisar la jerarquía de tipos locales
-issubtype(Tigre,Gato) # => false
-issubtype(Leon,Gato) # => true
-issubtype(Pantera,Gato) # => true
+# En Julia, todas las funciones nombradas son funciones genéricas.
+# Esto significa que se construyen a partir de muchos métodos más pequeños.
+# Cada constructor de Leon es un método de la función genérica Leon.
-# Definición de una función que toma Gatos
-function mascota(gato::Gato)
- println("El gato dice $(maullar(gato))")
-end
+# Por ejemplo, vamos a hacer métodos para Leon, Pantera, y Tigre de una
+# función genérica maullar:
+
+# acceso utilizando notación de puntos
+maullar(animal::Leon) = animal.rugido
+# => maullar (generic function with 1 method)
+maullar(animal::Pantera) = "grrr"
+# => maullar (generic function with 2 methods)
+maullar(animal::Tigre) = "rawwwr"
+# => maullar (generic function with 3 methods)
+
+# Se puede obtener una lista de métodos con la función methods.
+methods(maullar)
+#=
+ # 3 methods for generic function "maullar":
+ maullar(animal::Leon) at none:1
+ maullar(animal::Pantera) at none:1
+ maullar(animal::Tigre) at none:1
+=#
+
+# Prueba de la función maullar.
+maullar(tigre) # => "rawwwr"
+maullar(Leon("cafe", "ROAAR")) # => "ROAAR"
+maullar(Pantera()) # => "grrr"
+
+# Revisar la jerarquía de tipos locales.
+issubtype(Tigre, Gato) # => false # igual que: Tigre <: Gato
+issubtype(Leon, Gato) # => true # igual que: Leon <: Gato
+issubtype(Pantera, Gato) # => true
+
+# Definición de una función que acepta argumentos de tipo Gato.
+mascota(gato::Gato) = println("El gato dice $(maullar(gato))")
+
+mascota(Leon("42")) # El gato dice 42
-mascota(Leon("42")) # => imprime "El gato dice 42"
try
- mascota(tigger) # => ERROR: no method mascota(Tigre))
+ mascota(tigre) # ERROR: `mascota` has no method matching mascota(::Tigre)
catch e
- println(e)
+ println(e) # MethodError(mascota,(Tigre(3.5,"anaranjado"),))
end
-# En los lenguajes orientados a objetos, expedición única es común. Esto
-# significa que el método se recogió basándose en el tipo del primer argumento.
-# En Julia, todos los tipos de argumentos contribuyen a seleccionar el mejor
-# método.
+# En los lenguajes orientados a objetos, el despacho simple es común. Esto
+# significa que la implementación del método a llamar se selecciona en base
+# al tipo del primer argumento.
+
+# En Julia, los tipos de todos los argumentos contribuyen a seleccionar método
+# más específico.
# Vamos a definir una función con más argumentos, para que podamos ver la
# diferencia
-function pelear(t::Tigre,c::Gato)
- println("¡El tigre $(t.colordelpelaje) gana!")
-end
+pelear(t::Tigre, c::Gato) = println("¡El tigre $(t.color_pelaje) gana!")
# => pelear (generic function with 1 method)
-pelear(tigger,Pantera()) # => imprime ¡El tigre anaranjado gana!
-pelear(tigger,Leon("ROAR")) # => ¡El tigre anaranjado gana!
+pelear(tigre, Pantera()) # ¡El tigre anaranjado gana!
+pelear(tigre, Leon("ROAR")) # ¡El tigre anaranjado gana!
-# Vamos a cambiar el comportamiento cuando el Gato es específicamente un Leon
-pelear(t::Tigre,l::Leon) = println("El león con melena $(l.color_de_crin) gana")
+# Vamos a cambiar el comportamiento cuando el Gato sea específicamente un Leon.
+pelear(t::Tigre, l::Leon) = println("El león con melena $(l.color_crin) gana.")
# => pelear (generic function with 2 methods)
-pelear(tigger,Pantera()) # => imprime ¡El tigre anaranjado gana!
-pelear(tigger,Leon("ROAR")) # => imprime El león con melena verde gana
+pelear(tigre, Pantera()) # ¡El tigre anaranjado gana!
+pelear(tigre, Leon("ROAR")) # El león con melena verde gana.
-# No necesitamos un tigre para poder luchar
-pelear(l::Leon,c::Gato) = println("El gato victorioso dice $(maullar(c))")
-# => fight (generic function with 3 methods)
+# No necesitamos un tigre para poder luchar.
+pelear(l::Leon, c::Gato) = println("El gato victorioso dice $(maullar(c)).")
+# => pelear (generic function with 3 methods)
-pelear(Leon("balooga!"),Pantera()) # => imprime El gato victorioso dice grrr
+methods(pelear)
+#=
+ # 3 methods for generic function "pelear":
+ pelear(t::Tigre,l::Leon) at none:2
+ pelear(t::Tigre,c::Gato) at none:1
+ pelear(l::Leon,c::Gato) at none:2
+=#
+
+pelear(Leon("balooga!"), Pantera()) # El gato victorioso dice grrr.
try
- pelear(Pantera(),Leon("RAWR")) # => ERROR: no method pelear(Pantera, Leon))
-catch
+ # ERROR: `pelear` has no method matching pelear(::Pantera, ::Leon)
+ pelear(Pantera(),Leon("RAWR"))
+catch # no hacer nada con la excepción atrapada
end
-# Un metodo con el gato primero
+# Un metodo con el tipo Gato primero.
pelear(c::Gato,l::Leon) = println("El gato le gana al León")
-# Warning: New definition
-# pelear(Gato,Leon) at none:1
-# is ambiguous with:
-# pelear(Leon,Gato) at none:1.
-# To fix, define
-# pelear(Leon,Leon)
-# before the new definition.
-# pelear (generic function with 4 methods)
-
-# Esta advertencia se debe a que no está claro que metodo de pelear será llamado
-# en:
-pelear(Leon("RAR"),Leon("cafe","rar")) # => imprime El gato victorioso dice rar
-# El resultado puede ser diferente en otras versiones de Julia
+#=
+ Warning: New definition
+ pelear(Gato,Leon) at none:1
+ is ambiguous with:
+ pelear(Leon,Gato) at none:1.
+ To fix, define
+ pelear(Leon,Leon)
+ before the new definition.
+ pelear (generic function with 4 methods)
+=#
+# Esta advertencia se debe a que no está claro que método de pelear
+# será llamado en:
+pelear(Leon("RAR"),Leon("cafe","rar")) # El gato victorioso dice rar.
+
+# El resultado puede ser diferente en otras versiones de Julia
pelear(l::Leon,l2::Leon) = println("Los leones llegan a un empate")
-pelear(Leon("GR"),Leon("cafe","rar")) # => imprime Los leones llegan a un empate
-
-
-# Un vistazo al nivel bajo
-# Se puede echar un vistazo a la LLVM y el código ensamblador generado.
-
-area_cuadrada(l) = l * l # area_cuadrada (generic function with 1 method)
-
-area_cuadrada(5) # => 25
-
-# ¿Qué sucede cuando damos area_cuadrada diferentes argumentos?
-code_native(area_cuadrada, (Int32,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1 # Prologue
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # movsxd RAX, EDI # Fetch l from memory?
- # imul RAX, RAX # Square l and store the result in RAX
- # pop RBP # Restore old base pointer
- # ret # Result will still be in RAX
-
-code_native(area_cuadrada, (Float32,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # vmulss XMM0, XMM0, XMM0 # Scalar single precision multiply (AVX)
- # pop RBP
- # ret
-
-code_native(area_cuadrada, (Float64,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX)
- # pop RBP
- # ret
- #
-
-# Ten en cuenta que Julia usará instrucciones de "floating point" si alguno de
-# los argumentos son "floats"
-# Vamos a calcular el área de un círculo
-area_circulo(r) = pi * r * r # circle_area (generic function with 1 method)
-area_circulo(5) # 78.53981633974483
+
+pelear(Leon("GR"),Leon("cafe","rar")) # Los leones llegan a un empate
+
+
+################################
+# 7. Un vistazo de bajo nivel. #
+################################
+
+# Se puede echar un vistazo al código IR de LLVM y al código
+# ensamblador generado.
+area_cuadrado(l) = l * l # => area_cuadrado (generic function with 1 method)
+
+area_cuadrado(5) # => 25
+
+# ¿Qué sucede cuando damos area_cuadrada diferentes tipos de argumentos?
+code_native(area_cuadrado, (Int32,))
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1 # prólogo
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ imul RDI, RDI # elevar l al cuadrado
+ mov RAX, RDI # almacenar el resultado en RAX
+ pop RBP # restaurar el puntero base anterior
+ ret # el resultado estará en RAX
+=#
+
+code_native(area_cuadrado, (Float32,))
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ mulss XMM0, XMM0 # multiplicación escalar de presición simple (AVX)
+ pop RBP
+ ret
+=#
+
+code_native(area_cuadrado, (Float64,))
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ mulsd XMM0, XMM0 # multiplicación escalar de presición doble (AVX)
+ pop RBP
+ ret
+=#
+
+# Ten en cuenta que Julia usará instrucciones de punto flotante si el tipo de
+# alguno de los argumentos es flotante.
+
+# Vamos a calcular el área de un círculo.
+area_circulo(r) = π * r * r # area_circulo (generic function with 1 method)
+area_circulo(5) # 78.53981633974483
code_native(area_circulo, (Int32,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # Source line: 1
- # vcvtsi2sd XMM0, XMM0, EDI # Load integer (r) from memory
- # movabs RAX, 4593140240 # Load pi
- # vmulsd XMM1, XMM0, QWORD PTR [RAX] # pi * r
- # vmulsd XMM0, XMM0, XMM1 # (pi * r) * r
- # pop RBP
- # ret
- #
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ Source line: 1
+ cvtsi2sd XMM1, EDI # cargar entero r de la memoria
+ movabs RAX, 4477117456 # cargar constante matemática π
+ movsd XMM0, QWORD PTR [RAX]
+ mulsd XMM0, XMM1 # π * r
+ mulsd XMM0, XMM1 # (π * r) * r
+ pop RBP
+ ret
+=#
code_native(area_circulo, (Float64,))
- # .section __TEXT,__text,regular,pure_instructions
- # Filename: none
- # Source line: 1
- # push RBP
- # mov RBP, RSP
- # movabs RAX, 4593140496
- # Source line: 1
- # vmulsd XMM1, XMM0, QWORD PTR [RAX]
- # vmulsd XMM0, XMM1, XMM0
- # pop RBP
- # ret
- #
+#=
+ .section __TEXT,__text,regular,pure_instructions
+ Filename: none
+ Source line: 1
+ push RBP
+ mov RBP, RSP
+ movabs RAX, 4477120336
+ movsd XMM1, QWORD PTR [RAX]
+ Source line: 1
+ mulsd XMM1, XMM0
+ mulsd XMM1, XMM0
+ movaps XMM0, XMM1
+ pop RBP
+ ret
+=#
```
-## ¿Listo para más?
+![Julia-tan](http://s27.postimg.org/x37ndhz0j/julia_tan_small.png)
-Puedes obtener muchos más detalles en [The Julia Manual](http://docs.julialang.org/en/latest/manual/)
+## ¿Listo para más?
-El mejor lugar para obtener ayuda con Julia es el (muy amable) [lista de correos](https://groups.google.com/forum/#!forum/julia-users).
+Para más detalles, lee el [manual de Julia](http://docs.julialang.org/en/release-0.3).
+El mejor lugar para obtener ayuda con Julia, es en su amigable [lista de correos](https://groups.google.com/forum/#!forum/julia-users).
diff --git a/es-es/python-es.html.markdown b/es-es/python-es.html.markdown
index f7a0ec02..4930eebc 100644
--- a/es-es/python-es.html.markdown
+++ b/es-es/python-es.html.markdown
@@ -4,6 +4,7 @@ contributors:
- ["Louie Dinh", "http://ldinh.ca"]
translators:
- ["Camilo Garrido", "http://www.twitter.com/hirohope"]
+ - ["Fabio Souto", "http://fabiosouto.me"]
lang: es-es
filename: learnpython-es.py
---
@@ -30,27 +31,47 @@ Nota: Este artículo aplica a Python 2.7 específicamente, pero debería ser apl
# Tienes números
3 #=> 3
-# Matemática es lo que esperarías
-1 + 1 #=> 2
-8 - 1 #=> 7
-10 * 2 #=> 20
-35 / 5 #=> 7
+# Evidentemente puedes realizar operaciones matemáticas
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+35 / 5 #=> 7
# La división es un poco complicada. Es división entera y toma la parte entera
# de los resultados automáticamente.
-5 / 2 #=> 2
+5 / 2 #=> 2
# Para arreglar la división necesitamos aprender sobre 'floats'
# (números de coma flotante).
2.0 # Esto es un 'float'
-11.0 / 4.0 #=> 2.75 ahhh...mucho mejor
+11.0 / 4.0 #=> 2.75 ahhh...mucho mejor
+
+# Resultado de la división de enteros truncada para positivos y negativos
+5 // 3 # => 1
+5.0 // 3.0 # => 1.0 # funciona con números en coma flotante
+-5 // 3 # => -2
+-5.0 // 3.0 # => -2.0
+
+# El operador módulo devuelve el resto de una división entre enteros
+7 % 3 # => 1
+
+# Exponenciación (x elevado a y)
+2**4 # => 16
# Refuerza la precedencia con paréntesis
-(1 + 3) * 2 #=> 8
+(1 + 3) * 2 #=> 8
+
+# Operadores booleanos
+# Nota: "and" y "or" son sensibles a mayúsculas
+True and False #=> False
+False or True #=> True
-# Valores 'boolean' (booleanos) son primitivos
-True
-False
+# Podemos usar operadores booleanos con números enteros
+0 and 2 #=> 0
+-5 or 0 #=> -5
+0 == False #=> True
+2 == True #=> False
+1 == True #=> True
# Niega con 'not'
not True #=> False
@@ -90,7 +111,7 @@ not False #=> True
# Una forma más reciente de formatear strings es el método 'format'.
# Este método es la forma preferida
"{0} pueden ser {1}".format("strings", "formateados")
-# Puedes usar palabras claves si no quieres contar.
+# Puedes usar palabras clave si no quieres contar.
"{nombre} quiere comer {comida}".format(nombre="Bob", comida="lasaña")
# None es un objeto
@@ -107,8 +128,8 @@ None is None #=> True
# None, 0, y strings/listas vacíos(as) todas se evalúan como False.
# Todos los otros valores son True
-0 == False #=> True
-"" == False #=> True
+bool(0) #=> False
+bool("") #=> False
####################################################
@@ -130,16 +151,16 @@ otra_variable # Levanta un error de nombre
# 'if' puede ser usado como una expresión
"yahoo!" if 3 > 2 else 2 #=> "yahoo!"
-# Listas almacenan secuencias
+# Las listas almacenan secuencias
lista = []
# Puedes empezar con una lista prellenada
otra_lista = [4, 5, 6]
# Añadir cosas al final de una lista con 'append'
-lista.append(1) #lista ahora es [1]
-lista.append(2) #lista ahora es [1, 2]
-lista.append(4) #lista ahora es [1, 2, 4]
-lista.append(3) #lista ahora es [1, 2, 4, 3]
+lista.append(1) # lista ahora es [1]
+lista.append(2) # lista ahora es [1, 2]
+lista.append(4) # lista ahora es [1, 2, 4]
+lista.append(3) # lista ahora es [1, 2, 4, 3]
# Remueve del final de la lista con 'pop'
lista.pop() #=> 3 y lista ahora es [1, 2, 4]
# Pongámoslo de vuelta
@@ -173,11 +194,11 @@ lista.extend(otra_lista) # lista ahora es [1, 2, 3, 4, 5, 6]
# Chequea la existencia en una lista con
1 in lista #=> True
-# Examina el largo de una lista con 'len'
+# Examina el tamaño de una lista con 'len'
len(lista) #=> 6
-# Tuplas son como listas pero son inmutables.
+# Las tuplas son como las listas, pero son inmutables.
tupla = (1, 2, 3)
tupla[0] #=> 1
tupla[0] = 3 # Levanta un error TypeError
@@ -266,7 +287,7 @@ conjunto_lleno | otro_conjunto #=> {1, 2, 3, 4, 5, 6}
# Hagamos sólo una variable
una_variable = 5
-# Aquí está una declaración de un 'if'. ¡La indentación es significativa en Python!
+# Aquí está una declaración de un 'if'. ¡La indentación es importante en Python!
# imprime "una_variable es menor que 10"
if una_variable > 10:
print "una_variable es completamente mas grande que 10."
@@ -400,12 +421,12 @@ class Humano(object):
# Un atributo de clase es compartido por todas las instancias de esta clase
especie = "H. sapiens"
- # Constructor basico
+ # Constructor básico, se llama al instanciar la clase.
def __init__(self, nombre):
# Asigna el argumento al atributo nombre de la instancia
self.nombre = nombre
- # Un metodo de instancia. Todos los metodos toman self como primer argumento
+ # Un método de instancia. Todos los metodos toman self como primer argumento
def decir(self, msg):
return "%s: %s" % (self.nombre, msg)
@@ -470,6 +491,56 @@ import math
dir(math)
+####################################################
+## 7. Avanzado
+####################################################
+
+# Los generadores permiten evaluación perezosa
+def duplicar_numeros(iterable):
+ for i in iterable:
+ yield i + i
+
+# Un generador crea valores sobre la marcha
+# En vez de generar y devolver todos los valores de una vez, crea un valor
+# en cada iteración. En este ejemplo los valores mayores que 15 no serán
+# procesados en duplicar_numeros.
+# Nota: xrange es un generador que hace lo mismo que range.
+# Crear una lista de 1 a 900000000 lleva mucho tiempo y ocupa mucho espacio.
+# xrange crea un generador, mientras que range crea toda la lista.
+# Añadimos un guion bajo a los nombres de variable que coinciden con palabras
+# reservadas de python.
+xrange_ = xrange(1, 900000000)
+
+# duplica todos los números hasta que encuentra un resultado >= 30
+for i in duplicar_numeros(xrange_):
+ print i
+ if i >= 30:
+ break
+
+# Decoradores
+# en este ejemplo pedir rodea a hablar
+# Si por_favor es True se cambiará el mensaje.
+from functools import wraps
+
+
+def pedir(target_function):
+ @wraps(target_function)
+ def wrapper(*args, **kwargs):
+ msg, por_favor = target_function(*args, **kwargs)
+ if por_favor:
+ return "{} {}".format(msg, "¡Por favor! Soy pobre :(")
+ return msg
+
+ return wrapper
+
+
+@pedir
+def hablar(por_favor=False):
+ msg = "¿Me puedes comprar una cerveza?"
+ return msg, por_favor
+
+print hablar() # ¿Me puedes comprar una cerveza?
+print hablar(por_favor=True) # ¿Me puedes comprar una cerveza? ¡Por favor! Soy pobre :(
```
## ¿Listo para más?
@@ -481,6 +552,7 @@ dir(math)
* [The Official Docs](http://docs.python.org/2.6/)
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
* [Python Module of the Week](http://pymotw.com/2/)
+* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182)
### Encuadernados