summaryrefslogtreecommitdiffhomepage
path: root/es-es
diff options
context:
space:
mode:
Diffstat (limited to 'es-es')
-rw-r--r--es-es/go-es.html.markdown199
-rw-r--r--es-es/julia-es.html.markdown759
-rw-r--r--es-es/python-es.html.markdown4
-rw-r--r--es-es/python3-es.html.markdown570
4 files changed, 1443 insertions, 89 deletions
diff --git a/es-es/go-es.html.markdown b/es-es/go-es.html.markdown
index 434f6713..e788e810 100644
--- a/es-es/go-es.html.markdown
+++ b/es-es/go-es.html.markdown
@@ -1,22 +1,24 @@
---
-name: Go
-category: language
language: Go
-filename: learngo.go
+lang: es-es
+filename: learngo-es.go
contributors:
- ["Sonia Keys", "https://github.com/soniakeys"]
translators:
- ["Adrian Espinosa", "http://www.adrianespinosa.com"]
-lang: es-es
-
-
+ - ["Jesse Johnson", "https://github.com/holocronweaver"]
---
-Go fue creado por la necesidad de hacer el trabajo rápidamente. No es la última
-tendencia en informática, pero es la forma nueva y más rápida de resolver problemas reales.
+Go fue creado por la necesidad de hacer el trabajo rápidamente. No es
+la última tendencia en informática, pero es la forma nueva y más
+rápida de resolver problemas reales.
+
+Tiene conceptos familiares de lenguajes imperativos con tipado
+estático. Es rápido compilando y rápido al ejecutar, añade una
+concurrencia fácil de entender para las CPUs de varios núcleos de hoy
+en día, y tiene características que ayudan con la programación a gran
+escala.
-Tiene conceptos familiares de lenguajes imperativos con tipado estático.
-Es rápido compilando y rápido al ejecutar, añade una concurrencia fácil de entender para las CPUs de varios núcleos de hoy en día, y tiene características que ayudan con la programación a gran escala.
Go viene con una librería estándar muy buena y una comunidad entusiasta.
```go
@@ -28,15 +30,17 @@ Go viene con una librería estándar muy buena y una comunidad entusiasta.
// Main es un nombre especial que declara un ejecutable en vez de una librería.
package main
-// La declaración Import declara los paquetes de librerías referenciados en este archivo.
+// La declaración Import declara los paquetes de librerías
+// referenciados en este archivo.
import (
- "fmt" // Un paquete en la librería estándar de Go
+ "fmt" // Un paquete en la librería estándar de Go.
"net/http" // Sí, un servidor web!
- "strconv" // Conversiones de cadenas
+ "strconv" // Conversiones de cadenas.
+ m "math" // Librería matemáticas con alias local m.
)
-// Definición de una función. Main es especial. Es el punto de entrada para el ejecutable.
-// Te guste o no, Go utiliza llaves.
+// Definición de una función. Main es especial. Es el punto de
+// entrada para el ejecutable. Te guste o no, Go utiliza llaves.
func main() {
// Println imprime una línea a stdout.
// Cualificalo con el nombre del paquete, fmt.
@@ -49,19 +53,19 @@ func main() {
// Las funciones llevan parámetros entre paréntesis.
// Si no hay parámetros, los paréntesis siguen siendo obligatorios.
func beyondHello() {
- var x int // Declaración de una variable. Las variables se deben declarar antes de
- // utilizarlas.
+ var x int // Declaración de una variable.
+ // Las variables se deben declarar antes de utilizarlas.
x = 3 // Asignación de variables.
// Declaración "corta" con := para inferir el tipo, declarar y asignar.
y := 4
- sum, prod := learnMultiple(x, y) // función devuelve dos valores
- fmt.Println("sum:", sum, "prod:", prod) // simple salida
+ sum, prod := learnMultiple(x, y) // Función devuelve dos valores.
+ fmt.Println("sum:", sum, "prod:", prod) // Simple salida.
learnTypes() // < y minutes, learn more!
}
// Las funciones pueden tener parámetros y (múltiples!) valores de retorno.
func learnMultiple(x, y int) (sum, prod int) {
- return x + y, x * y // devolver dos valores
+ return x + y, x * y // Devolver dos valores.
}
// Algunos tipos incorporados y literales.
@@ -73,32 +77,33 @@ func learnTypes() {
saltos de línea.` // mismo tipo cadena
// Literal no ASCII. Los fuentes de Go son UTF-8.
- g := 'Σ' // tipo rune, un alias de uint32, alberga un punto unicode.
- f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit
- c := 3 + 4i // complex128, representado internamente por dos float64
+ g := 'Σ' // Tipo rune, un alias de uint32, alberga un punto unicode.
+ f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
+ c := 3 + 4i // complex128, representado internamente por dos float64.
// Sintaxis Var con inicializadores.
- var u uint = 7 // sin signo, pero la implementación depende del tamaño como en int
+ var u uint = 7 // Sin signo, pero la implementación depende del
+ // tamaño como en int.
var pi float32 = 22. / 7
// Sintáxis de conversión con una declaración corta.
- n := byte('\n') // byte es un alias de uint8
+ n := byte('\n') // byte es un alias de uint8.
// Los Arrays tienen un tamaño fijo a la hora de compilar.
- var a4 [4]int // un array de 4 ints, inicializados a 0
- a3 := [...]int{3, 1, 5} // un array de 3 ints, inicializados como se indica
+ var a4 [4]int // Un array de 4 ints, inicializados a 0.
+ a3 := [...]int{3, 1, 5} // Un array de 3 ints, inicializados como se indica.
// Los Slices tienen tamaño dinámico. Los arrays y slices tienen sus ventajas
// y desventajas pero los casos de uso para los slices son más comunes.
- s3 := []int{4, 5, 9} // Comparar con a3. No hay puntos suspensivos
- s4 := make([]int, 4) // Asigna slices de 4 ints, inicializados a 0
- var d2 [][]float64 // solo declaración, sin asignación
- bs := []byte("a slice") // sintaxis de conversión de tipo
+ s3 := []int{4, 5, 9} // Comparar con a3. No hay puntos suspensivos.
+ s4 := make([]int, 4) // Asigna slices de 4 ints, inicializados a 0.
+ var d2 [][]float64 // Solo declaración, sin asignación.
+ bs := []byte("a slice") // Sintaxis de conversión de tipo.
- p, q := learnMemory() // declara p, q para ser un tipo puntero a int.
+ p, q := learnMemory() // Declara p, q para ser un tipo puntero a int.
fmt.Println(*p, *q) // * sigue un puntero. Esto imprime dos ints.
- // Los Maps son arrays asociativos dinámicos, como los hash o diccionarios
- // de otros lenguajes
+ // Los Maps son arrays asociativos dinámicos, como los hash o
+ // diccionarios de otros lenguajes.
m := map[string]int{"three": 3, "four": 4}
m["one"] = 1
@@ -108,23 +113,24 @@ saltos de línea.` // mismo tipo cadena
// Esto cuenta como utilización de variables.
fmt.Println(s, c, a4, s3, d2, m)
- learnFlowControl() // vuelta al flujo
+ learnFlowControl() // Vuelta al flujo.
}
-// Go posee recolector de basura. Tiene puntero pero no aritmética de punteros.
-// Puedes cometer un errores con un puntero nil, pero no incrementando un puntero.
+// Go posee recolector de basura. Tiene puntero pero no aritmética de
+// punteros. Puedes cometer un errores con un puntero nil, pero no
+// incrementando un puntero.
func learnMemory() (p, q *int) {
// q y p tienen un tipo puntero a int.
- p = new(int) // función incorporada que asigna memoria.
+ p = new(int) // Función incorporada que asigna memoria.
// La asignación de int se inicializa a 0, p ya no es nil.
- s := make([]int, 20) // asigna 20 ints a un solo bloque de memoria.
- s[3] = 7 // asignar uno de ellos
- r := -2 // declarar otra variable local
+ s := make([]int, 20) // Asigna 20 ints a un solo bloque de memoria.
+ s[3] = 7 // Asignar uno de ellos.
+ r := -2 // Declarar otra variable local.
return &s[3], &r // & toma la dirección de un objeto.
}
-func expensiveComputation() int {
- return 1e6
+func expensiveComputation() float64 {
+ return m.Exp(10)
}
func learnFlowControl() {
@@ -134,29 +140,31 @@ func learnFlowControl() {
}
// El formato está estandarizado por el comando "go fmt."
if false {
- // pout
+ // Pout.
} else {
- // gloat
+ // Gloat.
}
// Utiliza switch preferiblemente para if encadenados.
- x := 1
+ x := 42.0
switch x {
case 0:
case 1:
- // los cases no se mezclan, no requieren de "break"
- case 2:
- // no llega
+ case 42:
+ // Los cases no se mezclan, no requieren de "break".
+ case 43:
+ // No llega.
}
// Como if, for no utiliza paréntesis tampoco.
- for x := 0; x < 3; x++ { // ++ es una sentencia
+ // Variables declaradas en for y if son locales de su ámbito local.
+ for x := 0; x < 3; x++ { // ++ es una sentencia.
fmt.Println("iteration", x)
}
- // x == 1 aqui.
+ // x == 42 aqui.
// For es la única sentencia de bucle en Go, pero tiene formas alternativas.
- for { // bucle infinito
- break // solo bromeaba!
- continue // no llega
+ for { // Bucle infinito.
+ break // Solo bromeaba!
+ continue // No llega.
}
// Como en for, := en una sentencia if significa declarar y asignar primero,
// luego comprobar y > x.
@@ -165,11 +173,11 @@ func learnFlowControl() {
}
// Los literales de funciones son "closures".
xBig := func() bool {
- return x > 100 // referencia a x declarada encima de la sentencia switch.
+ return x > 100 // Referencia a x declarada encima de la sentencia switch.
}
- fmt.Println("xBig:", xBig()) // verdadero (la última vez asignamos 1e6 a x)
- x /= 1e5 // esto lo hace == 10
- fmt.Println("xBig:", xBig()) // ahora es falso
+ fmt.Println("xBig:", xBig()) // verdadero (la última vez asignamos 1e6 a x).
+ x /= m.Exp(9) // Esto lo hace x == e.
+ fmt.Println("xBig:", xBig()) // Ahora es falso.
// Cuando lo necesites, te encantará.
goto love
@@ -199,16 +207,29 @@ func learnInterfaces() {
// La sintaxis de llaves es un "literal struct". Evalúa a un struct
// inicializado. La sintaxis := declara e inicializa p a este struct.
p := pair{3, 4}
- fmt.Println(p.String()) // llamar al método String de p, de tipo pair.
- var i Stringer // declarar i como interfaz tipo Stringer.
- i = p // válido porque pair implementa Stringer
- // Llamar al metodo String de i, de tipo Stringer. Misma salida que arriba
+ fmt.Println(p.String()) // Llamar al método String de p, de tipo pair.
+ var i Stringer // Declarar i como interfaz tipo Stringer.
+ i = p // Válido porque pair implementa Stringer.
+ // Llamar al metodo String de i, de tipo Stringer. Misma salida que arriba.
fmt.Println(i.String())
- // Las funciones en el paquete fmt llaman al método String para preguntar a un objeto
- // por una versión imprimible de si mismo
- fmt.Println(p) // salida igual que arriba. Println llama al método String.
- fmt.Println(i) // salida igual que arriba.
+ // Las funciones en el paquete fmt llaman al método String para
+ // preguntar a un objeto por una versión imprimible de si mismo.
+ fmt.Println(p) // Salida igual que arriba. Println llama al método String.
+ fmt.Println(i) // Salida igual que arriba.
+
+ learnVariadicParams("great", "learning", "here!")
+}
+
+// Las funciones pueden tener número variable de argumentos.
+func learnVariadicParams(myStrings ...interface{}) {
+ // Iterar cada valor de la variadic.
+ for _, param := range myStrings {
+ fmt.Println("param:", param)
+ }
+
+ // Pasar valor variadic como parámetro variadic.
+ fmt.Println("params:", fmt.Sprintln(myStrings...))
learnErrorHandling()
}
@@ -223,7 +244,7 @@ func learnErrorHandling() {
}
// Un valor de error comunica más información sobre el problema aparte de "ok".
if _, err := strconv.Atoi("non-int"); err != nil { // _ descarta el valor
- // imprime "strconv.ParseInt: parsing "non-int": invalid syntax"
+ // Imprime "strconv.ParseInt: parsing "non-int": invalid syntax".
fmt.Println(err)
}
// Revisarmeos las interfaces más tarde. Mientras tanto,
@@ -248,25 +269,28 @@ func learnConcurrency() {
go inc(-805, c)
// Leer los tres resultados del channel e imprimirlos.
// No se puede saber en que orden llegarán los resultados!
- fmt.Println(<-c, <-c, <-c) // channel a la derecha, <- es el operador "recibir".
-
- cs := make(chan string) // otro channel, este gestiona cadenas.
- cc := make(chan chan string) // un channel de cadenas de channels.
- go func() { c <- 84 }() // iniciar una nueva goroutine solo para enviar un valor.
- go func() { cs <- "wordy" }() // otra vez, para cs en esta ocasión
- // Select tiene una sintáxis parecida a la sentencia switch pero cada caso involucra
- // una operacion de channels. Selecciona un caso de forma aleatoria de los casos
- // que están listos para comunicarse.
+ fmt.Println(<-c, <-c, <-c) // Channel a la derecha, <- es el operador "recibir".
+
+ cs := make(chan string) // Otro channel, este gestiona cadenas.
+ ccs := make(chan chan string) // Un channel de cadenas de channels.
+ go func() { c <- 84 }() // Iniciar una nueva goroutine solo para
+ // enviar un valor.
+ go func() { cs <- "wordy" }() // Otra vez, para cs en esta ocasión.
+ // Select tiene una sintáxis parecida a la sentencia switch pero
+ // cada caso involucra una operacion de channels. Selecciona un caso
+ // de forma aleatoria de los casos que están listos para comunicarse.
select {
- case i := <-c: // el valor recibido puede ser asignado a una variable
+ case i := <-c: // El valor recibido puede ser asignado a una variable,
fmt.Printf("it's a %T", i)
- case <-cs: // o el valor puede ser descartado
+ case <-cs: // o el valor puede ser descartado.
fmt.Println("it's a string")
- case <-cc: // channel vacío, no está listo para la comunicación.
+ case <-ccs: // Channel vacío, no está listo para la comunicación.
fmt.Println("didn't happen.")
}
+
// En este punto un valor fue devuelvto de c o cs. Uno de las dos
- // goroutines que se iniciaron se ha completado, la otrá permancerá bloqueada.
+ // goroutines que se iniciaron se ha completado, la otrá permancerá
+ // bloqueada.
learnWebProgramming() // Go lo hace. Tu también quieres hacerlo.
}
@@ -281,7 +305,7 @@ func learnWebProgramming() {
// Haz pair un http.Handler implementando su único método, ServeHTTP.
func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
- // Servir datos con un método de http.ResponseWriter
+ // Servir datos con un método de http.ResponseWriter.
w.Write([]byte("You learned Go in Y minutes!"))
}
```
@@ -291,11 +315,12 @@ func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
La raíz de todas las cosas de Go es la [web oficial de Go](http://golang.org/).
Ahí puedes seguir el tutorial, jugar interactivamente y leer mucho.
-La propia definición del lenguaje también está altamente recomendada. Es fácil de leer
-e increíblemente corta (como otras definiciones de lenguajes hoy en día)
+La propia definición del lenguaje también está altamente
+recomendada. Es fácil de leer e increíblemente corta (como otras
+definiciones de lenguajes hoy en día)
-En la lista de lectura de estudiantes de Go está el código fuente de la
-librería estándar. Muy bien documentada, demuestra lo mejor de Go leíble, comprendible,
-estilo Go y formas Go. Pincha en el nombre de una función en la documentación
-y te aparecerá el código fuente!
+En la lista de lectura de estudiantes de Go está el código fuente de
+la librería estándar. Muy bien documentada, demuestra lo mejor de Go
+leíble, comprendible, estilo Go y formas Go. Pincha en el nombre de
+una función en la documentación y te aparecerá el código fuente!
diff --git a/es-es/julia-es.html.markdown b/es-es/julia-es.html.markdown
new file mode 100644
index 00000000..41a7c68b
--- /dev/null
+++ b/es-es/julia-es.html.markdown
@@ -0,0 +1,759 @@
+---
+language: julia
+contributors:
+ - ["Leah Hanson", "http://leahhanson.us"]
+ - ["Guillermo Garza" ]
+filename: learnjulia-es.jl
+lang: es-es
+---
+
+Julia es un nuevo lenguaje funcional homoiconic enfocado en computación técnica.
+Aunque que tiene todo el poder de macros homoiconic, funciones de primera
+clase, y control de bajo nivel, Julia es tan fácil de aprender y utilizar como
+Python.
+
+Esto se basa en la versión de desarrollo actual de Julia, del 18 de octubre de
+2013.
+
+```ruby
+
+# Comentarios de una línea comienzan con una almohadilla (o signo gato)
+
+#= Commentarios multilinea pueden escribirse
+ usando '#=' antes de el texto y '=#'
+ después del texto. También se pueden anidar.
+=#
+
+####################################################
+## 1. Tipos de datos primitivos y operadores.
+####################################################
+
+# Todo en Julia es una expresión.
+
+# Hay varios tipos básicos de números.
+3 # => 3 (Int64)
+3.2 # => 3.2 (Float64)
+2 + 1im # => 2 + 1im (Complex{Int64})
+2//3 # => 2//3 (Rational{Int64})
+
+# Todos los operadores infijos normales están disponibles.
+1 + 1 # => 2
+8 - 1 # => 7
+10 * 2 # => 20
+35 / 5 # => 7.0
+5/2 # => 2.5 # dividir un Int por un Int siempre resulta en un Float
+div (5, 2) # => 2 # para un resultado truncado, usa div
+5 \ 35 # => 7.0
+2 ^ 2 # => 4 # exponente, no es xor
+12 % 10 # => 2
+
+# Refuerza la precedencia con paréntesis
+(1 + 3) * 2 # => 8
+
+# Operadores a nivel de bit
+~2 # => -3 # bitwise not
+3 & 5 # => 1 # bitwise and
+2 | 4 # => 6 # bitwise or
+2 $ 4 # => 6 # bitwise xor
+2 >>> 1 # => 1 # logical shift right
+2 >> 1 # => 1 # arithmetic shift right
+2 << 1 # => 4 # logical/arithmetic shift left
+
+# Se puede utilizar la función bits para ver la representación binaria de un
+# número.
+bits(12345)
+# => "0000000000000000000000000000000000000000000000000011000000111001"
+bits(12345.0)
+# => "0100000011001000000111001000000000000000000000000000000000000000"
+
+# Valores 'boolean' (booleanos) son primitivos
+true
+false
+
+# Operadores Boolean (booleanos)
+!true # => false
+!false # => true
+1 == 1 # => true
+2 == 1 # => false
+1 != 1 # => false
+2 != 1 # => true
+1 < 10 # => true
+1 > 10 # => false
+2 <= 2 # => true
+2 >= 2 # => true
+# ¡Las comparaciones pueden ser concatenadas!
+1 < 2 < 3 # => true
+2 < 3 < 2 # => false
+
+# Strings se crean con "
+"Esto es un string."
+
+# Literales de caracteres se escriben con '
+'a'
+
+# Una string puede ser indexado como una array de caracteres
+"Esto es un string."[1] # => 'E' # Índices en Julia empiezen del 1
+# Sin embargo, esto no va a funcionar bien para strings UTF8,
+# Lo que se recomienda es la iteración (map, for, etc).
+
+# $ puede ser utilizado para la interpolación de strings:
+"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
+# Se puede poner cualquier expresión de Julia dentro los paréntesis.
+
+# Otro forma de formatear strings es el macro printf
+@printf "%d es menor de %f" 4.5 5.3 # 5 es menor de 5.300000
+
+# Imprimir es muy fácil
+println("Soy Julia. ¡Encantado de conocerte!")
+
+####################################################
+## 2. Variables y Colecciones
+####################################################
+
+# No hay necesidad de declarar las variables antes de asignarlas.
+una_variable = 5 # => 5
+una_variable # => 5
+
+# Acceder a variables no asignadas previamente es una excepción.
+try
+ otra_variable # => ERROR: some_other_var not defined
+catch e
+ println(e)
+end
+
+# Los nombres de variables comienzan con una letra.
+# Después de eso, puedes utilizar letras, dígitos, guiones y signos de
+# exclamación.
+OtraVariable123! = 6 # => 6
+
+# También puede utilizar caracteres unicode
+☃ = 8 # => 8
+# Estos son especialmente útiles para la notación matemática
+2 * π # => 6.283185307179586
+
+# Una nota sobre las convenciones de nomenclatura de Julia:
+#
+# * Los nombres de las variables aparecen en minúsculas, con separación de
+# palabra indicado por underscore ('\ _').
+#
+# * Los nombres de los tipos comienzan con una letra mayúscula y separación de
+# palabras se muestra con CamelCase en vez de underscore.
+#
+# * Los nombres de las funciones y los macros están en minúsculas, sin
+# underscore.
+#
+# * Funciones que modifican sus inputs tienen nombres que terminan en!. Estos
+# funciones a veces se llaman mutating functions o in-place functions.
+
+# Los Arrays almacenan una secuencia de valores indexados entre 1 hasta n
+a = Int64[] # => 0-element Int64 Array
+
+# Literales de arrays 1-dimensionales se pueden escribir con valores separados
+# por comas.
+b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6]
+b[1] # => 4
+b[end] # => 6
+
+# Los arrays 2-dimensionales usan valores separados por espacios y filas
+# separados por punto y coma.
+matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
+
+# Añadir cosas a la final de una lista con push! y append!
+push!(a,1) # => [1]
+push!(a,2) # => [1,2]
+push!(a,4) # => [1,2,4]
+push!(a,3) # => [1,2,4,3]
+append!(a,b) # => [1,2,4,3,4,5,6]
+
+# Eliminar de la final con pop
+pop!(b) # => 6 y b ahora es [4,5]
+
+# Vamos a ponerlo de nuevo
+push!(b, 6) # b es ahora [4,5,6] de nuevo.
+
+a[1] # => 1 # recuerdan que los índices de Julia empiezan desde 1, no desde 0!
+
+# end es una abreviatura para el último índice. Se puede utilizar en cualquier
+# expresión de indexación
+a[end] # => 6
+
+# tambien hay shift y unshift
+shift!(a) # => 1 y a es ahora [2,4,3,4,5,6]
+unshift!(a,7) # => [7,2,4,3,4,5,6]
+
+# Nombres de funciónes que terminan en exclamaciones indican que modifican
+# su argumento.
+arr = [5,4,6] # => 3-element Int64 Array: [5,4,6]
+sort(arr) # => [4,5,6]; arr es todavía [5,4,6]
+sort!(arr) # => [4,5,6]; arr es ahora [4,5,6]
+
+# Buscando fuera de límites es un BoundsError
+try
+ a[0] # => ERROR: BoundsError() in getindex at array.jl:270
+ a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270
+catch e
+ println(e)
+end
+
+# Errors dan la línea y el archivo de su procedencia, aunque sea en el standard
+# library. Si construyes Julia de source, puedes buscar en el source para
+# encontrar estos archivos.
+
+# Se puede inicializar arrays de un range
+a = [1:5] # => 5-element Int64 Array: [1,2,3,4,5]
+
+# Puedes mirar en ranges con sintaxis slice.
+a[1:3] # => [1, 2, 3]
+a[2:end] # => [2, 3, 4, 5]
+
+# Eliminar elementos de una array por índice con splice!
+arr = [3,4,5]
+splice!(arr,2) # => 4 ; arr es ahora [3,5]
+
+# Concatenar listas con append!
+b = [1,2,3]
+append!(a,b) # ahroa a es [1, 2, 3, 4, 5, 1, 2, 3]
+
+# Comprueba la existencia en una lista con in
+in(1, a) # => true
+
+# Examina la longitud con length
+length(a) # => 8
+
+# Tuples son immutable.
+tup = (1, 2, 3) # => (1,2,3) # un (Int64,Int64,Int64) tuple.
+tup[1] # => 1
+try:
+ tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
+catch e
+ println(e)
+end
+
+# Muchas funciones de lista también trabajan en las tuples
+length(tup) # => 3
+tup[1:2] # => (1,2)
+in(2, tup) # => true
+
+# Se puede desempacar tuples en variables
+a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3
+
+# Los tuples se crean, incluso si se omite el paréntesis
+d, e, f = 4, 5, 6 # => (4,5,6)
+
+# Un tuple 1-elemento es distinto del valor que contiene
+(1,) == 1 # => false
+(1) == 1 # => true
+
+# Mira que fácil es cambiar dos valores
+e, d = d, e # => (5,4) # d is now 5 and e is now 4
+
+
+# Dictionaries almanecan mapeos
+dict_vacio = Dict() # => Dict{Any,Any}()
+
+# Se puede crear un dictionary usando un literal
+dict_lleno = ["one"=> 1, "two"=> 2, "three"=> 3]
+# => Dict{ASCIIString,Int64}
+
+# Busca valores con []
+dict_lleno["one"] # => 1
+
+# Obtén todas las claves
+keys(dict_lleno)
+# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
+# Nota - claves del dictionary no están ordenados ni en el orden en que se
+# insertan.
+
+# Obtén todos los valores
+values(dict_lleno)
+# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
+# Nota - Igual que el anterior en cuanto a ordenamiento de claves.
+
+# Compruebe si hay existencia de claves en un dictionary con in y haskey
+in(("uno", 1), dict_lleno) # => true
+in(("tres", 3), dict_lleno) # => false
+haskey(dict_lleno, "one") # => true
+haskey(dict_lleno, 1) # => false
+
+# Tratando de buscar una clave que no existe producirá un error
+try
+ dict_lleno["dos"] # => ERROR: key not found: dos in getindex at dict.jl:489
+catch e
+ println(e)
+end
+
+# Utilice el método get para evitar ese error proporcionando un valor
+# predeterminado
+# get(dictionary,key,default_value)
+get(dict_lleno,"one",4) # => 1
+get(dict_lleno,"four",4) # => 4
+
+# Usa Sets para representar colecciones (conjuntos) de valores únicos, no
+# ordenadas
+conjunto_vacio = Set() # => Set{Any}()
+# Iniciar una set de valores
+conjunto_lleno = Set(1,2,2,3,4) # => Set{Int64}(1,2,3,4)
+
+# Añadir más valores a un conjunto
+push!(conjunto_lleno,5) # => Set{Int64}(5,4,2,3,1)
+push!(conjunto_lleno,5) # => Set{Int64}(5,4,2,3,1)
+
+# Compruebe si los valores están en el conjunto
+in(2, conjunto_lleno) # => true
+in(10, conjunto_lleno) # => false
+
+# Hay funciones de intersección de conjuntos, la unión, y la diferencia.
+conjunto_otro= Set(3, 4, 5, 6) # => Set{Int64}(6,4,5,3)
+intersect(conjunto_lleno, conjunto_otro) # => Set{Int64}(3,4,5)
+union(conjunto_lleno, conjunto_otro) # => Set{Int64}(1,2,3,4,5,6)
+setdiff(Set(1,2,3,4),Set(2,3,5)) # => Set{Int64}(1,4)
+
+
+####################################################
+## 3. Control de Flujo
+####################################################
+
+# Hagamos una variable
+una_variable = 5
+
+# Aquí está una declaración de un 'if'. La indentación no es significativa en
+# Julia
+if una_variable > 10
+ println("una_variable es completamente mas grande que 10.")
+elseif una_variable < 10 # Este condición 'elseif' es opcional.
+ println("una_variable es mas chica que 10.")
+else # Esto también es opcional.
+ println("una_variable es de hecho 10.")
+end
+# => imprime "una_variable es mas chica que 10."
+
+# For itera sobre tipos iterables
+# Tipos iterables incluyen Range, Array, Set, Dict, y String.
+for animal=["perro", "gato", "raton"]
+ println("$animal es un mamifero")
+ # Se puede usar $ para interpolar variables o expresiónes en strings
+end
+# imprime:
+# perro es un mamifero
+# gato es un mamifero
+# raton es un mamifero
+
+for a in ["perro"=>"mamifero","gato"=>"mamifero","raton"=>"mamifero"]
+ println("$(a[1]) es un $(a[2])")
+end
+# imprime:
+# perro es un mamifero
+# gato es un mamifero
+# raton es un mamifero
+
+for (k,v) in ["perro"=>"mamifero", "gato"=>"mamifero", "raton"=>"mamifero"]
+ println("$k es un $v")
+end
+# imprime:
+# perro es un mamifero
+# gato es un mamifero
+# raton es un mamifero
+
+# While itera hasta que una condición no se cumple.
+x = 0
+while x < 4
+ println(x)
+ x += 1 # versión corta de x = x + 1
+end
+# imprime:
+# 0
+# 1
+# 2
+# 3
+
+# Maneja excepciones con un bloque try/catch
+try
+ error("ayuda")
+catch e
+ println("capturando $e")
+end
+# => capturando ErrorException("ayuda")
+
+
+####################################################
+## 4. Funciones
+####################################################
+
+# Usa 'function' para crear nuevas funciones
+
+#function nombre(arglist)
+# cuerpo...
+#end
+function suma(x, y)
+ println("x es $x e y es $y")
+
+ # Las funciones devuelven el valor de su última declaración
+ x + y
+end
+
+suma(5, 6) # => 11 # después de imprimir "x es 5 e y es de 6"
+
+# Puedes definir funciones que toman un número variable de
+# argumentos posicionales
+function varargs(args...)
+ return args
+ # Usa la palabra clave return para devolver en cualquier lugar de la función
+end
+# => varargs (generic function with 1 method)
+
+varargs(1,2,3) # => (1,2,3)
+
+# El ... se llama un splat.
+# Acabamos de utilizar lo en una definición de función.
+# También se puede utilizar en una llamada de función,
+# donde va splat un Array o el contenido de un Tuple en la lista de argumentos.
+Set([1,2,3]) # => Set{Array{Int64,1}}([1,2,3]) # Produce un Set de Arrays
+Set([1,2,3]...) # => Set{Int64}(1,2,3) # esto es equivalente a Set(1,2,3)
+
+x = (1,2,3) # => (1,2,3)
+Set(x) # => Set{(Int64,Int64,Int64)}((1,2,3)) # un Set de Tuples
+Set(x...) # => Set{Int64}(2,3,1)
+
+
+# Puede definir funciones con argumentos posicionales opcionales
+function defaults(a,b,x=5,y=6)
+ return "$a $b y $x $y"
+end
+
+defaults('h','g') # => "h g y 5 6"
+defaults('h','g','j') # => "h g y j 6"
+defaults('h','g','j','k') # => "h g y j k"
+try
+ defaults('h') # => ERROR: no method defaults(Char,)
+ defaults() # => ERROR: no methods defaults()
+catch e
+ println(e)
+end
+
+# Puedes definir funciones que toman argumentos de palabra clave
+function args_clave(;k1=4,nombre2="hola") # note the ;
+ return ["k1"=>k1,"nombre2"=>nombre2]
+end
+
+args_clave(nombre2="ness") # => ["nombre2"=>"ness","k1"=>4]
+args_clave(k1="mine") # => ["k1"=>"mine","nombre2"=>"hola"]
+args_clave() # => ["nombre2"=>"hola","k1"=>4]
+
+# Puedes combinar todo tipo de argumentos en la misma función
+function todos_los_args(arg_normal, arg_posicional_opcional=2; arg_clave="foo")
+ println("argumento normal: $arg_normal")
+ println("argumento optional: $arg_posicional_opcional")
+ println("argumento de clave: $arg_clave")
+end
+
+todos_los_args(1, 3, arg_clave=4)
+# imprime:
+# argumento normal: 1
+# argumento optional: 3
+# argumento de clave: 4
+
+# Julia tiene funciones de primera clase
+function crear_suma(x)
+ suma = function (y)
+ return x + y
+ end
+ return suma
+end
+
+# Esta es el sintaxis "stabby lambda" para crear funciones anónimas
+(x -> x > 2)(3) # => true
+
+# Esta función es idéntica a la crear_suma implementación anterior.
+function crear_suma(x)
+ y -> x + y
+end
+
+# También puedes nombrar la función interna, si quieres
+function crear_suma(x)
+ function suma(y)
+ x + y
+ end
+ suma
+end
+
+suma_10 = crear_suma(10)
+suma_10(3) # => 13
+
+
+# Hay funciones integradas de orden superior
+map(suma_10, [1,2,3]) # => [11, 12, 13]
+filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
+
+# Podemos usar listas por comprensión para mapeos
+[suma_10(i) for i=[1, 2, 3]] # => [11, 12, 13]
+[suma_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
+
+####################################################
+## 5. Tipos
+####################################################
+
+# Julia tiene sistema de tipos.
+# Cada valor tiene un tipo y las variables no tienen propios tipos.
+# Se puede utilizar la función `typeof` para obtener el tipo de un valor.
+typeof(5) # => Int64
+
+# Los tipos son valores de primera clase
+typeof(Int64) # => DataType
+typeof(DataType) # => DataType
+# DataType es el tipo que representa los tipos, incluyéndose a sí mismo.
+
+# Los tipos se usan para la documentación, optimizaciones, y envio.
+# No están comprobados estáticamente.
+
+# Los usuarios pueden definir tipos
+# Son como registros o estructuras en otros idiomas.
+# Nuevos tipos se definen utilizado la palabra clave `type`.
+
+# type Nombre
+# field::OptionalType
+# ...
+# end
+type Tigre
+ longituddecola::Float64
+ colordelpelaje # no incluyendo una anotación de tipo es el mismo que `::Any`
+end
+
+# Los argumentos del constructor por default son las propiedades
+# del tipo, en el orden en que están listados en la definición
+tigger = Tigre(3.5,"anaranjado") # => Tiger(3.5,"anaranjado")
+
+# El tipo funciona como la función constructora de valores de ese tipo
+sherekhan = typeof(tigger)(5.6,"fuego") # => Tiger(5.6,"fuego")
+
+
+# Este estilo de tipos son llamados tipos concrete
+# Se pueden crear instancias, pero no pueden tener subtipos.
+# La otra clase de tipos es tipos abstractos (abstract types).
+
+# abstract Nombre
+abstract Gato # sólo un nombre y un punto en la jerarquía de tipos
+
+# De los tipos Abstract no se pueden crear instancias, pero pueden tener
+# subtipos. Por ejemplo, Number es un tipo abstracto.
+subtypes(Number) # => 6-element Array{Any,1}:
+ # Complex{Float16}
+ # Complex{Float32}
+ # Complex{Float64}
+ # Complex{T<:Real}
+ # Real
+subtypes(Gato) # => 0-element Array{Any,1}
+
+# Cada tipo tiene un supertipo, utilice la función `súper` para conseguirlo.
+typeof(5) # => Int64
+super(Int64) # => Signed
+super(Signed) # => Real
+super(Real) # => Number
+super(Number) # => Any
+super(super(Signed)) # => Number
+super(Any) # => Any
+# Todo de estos tipos, a excepción de Int64, son abstractos.
+
+# <: es el operador de subtipos
+type Leon <: Gato # Leon es un subtipo de Gato
+ color_de_crin
+ rugido::String
+end
+
+# Se puede definir más constructores para su tipo.
+# Sólo defina una función del mismo nombre que el tipo
+# y llame a un constructor existente para obtener un valor del tipo correcto
+Leon(rugido::String) = Leon("verde",rugido)
+# Este es un constructor externo porque es fuera de la definición del tipo
+
+type Pantera <: Gato # Pantera tambien es un a subtipo de Cat
+ color_de_ojos
+ Pantera() = new("verde")
+ # Panteras sólo tendrán este constructor, y ningún constructor
+ # predeterminado.
+end
+# Utilizar constructores internos, como Panther hace, te da control sobre cómo
+# se pueden crear valores del tipo. Cuando sea posible, debes utilizar
+# constructores exteriores en lugar de los internos.
+
+####################################################
+## 6. Envio múltiple
+####################################################
+
+# En Julia, todas las funciones nombradas son funciones genéricas.
+# Esto significa que se construyen a partir de muchos métodos pequeños
+# Cada constructor de Leon es un método de la función genérica Leon.
+
+# Por ejemplo, vamos a hacer un maullar función:
+
+# Definiciones para Leon, Pantera, y Tigre
+function maullar(animal::Leon)
+ animal.rugido # acceso utilizando notación de puntos
+end
+
+function maullar(animal::Pantera)
+ "grrr"
+end
+
+function maullar(animal::Tigre)
+ "rawwwr"
+end
+
+# Prueba de la función maullar
+maullar(tigger) # => "rawwr"
+maullar(Leon("cafe","ROAAR")) # => "ROAAR"
+maullar(Pantera()) # => "grrr"
+
+# Revisar la jerarquía de tipos locales
+issubtype(Tigre,Gato) # => false
+issubtype(Leon,Gato) # => true
+issubtype(Pantera,Gato) # => true
+
+# Definición de una función que toma Gatos
+function mascota(gato::Gato)
+ println("El gato dice $(maullar(gato))")
+end
+
+mascota(Leon("42")) # => imprime "El gato dice 42"
+try
+ mascota(tigger) # => ERROR: no method mascota(Tigre))
+catch e
+ println(e)
+end
+
+# En los lenguajes orientados a objetos, expedición única es común. Esto
+# significa que el método se recogió basándose en el tipo del primer argumento.
+# En Julia, todos los tipos de argumentos contribuyen a seleccionar el mejor
+# método.
+
+# Vamos a definir una función con más argumentos, para que podamos ver la
+# diferencia
+function pelear(t::Tigre,c::Gato)
+ println("¡El tigre $(t.colordelpelaje) gana!")
+end
+# => pelear (generic function with 1 method)
+
+pelear(tigger,Pantera()) # => imprime ¡El tigre anaranjado gana!
+pelear(tigger,Leon("ROAR")) # => ¡El tigre anaranjado gana!
+
+# Vamos a cambiar el comportamiento cuando el Gato es específicamente un Leon
+pelear(t::Tigre,l::Leon) = println("El león con melena $(l.color_de_crin) gana")
+# => pelear (generic function with 2 methods)
+
+pelear(tigger,Pantera()) # => imprime ¡El tigre anaranjado gana!
+pelear(tigger,Leon("ROAR")) # => imprime El león con melena verde gana
+
+# No necesitamos un tigre para poder luchar
+pelear(l::Leon,c::Gato) = println("El gato victorioso dice $(maullar(c))")
+# => fight (generic function with 3 methods)
+
+pelear(Leon("balooga!"),Pantera()) # => imprime El gato victorioso dice grrr
+try
+ pelear(Pantera(),Leon("RAWR")) # => ERROR: no method pelear(Pantera, Leon))
+catch
+end
+
+# Un metodo con el gato primero
+pelear(c::Gato,l::Leon) = println("El gato le gana al León")
+# Warning: New definition
+# pelear(Gato,Leon) at none:1
+# is ambiguous with:
+# pelear(Leon,Gato) at none:1.
+# To fix, define
+# pelear(Leon,Leon)
+# before the new definition.
+# pelear (generic function with 4 methods)
+
+# Esta advertencia se debe a que no está claro que metodo de pelear será llamado
+# en:
+pelear(Leon("RAR"),Leon("cafe","rar")) # => imprime El gato victorioso dice rar
+# El resultado puede ser diferente en otras versiones de Julia
+
+pelear(l::Leon,l2::Leon) = println("Los leones llegan a un empate")
+pelear(Leon("GR"),Leon("cafe","rar")) # => imprime Los leones llegan a un empate
+
+
+# Un vistazo al nivel bajo
+# Se puede echar un vistazo a la LLVM y el código ensamblador generado.
+
+area_cuadrada(l) = l * l # area_cuadrada (generic function with 1 method)
+
+area_cuadrada(5) # => 25
+
+# ¿Qué sucede cuando damos area_cuadrada diferentes argumentos?
+code_native(area_cuadrada, (Int32,))
+ # .section __TEXT,__text,regular,pure_instructions
+ # Filename: none
+ # Source line: 1 # Prologue
+ # push RBP
+ # mov RBP, RSP
+ # Source line: 1
+ # movsxd RAX, EDI # Fetch l from memory?
+ # imul RAX, RAX # Square l and store the result in RAX
+ # pop RBP # Restore old base pointer
+ # ret # Result will still be in RAX
+
+code_native(area_cuadrada, (Float32,))
+ # .section __TEXT,__text,regular,pure_instructions
+ # Filename: none
+ # Source line: 1
+ # push RBP
+ # mov RBP, RSP
+ # Source line: 1
+ # vmulss XMM0, XMM0, XMM0 # Scalar single precision multiply (AVX)
+ # pop RBP
+ # ret
+
+code_native(area_cuadrada, (Float64,))
+ # .section __TEXT,__text,regular,pure_instructions
+ # Filename: none
+ # Source line: 1
+ # push RBP
+ # mov RBP, RSP
+ # Source line: 1
+ # vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX)
+ # pop RBP
+ # ret
+ #
+
+# Ten en cuenta que Julia usará instrucciones de "floating point" si alguno de
+# los argumentos son "floats"
+# Vamos a calcular el área de un círculo
+area_circulo(r) = pi * r * r # circle_area (generic function with 1 method)
+area_circulo(5) # 78.53981633974483
+
+code_native(area_circulo, (Int32,))
+ # .section __TEXT,__text,regular,pure_instructions
+ # Filename: none
+ # Source line: 1
+ # push RBP
+ # mov RBP, RSP
+ # Source line: 1
+ # vcvtsi2sd XMM0, XMM0, EDI # Load integer (r) from memory
+ # movabs RAX, 4593140240 # Load pi
+ # vmulsd XMM1, XMM0, QWORD PTR [RAX] # pi * r
+ # vmulsd XMM0, XMM0, XMM1 # (pi * r) * r
+ # pop RBP
+ # ret
+ #
+
+code_native(area_circulo, (Float64,))
+ # .section __TEXT,__text,regular,pure_instructions
+ # Filename: none
+ # Source line: 1
+ # push RBP
+ # mov RBP, RSP
+ # movabs RAX, 4593140496
+ # Source line: 1
+ # vmulsd XMM1, XMM0, QWORD PTR [RAX]
+ # vmulsd XMM0, XMM1, XMM0
+ # pop RBP
+ # ret
+ #
+```
+
+## ¿Listo para más?
+
+Puedes obtener muchos más detalles en [The Julia Manual](http://docs.julialang.org/en/latest/manual/)
+
+El mejor lugar para obtener ayuda con Julia es el (muy amable) [lista de correos](https://groups.google.com/forum/#!forum/julia-users).
+
diff --git a/es-es/python-es.html.markdown b/es-es/python-es.html.markdown
index f92f5cde..f7a0ec02 100644
--- a/es-es/python-es.html.markdown
+++ b/es-es/python-es.html.markdown
@@ -130,7 +130,7 @@ otra_variable # Levanta un error de nombre
# 'if' puede ser usado como una expresión
"yahoo!" if 3 > 2 else 2 #=> "yahoo!"
-# Listas sobre secuencias
+# Listas almacenan secuencias
lista = []
# Puedes empezar con una lista prellenada
otra_lista = [4, 5, 6]
@@ -254,7 +254,7 @@ conjunto_lleno | otro_conjunto #=> {1, 2, 3, 4, 5, 6}
# Haz diferencia de conjuntos con -
{1,2,3,4} - {2,3,5} #=> {1, 4}
-# CHequea la existencia en un conjunto con 'in'
+# Chequea la existencia en un conjunto con 'in'
2 in conjunto_lleno #=> True
10 in conjunto_lleno #=> False
diff --git a/es-es/python3-es.html.markdown b/es-es/python3-es.html.markdown
new file mode 100644
index 00000000..1c69481a
--- /dev/null
+++ b/es-es/python3-es.html.markdown
@@ -0,0 +1,570 @@
+---
+language: python3
+contributors:
+ - ["Louie Dinh", "http://pythonpracticeprojects.com"]
+translators:
+ - ["Camilo Garrido", "http://twitter.com/hirohope"]
+lang: es-es
+filename: learnpython3-es.py
+---
+
+Python fue creado por Guido Van Rossum en el principio de los 90'. Ahora es uno
+de los lenguajes más populares en existencia. Me enamoré de Python por su claridad sintáctica.
+Es básicamente pseudocódigo ejecutable.
+
+¡Comentarios serán muy apreciados! Pueden contactarme en [@louiedinh](http://twitter.com/louiedinh) o louiedinh [at] [servicio de email de google]
+
+Nota: Este artículo aplica a Python 2.7 específicamente, pero debería ser aplicable a Python 2.x. ¡Pronto un recorrido por Python 3!
+
+```python
+
+# Comentarios de una línea comienzan con una almohadilla (o signo gato)
+
+""" Strings multilinea pueden escribirse
+ usando tres "'s, y comunmente son usados
+ como comentarios.
+"""
+
+####################################################
+## 1. Tipos de datos primitivos y operadores.
+####################################################
+
+# Tienes números
+3 #=> 3
+
+# Matemática es lo que esperarías
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+
+# Excepto la división la cual por defecto retorna un número 'float' (número de coma flotante)
+35 / 5 # => 7.0
+
+# Cuando usas un float, los resultados son floats
+3 * 2.0 # => 6.0
+
+# Refuerza la precedencia con paréntesis
+(1 + 3) * 2 # => 8
+
+
+# Valores 'boolean' (booleanos) son primitivos
+True
+False
+
+# Niega con 'not'
+not True # => False
+not False # => True
+
+
+# Igualdad es ==
+1 == 1 # => True
+2 == 1 # => False
+
+# Desigualdad es !=
+1 != 1 # => False
+2 != 1 # => True
+
+# Más comparaciones
+1 < 10 # => True
+1 > 10 # => False
+2 <= 2 # => True
+2 >= 2 # => True
+
+# ¡Las comparaciones pueden ser concatenadas!
+1 < 2 < 3 # => True
+2 < 3 < 2 # => False
+
+# Strings se crean con " o '
+"Esto es un string."
+'Esto también es un string'
+
+# ¡Strings también pueden ser sumados!
+"Hola " + "mundo!" #=> "Hola mundo!"
+
+# Un string puede ser tratado como una lista de caracteres
+"Esto es un string"[0] #=> 'E'
+
+# .format puede ser usaro para darle formato a los strings, así:
+"{} pueden ser {}".format("strings", "interpolados")
+
+# Puedes repetir los argumentos de formateo para ahorrar tipeos.
+"{0} sé ligero, {0} sé rápido, {0} brinca sobre la {1}".format("Jack", "vela") #=> "Jack sé ligero, Jack sé rápido, Jack brinca sobre la vela"
+# Puedes usar palabras claves si no quieres contar.
+"{nombre} quiere comer {comida}".format(nombre="Bob", food="lasaña") #=> "Bob quiere comer lasaña"
+
+
+# None es un objeto
+None # => None
+
+# No uses el símbolo de igualdad `==` para comparar objetos con None
+# Usa `is` en lugar de
+"etc" is None #=> False
+None is None #=> True
+
+# None, 0, y strings/listas/diccionarios vacíos(as) todos se evalúan como False.
+# Todos los otros valores son True
+bool(0) # => False
+bool("") # => False
+bool([]) #=> False
+bool({}) #=> False
+
+
+####################################################
+## 2. Variables y Colecciones
+####################################################
+
+# Python tiene una función para imprimir
+print("Soy Python. Encantado de conocerte")
+
+# No hay necesidad de declarar las variables antes de asignarlas.
+una_variable = 5 # La convención es usar guiones_bajos_con_minúsculas
+una_variable #=> 5
+
+# Acceder a variables no asignadas previamente es una excepción.
+# Ve Control de Flujo para aprender más sobre el manejo de excepciones.
+otra_variable # Levanta un error de nombre
+
+# Listas almacena secuencias
+lista = []
+# Puedes empezar con una lista prellenada
+otra_lista = [4, 5, 6]
+
+# Añadir cosas al final de una lista con 'append'
+lista.append(1) #lista ahora es [1]
+lista.append(2) #lista ahora es [1, 2]
+lista.append(4) #lista ahora es [1, 2, 4]
+lista.append(3) #lista ahora es [1, 2, 4, 3]
+# Remueve del final de la lista con 'pop'
+lista.pop() #=> 3 y lista ahora es [1, 2, 4]
+# Pongámoslo de vuelta
+lista.append(3) # Nuevamente lista ahora es [1, 2, 4, 3].
+
+# Accede a una lista como lo harías con cualquier arreglo
+lista[0] #=> 1
+# Mira el último elemento
+lista[-1] #=> 3
+
+# Mirar fuera de los límites es un error 'IndexError'
+lista[4] # Levanta la excepción IndexError
+
+# Puedes mirar por rango con la sintáxis de trozo.
+# (Es un rango cerrado/abierto para ustedes los matemáticos.)
+lista[1:3] #=> [2, 4]
+# Omite el inicio
+lista[2:] #=> [4, 3]
+# Omite el final
+lista[:3] #=> [1, 2, 4]
+# Selecciona cada dos elementos
+lista[::2] # =>[1, 4]
+# Invierte la lista
+lista[::-1] # => [3, 4, 2, 1]
+# Usa cualquier combinación de estos para crear trozos avanzados
+# lista[inicio:final:pasos]
+
+# Remueve elementos arbitrarios de una lista con 'del'
+del lista[2] # lista ahora es [1, 2, 3]
+
+# Puedes sumar listas
+lista + otra_lista #=> [1, 2, 3, 4, 5, 6] - Nota: lista y otra_lista no se tocan
+
+# Concatenar listas con 'extend'
+lista.extend(otra_lista) # lista ahora es [1, 2, 3, 4, 5, 6]
+
+# Chequea la existencia en una lista con 'in'
+1 in lista #=> True
+
+# Examina el largo de una lista con 'len'
+len(lista) #=> 6
+
+
+# Tuplas son como listas pero son inmutables.
+tupla = (1, 2, 3)
+tupla[0] #=> 1
+tupla[0] = 3 # Levanta un error TypeError
+
+# También puedes hacer todas esas cosas que haces con listas
+len(tupla) #=> 3
+tupla + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
+tupla[:2] #=> (1, 2)
+2 in tupla #=> True
+
+# Puedes desempacar tuplas (o listas) en variables
+a, b, c = (1, 2, 3) # a ahora es 1, b ahora es 2 y c ahora es 3
+# Tuplas son creadas por defecto si omites los paréntesis
+d, e, f = 4, 5, 6
+# Ahora mira que fácil es intercambiar dos valores
+e, d = d, e # d ahora es 5 y e ahora es 4
+
+
+# Diccionarios almacenan mapeos
+dicc_vacio = {}
+# Aquí está un diccionario prellenado
+dicc_lleno = {"uno": 1, "dos": 2, "tres": 3}
+
+# Busca valores con []
+dicc_lleno["uno"] #=> 1
+
+# Obtén todas las llaves como una lista con 'keys()'. Necesitamos envolver la llamada en 'list()' porque obtenemos un iterable. Hablaremos de eso luego.
+list(dicc_lleno.keys()) #=> ["tres", "dos", "uno"]
+# Nota - El orden de las llaves del diccionario no está garantizada.
+# Tus resultados podrían no ser los mismos del ejemplo.
+
+# Obtén todos los valores como una lista. Nuevamente necesitamos envolverlas en una lista para sacarlas del iterable.
+list(dicc_lleno.values()) #=> [3, 2, 1]
+# Nota - Lo mismo que con las llaves, no se garantiza el orden.
+
+# Chequea la existencia de una llave en el diccionario con 'in'
+"uno" in dicc_lleno #=> True
+1 in dicc_lleno #=> False
+
+# Buscar una llave inexistente deriva en KeyError
+dicc_lleno["cuatro"] # KeyError
+
+# Usa el método 'get' para evitar la excepción KeyError
+dicc_lleno.get("uno") #=> 1
+dicc_lleno.get("cuatro") #=> None
+# El método 'get' soporta un argumento por defecto cuando el valor no existe.
+dicc_lleno.get("uno", 4) #=> 1
+dicc_lleno.get("cuatro", 4) #=> 4
+
+# El método 'setdefault' inserta en un diccionario solo si la llave no está presente
+dicc_lleno.setdefault("cinco", 5) #dicc_lleno["cinco"] es puesto con valor 5
+dicc_lleno.setdefault("cinco", 6) #dicc_lleno["cinco"] todavía es 5
+
+
+# Remueve llaves de un diccionario con 'del'
+del dicc_lleno['uno'] # Remueve la llave 'uno' de dicc_lleno
+
+# Sets (conjuntos) almacenan ... bueno, conjuntos
+conjunto_vacio = set()
+# Inicializar un conjunto con montón de valores. Yeah, se ve un poco como un diccionario. Lo siento.
+un_conjunto = {1,2,2,3,4} # un_conjunto ahora es {1, 2, 3, 4}
+
+# Añade más valores a un conjunto
+conjunto_lleno.add(5) # conjunto_lleno ahora es {1, 2, 3, 4, 5}
+
+# Haz intersección de conjuntos con &
+otro_conjunto = {3, 4, 5, 6}
+conjunto_lleno & otro_conjunto #=> {3, 4, 5}
+
+# Haz unión de conjuntos con |
+conjunto_lleno | otro_conjunto #=> {1, 2, 3, 4, 5, 6}
+
+# Haz diferencia de conjuntos con -
+{1,2,3,4} - {2,3,5} #=> {1, 4}
+
+# Chequea la existencia en un conjunto con 'in'
+2 in conjunto_lleno #=> True
+10 in conjunto_lleno #=> False
+
+
+####################################################
+## 3. Control de Flujo
+####################################################
+
+# Let's just make a variable
+some_var = 5
+
+# Aquí está una declaración de un 'if'. ¡La indentación es significativa en Python!
+# imprime "una_variable es menor que 10"
+if una_variable > 10:
+ print("una_variable es completamente mas grande que 10.")
+elif una_variable < 10: # Este condición 'elif' es opcional.
+ print("una_variable es mas chica que 10.")
+else: # Esto también es opcional.
+ print("una_variable es de hecho 10.")
+
+"""
+For itera sobre listas
+imprime:
+ perro es un mamifero
+ gato es un mamifero
+ raton es un mamifero
+"""
+for animal in ["perro", "gato", "raton"]:
+ # Puedes usar % para interpolar strings formateados
+ print("{} es un mamifero".format(animal))
+
+"""
+`range(número)` retorna una lista de números
+desde cero hasta el número dado
+imprime:
+ 0
+ 1
+ 2
+ 3
+"""
+for i in range(4):
+ print(i)
+
+"""
+While itera hasta que una condición no se cumple.
+imprime:
+ 0
+ 1
+ 2
+ 3
+"""
+x = 0
+while x < 4:
+ print(x)
+ x += 1 # versión corta de x = x + 1
+
+# Maneja excepciones con un bloque try/except
+try:
+ # Usa raise para levantar un error
+ raise IndexError("Este es un error de indice")
+except IndexError as e:
+ pass # Pass no hace nada. Usualmente harias alguna recuperacion aqui.
+
+# Python oferce una abstracción fundamental llamada Iterable.
+# Un iterable es un objeto que puede ser tratado como una sequencia.
+# El objeto es retornado por la función 'range' es un iterable.
+
+dicc_lleno = {"uno": 1, "dos": 2, "tres": 3}
+nuestro_iterable = dicc_lleno.keys()
+print(nuestro_iterable) #=> range(1,10). Este es un objeto que implementa nuestra interfaz Iterable
+
+Podemos recorrerla.
+for i in nuestro_iterable:
+ print(i) # Imprime uno, dos, tres
+
+# Aunque no podemos selecionar un elemento por su índice.
+nuestro_iterable[1] # Genera un TypeError
+
+# Un iterable es un objeto que sabe como crear un iterador.
+nuestro_iterator = iter(nuestro_iterable)
+
+# Nuestro iterador es un objeto que puede recordar el estado mientras lo recorremos.
+# Obtenemos el siguiente objeto llamando la función __next__.
+nuestro_iterator.__next__() #=> "uno"
+
+# Mantiene el estado mientras llamamos __next__.
+nuestro_iterator.__next__() #=> "dos"
+nuestro_iterator.__next__() #=> "tres"
+
+# Después que el iterador ha retornado todos sus datos, da una excepción StopIterator.
+nuestro_iterator.__next__() # Genera StopIteration
+
+# Puedes obtener todos los elementos de un iterador llamando a list() en el.
+list(dicc_lleno.keys()) #=> Retorna ["uno", "dos", "tres"]
+
+
+
+####################################################
+## 4. Funciones
+####################################################
+
+# Usa 'def' para crear nuevas funciones
+def add(x, y):
+ print("x es {} y y es {}".format(x, y))
+ return x + y # Retorna valores con una la declaración return
+
+# Llamando funciones con parámetros
+add(5, 6) #=> imprime "x es 5 y y es 6" y retorna 11
+
+# Otra forma de llamar funciones es con argumentos de palabras claves
+add(y=6, x=5) # Argumentos de palabra clave pueden ir en cualquier orden.
+
+
+# Puedes definir funciones que tomen un número variable de argumentos
+def varargs(*args):
+ return args
+
+varargs(1, 2, 3) #=> (1,2,3)
+
+
+# Puedes definir funciones que toman un número variable de argumentos
+# de palabras claves
+def keyword_args(**kwargs):
+ return kwargs
+
+# Llamémosla para ver que sucede
+keyword_args(pie="grande", lago="ness") #=> {"pie": "grande", "lago": "ness"}
+
+
+# You can do both at once, if you like# Puedes hacer ambas a la vez si quieres
+def todos_los_argumentos(*args, **kwargs):
+ print args
+ print kwargs
+"""
+todos_los_argumentos(1, 2, a=3, b=4) imprime:
+ (1, 2)
+ {"a": 3, "b": 4}
+"""
+
+# ¡Cuando llames funciones, puedes hacer lo opuesto a varargs/kwargs!
+# Usa * para expandir tuplas y usa ** para expandir argumentos de palabras claves.
+args = (1, 2, 3, 4)
+kwargs = {"a": 3, "b": 4}
+todos_los_argumentos(*args) # es equivalente a foo(1, 2, 3, 4)
+todos_los_argumentos(**kwargs) # es equivalente a foo(a=3, b=4)
+todos_los_argumentos(*args, **kwargs) # es equivalente a foo(1, 2, 3, 4, a=3, b=4)
+
+# Python tiene funciones de primera clase
+def crear_suma(x):
+ def suma(y):
+ return x + y
+ return suma
+
+sumar_10 = crear_suma(10)
+sumar_10(3) #=> 13
+
+# También hay funciones anónimas
+(lambda x: x > 2)(3) #=> True
+
+# Hay funciones integradas de orden superior
+map(sumar_10, [1,2,3]) #=> [11, 12, 13]
+filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
+
+# Podemos usar listas por comprensión para mapeos y filtros agradables
+[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
+[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]
+
+####################################################
+## 5. Classes
+####################################################
+
+
+# Heredamos de object para obtener una clase.
+class Humano(object):
+
+ # Un atributo de clase es compartido por todas las instancias de esta clase
+ especie = "H. sapiens"
+
+ # Constructor basico
+ def __init__(self, nombre):
+ # Asigna el argumento al atributo nombre de la instancia
+ self.nombre = nombre
+
+ # Un metodo de instancia. Todos los metodos toman self como primer argumento
+ def decir(self, msg):
+ return "%s: %s" % (self.nombre, msg)
+
+ # Un metodo de clase es compartido a través de todas las instancias
+ # Son llamados con la clase como primer argumento
+ @classmethod
+ def get_especie(cls):
+ return cls.especie
+
+ # Un metodo estatico es llamado sin la clase o instancia como referencia
+ @staticmethod
+ def roncar():
+ return "*roncar*"
+
+
+# Instancia una clase
+i = Humano(nombre="Ian")
+print i.decir("hi") # imprime "Ian: hi"
+
+j = Humano("Joel")
+print j.decir("hello") #imprime "Joel: hello"
+
+# Llama nuestro método de clase
+i.get_especie() #=> "H. sapiens"
+
+# Cambia los atributos compartidos
+Humano.especie = "H. neanderthalensis"
+i.get_especie() #=> "H. neanderthalensis"
+j.get_especie() #=> "H. neanderthalensis"
+
+# Llama al método estático
+Humano.roncar() #=> "*roncar*"
+
+
+####################################################
+## 6. Módulos
+####################################################
+
+# Puedes importar módulos
+import math
+print(math.sqrt(16)) #=> 4
+
+# Puedes obtener funciones específicas desde un módulo
+from math import ceil, floor
+print(ceil(3.7)) #=> 4.0
+print(floor(3.7))#=> 3.0
+
+# Puedes importar todas las funciones de un módulo
+# Precaución: Esto no es recomendable
+from math import *
+
+# Puedes acortar los nombres de los módulos
+import math as m
+math.sqrt(16) == m.sqrt(16) #=> True
+
+# Los módulos de Python son sólo archivos ordinarios de Python.
+# Puedes escribir tus propios módulos e importarlos. El nombre del módulo
+# es el mismo del nombre del archivo.
+
+# Puedes encontrar que funciones y atributos definen un módulo.
+import math
+dir(math)
+
+
+####################################################
+## 7. Avanzado
+####################################################
+
+# Los generadores te ayudan a hacer un código perezoso (lazy)
+def duplicar_numeros(iterable):
+ for i in iterable:
+ yield i + i
+
+# Un generador cera valores sobre la marcha.
+# En vez de generar y retornar todos los valores de una vez, crea uno en cada iteración.
+# Esto significa que valores más grandes que 15 no serán procesados en 'duplicar_numeros'.
+# Fíjate que 'range' es un generador. Crear una lista 1-900000000 tomaría mucho tiempo en crearse.
+_rango = range(1, 900000000)
+# Duplicará todos los números hasta que un resultado >= se encuentre.
+for i in duplicar_numeros(_rango):
+ print(i)
+ if i >= 30:
+ break
+
+
+# Decoradores
+# en este ejemplo 'pedir' envuelve a 'decir'
+# Pedir llamará a 'decir'. Si decir_por_favor es True entonces cambiará el mensaje a retornar
+from functools import wraps
+
+
+def pedir(_decir):
+ @wraps(_decir)
+ def wrapper(*args, **kwargs):
+ mensaje, decir_por_favor = _decir(*args, **kwargs)
+ if decir_por_favor:
+ return "{} {}".format(mensaje, "¡Por favor! Soy pobre :(")
+ return mensaje
+
+ return wrapper
+
+
+@pedir
+def say(decir_por_favor=False):
+ mensaje = "¿Puedes comprarme una cerveza?"
+ return mensaje, decir_por_favor
+
+
+print(decir()) # ¿Puedes comprarme una cerveza?
+print(decir(decir_por_favor=True)) # ¿Puedes comprarme una cerveza? ¡Por favor! Soy pobre :()
+```
+
+## ¿Listo para más?
+
+### Gratis y en línea
+
+* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
+* [Dive Into Python](http://www.diveintopython.net/)
+* [Ideas for Python Projects](http://pythonpracticeprojects.com)
+* [The Official Docs](http://docs.python.org/3/)
+* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
+* [Python Module of the Week](http://pymotw.com/3/)
+* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182)
+
+### Encuadernados
+
+* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
+* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
+* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)
+