summaryrefslogtreecommitdiffhomepage
path: root/es-es
diff options
context:
space:
mode:
Diffstat (limited to 'es-es')
-rw-r--r--es-es/go-es.html.markdown618
1 files changed, 371 insertions, 247 deletions
diff --git a/es-es/go-es.html.markdown b/es-es/go-es.html.markdown
index 86de33ec..c41d693d 100644
--- a/es-es/go-es.html.markdown
+++ b/es-es/go-es.html.markdown
@@ -1,326 +1,450 @@
---
+name: Go
+category: language
language: Go
lang: es-es
filename: learngo-es.go
contributors:
- ["Sonia Keys", "https://github.com/soniakeys"]
+ - ["Christopher Bess", "https://github.com/cbess"]
+ - ["Jesse Johnson", "https://github.com/holocronweaver"]
+ - ["Quint Guvernator", "https://github.com/qguv"]
+ - ["Jose Donizetti", "https://github.com/josedonizetti"]
+ - ["Alexej Friesen", "https://github.com/heyalexej"]
translators:
- ["Adrian Espinosa", "http://www.adrianespinosa.com"]
- ["Jesse Johnson", "https://github.com/holocronweaver"]
+ - ["Nacho Pacheco -- Feb/2015", "https://github.com/gitnacho"]
---
-Go fue creado por la necesidad de hacer el trabajo rápidamente. No es
-la última tendencia en informática, pero es la forma nueva y más
-rápida de resolver problemas reales.
+Go fue creado por la necesidad de hacer el trabajo rápidamente. No es la
+última tendencia en informática, pero es la forma nueva y más rápida de
+resolver problemas reales.
-Tiene conceptos familiares de lenguajes imperativos con tipado
-estático. Es rápido compilando y rápido al ejecutar, añade una
-concurrencia fácil de entender para las CPUs de varios núcleos de hoy
-en día, y tiene características que ayudan con la programación a gran
-escala.
+Tiene conceptos familiares de lenguajes imperativos con tipado estático.
+Es rápido compilando y rápido al ejecutar, añade una concurrencia fácil de
+entender para las CPUs de varios núcleos de hoy día, y tiene
+características que ayudan con la programación a gran escala.
-Go viene con una librería estándar muy buena y una comunidad entusiasta.
+Go viene con una biblioteca estándar muy buena y una entusiasta comunidad.
```go
// Comentario de una sola línea
-/* Comentario
- multi línea */
+/* Comentario
+ multilínea */
-// La cláusula package aparece al comienzo de cada archivo fuente.
-// Main es un nombre especial que declara un ejecutable en vez de una librería.
+// La cláusula `package` aparece al comienzo de cada fichero fuente.
+// `main` es un nombre especial que declara un ejecutable en vez de una
+// biblioteca.
package main
-// La declaración Import declara los paquetes de librerías
-// referenciados en este archivo.
+// La instrucción `import` declara los paquetes de bibliotecas referidos
+// en este fichero.
import (
- "fmt" // Un paquete en la librería estándar de Go.
- "net/http" // Sí, un servidor web!
- "strconv" // Conversiones de cadenas.
- m "math" // Librería matemáticas con alias local m.
+ "fmt" // Un paquete en la biblioteca estándar de Go.
+ "io/ioutil" // Implementa algunas útiles funciones de E/S.
+ m "math" // Biblioteca de matemáticas con alias local m.
+ "net/http" // Sí, ¡un servidor web!
+ "strconv" // Conversiones de cadenas.
)
-// Definición de una función. Main es especial. Es el punto de
-// entrada para el ejecutable. Te guste o no, Go utiliza llaves.
+// Definición de una función. `main` es especial. Es el punto de entrada
+// para el ejecutable. Te guste o no, Go utiliza llaves.
func main() {
- // Println imprime una línea a stdout.
- // Cualificalo con el nombre del paquete, fmt.
- fmt.Println("Hello world!")
+ // Println imprime una línea a stdout.
+ // Cualificalo con el nombre del paquete, fmt.
+ fmt.Println("¡Hola mundo!")
- // Llama a otra función de este paquete.
- beyondHello()
+ // Llama a otra función de este paquete.
+ másAlláDelHola()
}
// Las funciones llevan parámetros entre paréntesis.
// Si no hay parámetros, los paréntesis siguen siendo obligatorios.
-func beyondHello() {
- var x int // Declaración de una variable.
- // Las variables se deben declarar antes de utilizarlas.
- x = 3 // Asignación de variables.
- // Declaración "corta" con := para inferir el tipo, declarar y asignar.
- y := 4
- sum, prod := learnMultiple(x, y) // Función devuelve dos valores.
- fmt.Println("sum:", sum, "prod:", prod) // Simple salida.
- learnTypes() // < y minutes, learn more!
+func másAlláDelHola() {
+ var x int // Declaración de una variable.
+ // Las variables se deben declarar antes de utilizarlas.
+ x = 3 // Asignación de variable.
+ // Declaración "corta" con := para inferir el tipo, declarar y asignar.
+ y := 4
+ suma, producto := aprendeMúltiple(x, y) // La función devuelve dos
+ // valores.
+ fmt.Println("suma:", suma, "producto:", producto) // Simple salida.
+ aprendeTipos() // < y minutos, ¡aprende más!
}
-// Las funciones pueden tener parámetros y (múltiples!) valores de retorno.
-func learnMultiple(x, y int) (sum, prod int) {
- return x + y, x * y // Devolver dos valores.
+// Las funciones pueden tener parámetros y (¡múltiples!) valores de
+// retorno.
+func aprendeMúltiple(x, y int) (suma, producto int) {
+ return x + y, x * y // Devuelve dos valores.
}
// Algunos tipos incorporados y literales.
-func learnTypes() {
- // La declaración corta suele darte lo que quieres.
- s := "Learn Go!" // tipo cadena
-
- s2 := ` Un tipo cadena "puro" puede incluir
+func aprendeTipos() {
+ // La declaración corta suele darte lo que quieres.
+ s := "¡Aprende Go!" // tipo cadena.
+ s2 := `Un tipo cadena "puro" puede incluir
saltos de línea.` // mismo tipo cadena
- // Literal no ASCII. Los fuentes de Go son UTF-8.
- g := 'Σ' // Tipo rune, un alias de int32, alberga un punto unicode.
- f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
- c := 3 + 4i // complex128, representado internamente por dos float64.
- // Sintaxis Var con inicializadores.
- var u uint = 7 // Sin signo, pero la implementación depende del
- // tamaño como en int.
- var pi float32 = 22. / 7
-
- // Sintáxis de conversión con una declaración corta.
- n := byte('\n') // byte es un alias de uint8.
-
- // Los Arrays tienen un tamaño fijo a la hora de compilar.
- var a4 [4]int // Un array de 4 ints, inicializados a 0.
- a3 := [...]int{3, 1, 5} // Un array de 3 ints, inicializados como se indica.
-
- // Los Slices tienen tamaño dinámico. Los arrays y slices tienen sus ventajas
- // y desventajas pero los casos de uso para los slices son más comunes.
- s3 := []int{4, 5, 9} // Comparar con a3. No hay puntos suspensivos.
- s4 := make([]int, 4) // Asigna slices de 4 ints, inicializados a 0.
- var d2 [][]float64 // Solo declaración, sin asignación.
- bs := []byte("a slice") // Sintaxis de conversión de tipo.
-
- p, q := learnMemory() // Declara p, q para ser un tipo puntero a int.
- fmt.Println(*p, *q) // * sigue un puntero. Esto imprime dos ints.
-
- // Los Maps son arrays asociativos dinámicos, como los hash o
- // diccionarios de otros lenguajes.
- m := map[string]int{"three": 3, "four": 4}
- m["one"] = 1
-
- // Las variables no utilizadas en Go producen error.
- // El guión bajo permite "utilizar" una variable, pero descartar su valor.
- _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
- // Esto cuenta como utilización de variables.
- fmt.Println(s, c, a4, s3, d2, m)
-
- learnFlowControl() // Vuelta al flujo.
+ // Literal no ASCII. Los ficheros fuente de Go son UTF-8.
+ g := 'Σ' // Tipo rune, un alias de int32, alberga un carácter unicode.
+ f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
+ c := 3 + 4i // complex128, representado internamente por dos float64.
+ // Sintaxis Var con iniciadores.
+ var u uint = 7 // Sin signo, pero la implementación depende del tamaño
+ // como en int.
+ var pi float32 = 22. / 7
+
+ // Sintáxis de conversión con una declaración corta.
+ n := byte('\n') // byte es un alias para uint8.
+
+ // Los Arreglos tienen un tamaño fijo a la hora de compilar.
+ var a4 [4]int // Un arreglo de 4 ints, iniciados a 0.
+ a3 := [...]int{3, 1, 5} // Un arreglo iniciado con un tamaño fijo de tres
+ // elementos, con valores 3, 1 y 5.
+ // Los Sectores tienen tamaño dinámico. Los arreglos y sectores tienen
+ // sus ventajas y desventajas pero los casos de uso para los sectores
+ // son más comunes.
+ s3 := []int{4, 5, 9} // Comparar con a3. No hay puntos suspensivos.
+ s4 := make([]int, 4) // Asigna sectores de 4 ints, iniciados a 0.
+ var d2 [][]float64 // Solo declaración, sin asignación.
+ bs := []byte("a sector") // Sintaxis de conversión de tipo.
+ // Debido a que son dinámicos, los sectores pueden crecer bajo demanda.
+ // Para añadir elementos a un sector, se utiliza la función incorporada
+ // append().
+ // El primer argumento es el sector al que se está anexando. Comúnmente,
+ // la variable del arreglo se actualiza en su lugar, como en el
+ // siguiente ejemplo.
+ sec := []int{1, 2 , 3} // El resultado es un sector de longitud 3.
+ sec = append(sec, 4, 5, 6) // Añade 3 elementos. El sector ahora tiene una
+ // longitud de 6.
+ fmt.Println(sec) // El sector actualizado ahora es [1 2 3 4 5 6]
+ // Para anexar otro sector, en lugar de la lista de elementos atómicos
+ // podemos pasar una referencia a un sector o un sector literal como
+ // este, con elipsis al final, lo que significa tomar un sector y
+ // desempacar sus elementos, añadiéndolos al sector sec.
+ sec = append(sec, []int{7, 8, 9} ...) // El segundo argumento es un
+ // sector literal.
+ fmt.Println(sec) // El sector actualizado ahora es [1 2 3 4 5 6 7 8 9]
+ p, q := aprendeMemoria() // Declara p, q para ser un tipo puntero a
+ // int.
+ fmt.Println(*p, *q) // * sigue un puntero. Esto imprime dos ints.
+
+ // Los Mapas son arreglos asociativos dinámicos, como los hash o
+ // diccionarios de otros lenguajes.
+ m := map[string]int{"tres": 3, "cuatro": 4}
+ m["uno"] = 1
+
+ // Las variables no utilizadas en Go producen error.
+ // El guión bajo permite "utilizar" una variable, pero descartar su
+ // valor.
+ _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
+ // Esto cuenta como utilización de variables.
+ fmt.Println(s, c, a4, s3, d2, m)
+
+ aprendeControlDeFlujo() // Vuelta al flujo.
+}
+
+// Es posible, a diferencia de muchos otros lenguajes tener valores de
+// retorno con nombre en las funciones.
+// Asignar un nombre al tipo que se devuelve en la línea de declaración de
+// la función nos permite volver fácilmente desde múltiples puntos en una
+// función, así como sólo utilizar la palabra clave `return`, sin nada
+// más.
+func aprendeRetornosNombrados(x, y int) (z int) {
+ z = x * y
+ return // aquí z es implícito, porque lo nombramos antes.
}
-// Go posee recolector de basura. Tiene puntero pero no aritmética de
-// punteros. Puedes cometer un errores con un puntero nil, pero no
+// Go posee recolector de basura. Tiene punteros pero no aritmética de
+// punteros. Puedes cometer errores con un puntero nil, pero no
// incrementando un puntero.
-func learnMemory() (p, q *int) {
- // q y p tienen un tipo puntero a int.
- p = new(int) // Función incorporada que asigna memoria.
- // La asignación de int se inicializa a 0, p ya no es nil.
- s := make([]int, 20) // Asigna 20 ints a un solo bloque de memoria.
- s[3] = 7 // Asignar uno de ellos.
- r := -2 // Declarar otra variable local.
- return &s[3], &r // & toma la dirección de un objeto.
+func aprendeMemoria() (p, q *int) {
+ // Los valores de retorno nombrados q y p tienen un tipo puntero
+ // a int.
+ p = new(int) // Función incorporada que reserva memoria.
+ // La asignación de int se inicia a 0, p ya no es nil.
+ s := make([]int, 20) // Reserva 20 ints en un solo bloque de memoria.
+ s[3] = 7 // Asigna uno de ellos.
+ r := -2 // Declara otra variable local.
+ return &s[3], &r // & toma la dirección de un objeto.
}
-func expensiveComputation() float64 {
- return m.Exp(10)
+func cálculoCaro() float64 {
+ return m.Exp(10)
}
-func learnFlowControl() {
- // La declaración If requiere llaves, pero no paréntesis.
- if true {
- fmt.Println("told ya")
- }
- // El formato está estandarizado por el comando "go fmt."
- if false {
- // Pout.
- } else {
- // Gloat.
- }
- // Utiliza switch preferiblemente para if encadenados.
- x := 42.0
- switch x {
- case 0:
- case 1:
- case 42:
- // Los cases no se mezclan, no requieren de "break".
- case 43:
- // No llega.
+func aprendeControlDeFlujo() {
+ // La declaración If requiere llaves, pero no paréntesis.
+ if true {
+ fmt.Println("ya relatado")
+ }
+ // El formato está estandarizado por la orden "go fmt."
+ if false {
+ // Abadejo.
+ } else {
+ // Relamido.
+ }
+ // Utiliza switch preferentemente para if encadenados.
+ x := 42.0
+ switch x {
+ case 0:
+ case 1:
+ case 42:
+ // Los cases no se mezclan, no requieren de "break".
+ case 43:
+ // No llega.
+ }
+ // Como if, for no utiliza paréntesis tampoco.
+ // Variables declaradas en for e if son locales a su ámbito.
+ for x := 0; x < 3; x++ { // ++ es una instrucción.
+ fmt.Println("iteración", x)
+ }
+ // aquí x == 42.
+
+ // For es la única instrucción de bucle en Go, pero tiene formas
+ // alternativas.
+ for { // Bucle infinito.
+ break // ¡Solo bromeaba!
+ continue // No llega.
+ }
+
+ // Puedes usar `range` para iterar en un arreglo, un sector, una
+ // cadena, un mapa o un canal.
+ // `range` devuelve o bien, un canal o de uno a dos valores (arreglo,
+ // sector, cadena y mapa).
+ for clave, valor := range map[string]int{"uno": 1, "dos": 2, "tres": 3} {
+ // por cada par en el mapa, imprime la clave y el valor
+ fmt.Printf("clave=%s, valor=%d\n", clave, valor)
+ }
+
+ // Como en for, := en una instrucción if significa declarar y asignar
+ // primero, luego comprobar y > x.
+ if y := cálculoCaro(); y > x {
+ x = y
}
- // Como if, for no utiliza paréntesis tampoco.
- // Variables declaradas en for y if son locales de su ámbito local.
- for x := 0; x < 3; x++ { // ++ es una sentencia.
- fmt.Println("iteration", x)
- }
- // x == 42 aqui.
+ // Las funciones literales son "cierres".
+ granX := func() bool {
+ return x > 100 // Referencia a x declarada encima de la instrucción
+ // switch.
+ }
+ fmt.Println("granX:", granX()) // cierto (la última vez asignamos
+ // 1e6 a x).
+ x /= 1.3e3 // Esto hace a x == 1300
+ fmt.Println("granX:", granX()) // Ahora es falso.
+
+ // Es más las funciones literales se pueden definir y llamar en línea,
+ // actuando como un argumento para la función, siempre y cuando:
+ // a) la función literal sea llamada inmediatamente (),
+ // b) el tipo del resultado sea del tipo esperado del argumento
+ fmt.Println("Suma dos números + doble: ",
+ func(a, b int) int {
+ return (a + b) * 2
+ }(10, 2)) // Llamada con argumentos 10 y 2
+ // => Suma dos números + doble: 24
+
+ // Cuando lo necesites, te encantará.
+ goto encanto
+encanto:
+
+ aprendeFunciónFábrica() // func devolviendo func es divertido(3)(3)
+ aprendeADiferir() // Un rápido desvío a una importante palabra clave.
+ aprendeInterfaces() // ¡Buen material dentro de poco!
+}
- // For es la única sentencia de bucle en Go, pero tiene formas alternativas.
- for { // Bucle infinito.
- break // Solo bromeaba!
- continue // No llega.
- }
- // Como en for, := en una sentencia if significa declarar y asignar primero,
- // luego comprobar y > x.
- if y := expensiveComputation(); y > x {
- x = y
- }
- // Los literales de funciones son "closures".
- xBig := func() bool {
- return x > 100 // Referencia a x declarada encima de la sentencia switch.
- }
- fmt.Println("xBig:", xBig()) // verdadero (la última vez asignamos 1e6 a x).
- x /= m.Exp(9) // Esto lo hace x == e.
- fmt.Println("xBig:", xBig()) // Ahora es falso.
+func aprendeFunciónFábrica() {
+ // Las dos siguientes son equivalentes, la segunda es más práctica
+ fmt.Println(instrucciónFábrica("día")("Un bello", "de verano"))
+
+ d := instrucciónFábrica("atardecer")
+ fmt.Println(d("Un hermoso", "de verano"))
+ fmt.Println(d("Un maravilloso", "de verano"))
+}
- // Cuando lo necesites, te encantará.
- goto love
-love:
+// Los decoradores son comunes en otros lenguajes. Lo mismo se puede hacer
+// en Go con funciónes literales que aceptan argumentos.
+func instrucciónFábrica(micadena string) func(antes, después string) string {
+ return func(antes, después string) string {
+ return fmt.Sprintf("¡%s %s %s!", antes, micadena, después) // nueva cadena
+ }
+}
- learnInterfaces() // Buen material dentro de poco!
+func aprendeADiferir() (ok bool) {
+ // las instrucciones diferidas se ejecutan justo antes de que la
+ // función regrese.
+ defer fmt.Println("las instrucciones diferidas se ejecutan en orden inverso (PEPS).")
+ defer fmt.Println("\nEsta línea se imprime primero debido a que")
+ // Defer se usa comunmente para cerrar un fichero, por lo que la
+ // función que cierra el fichero se mantiene cerca de la función que lo
+ // abrió.
+ return true
}
// Define Stringer como un tipo interfaz con un método, String.
type Stringer interface {
- String() string
+ String() string
}
-// Define pair como un struct con dos campos int, x e y.
-type pair struct {
- x, y int
+// Define par como una estructura con dos campos int, x e y.
+type par struct {
+ x, y int
}
-// Define un método del tipo pair. Pair ahora implementa Stringer.
-func (p pair) String() string { // p se llama "recibidor"
- // Sprintf es otra función pública del paquete fmt.
- // La sintaxis con punto referencia campos de p.
- return fmt.Sprintf("(%d, %d)", p.x, p.y)
+// Define un método en el tipo par. Par ahora implementa a Stringer.
+func (p par) String() string { // p se conoce como el "receptor"
+ // Sprintf es otra función pública del paquete fmt.
+ // La sintaxis con punto se refiere a los campos de p.
+ return fmt.Sprintf("(%d, %d)", p.x, p.y)
}
-func learnInterfaces() {
- // La sintaxis de llaves es un "literal struct". Evalúa a un struct
- // inicializado. La sintaxis := declara e inicializa p a este struct.
- p := pair{3, 4}
- fmt.Println(p.String()) // Llamar al método String de p, de tipo pair.
- var i Stringer // Declarar i como interfaz tipo Stringer.
- i = p // Válido porque pair implementa Stringer.
- // Llamar al metodo String de i, de tipo Stringer. Misma salida que arriba.
- fmt.Println(i.String())
-
- // Las funciones en el paquete fmt llaman al método String para
- // preguntar a un objeto por una versión imprimible de si mismo.
- fmt.Println(p) // Salida igual que arriba. Println llama al método String.
- fmt.Println(i) // Salida igual que arriba.
-
- learnVariadicParams("great", "learning", "here!")
+func aprendeInterfaces() {
+ // La sintaxis de llaves es una "estructura literal". Evalúa a una
+ // estructura iniciada. La sintaxis := declara e inicia p a esta
+ // estructura.
+ p := par{3, 4}
+ fmt.Println(p.String()) // Llama al método String de p, de tipo par.
+ var i Stringer // Declara i como interfaz de tipo Stringer.
+ i = p // Válido porque par implementa Stringer.
+ // Llama al metodo String de i, de tipo Stringer. Misma salida que
+ // arriba.
+ fmt.Println(i.String())
+
+ // Las funciones en el paquete fmt llaman al método String para
+ // consultar un objeto por una representación imprimible de si
+ // mismo.
+ fmt.Println(p) // Salida igual que arriba. Println llama al método
+ // String.
+ fmt.Println(i) // Salida igual que arriba.
+ aprendeNúmeroVariableDeParámetros("¡gran", "aprendizaje", "aquí!")
}
// Las funciones pueden tener número variable de argumentos.
-func learnVariadicParams(myStrings ...interface{}) {
- // Iterar cada valor de la variadic.
- for _, param := range myStrings {
- fmt.Println("param:", param)
- }
-
- // Pasar valor variadic como parámetro variadic.
- fmt.Println("params:", fmt.Sprintln(myStrings...))
-
- learnErrorHandling()
+func aprendeNúmeroVariableDeParámetros(misCadenas ...interface{}) {
+ // Itera en cada valor de los argumentos variables.
+ // El espacio en blanco aquí omite el índice del argumento arreglo.
+ for _, parámetro := range misCadenas {
+ fmt.Println("parámetro:", parámetro)
+ }
+
+ // Pasa el valor de múltiples variables como parámetro variadic.
+ fmt.Println("parámetros:", fmt.Sprintln(misCadenas...))
+ aprendeManejoDeError()
}
-func learnErrorHandling() {
- // ", ok" forma utilizada para saber si algo funcionó o no.
- m := map[int]string{3: "three", 4: "four"}
- if x, ok := m[1]; !ok { // ok será falso porque 1 no está en el map.
- fmt.Println("no one there")
- } else {
- fmt.Print(x) // x sería el valor, si estuviera en el map.
- }
- // Un valor de error comunica más información sobre el problema aparte de "ok".
- if _, err := strconv.Atoi("non-int"); err != nil { // _ descarta el valor
- // Imprime "strconv.ParseInt: parsing "non-int": invalid syntax".
- fmt.Println(err)
- }
- // Revisarmeos las interfaces más tarde. Mientras tanto,
- learnConcurrency()
+func aprendeManejoDeError() {
+ // ", ok" forma utilizada para saber si algo funcionó o no.
+ m := map[int]string{3: "tres", 4: "cuatro"}
+ if x, ok := m[1]; !ok { // ok será falso porque 1 no está en el mapa.
+ fmt.Println("nada allí")
+ } else {
+ fmt.Print(x) // x sería el valor, si estuviera en el mapa.
+ }
+ // Un valor de error comunica más información sobre el problema aparte
+ // de "ok".
+ if _, err := strconv.Atoi("no-int"); err != nil { // _ descarta el
+ // valor
+ // Imprime "strconv.ParseInt: parsing "no-int": invalid syntax".
+ fmt.Println(err)
+ }
+ // Revisaremos las interfaces más adelante. Mientras tanto...
+ aprendeConcurrencia()
}
-// c es un canal, un objeto de comunicación de concurrencia segura.
+// c es un canal, un objeto de comunicación concurrente seguro.
func inc(i int, c chan int) {
- c <- i + 1 // <- es el operador "enviar" cuando un canal aparece a la izquierda.
+ c <- i + 1 // <- es el operador "enviar" cuando aparece un canal a la
+ // izquierda.
}
// Utilizaremos inc para incrementar algunos números concurrentemente.
-func learnConcurrency() {
- // Misma función make utilizada antes para crear un slice. Make asigna e
- // inicializa slices, maps, y channels.
- c := make(chan int)
- // Iniciar tres goroutines concurrentes. Los números serán incrementados
- // concurrentemente, quizás en paralelo si la máquina es capaz y
- // está correctamente configurada. Las tres envían al mismo channel.
- go inc(0, c) // go es una sentencia que inicia una nueva goroutine.
- go inc(10, c)
- go inc(-805, c)
- // Leer los tres resultados del channel e imprimirlos.
- // No se puede saber en que orden llegarán los resultados!
- fmt.Println(<-c, <-c, <-c) // Channel a la derecha, <- es el operador "recibir".
-
- cs := make(chan string) // Otro channel, este gestiona cadenas.
- ccs := make(chan chan string) // Un channel de cadenas de channels.
- go func() { c <- 84 }() // Iniciar una nueva goroutine solo para
- // enviar un valor.
- go func() { cs <- "wordy" }() // Otra vez, para cs en esta ocasión.
- // Select tiene una sintáxis parecida a la sentencia switch pero
- // cada caso involucra una operacion de channels. Selecciona un caso
- // de forma aleatoria de los casos que están listos para comunicarse.
- select {
- case i := <-c: // El valor recibido puede ser asignado a una variable,
- fmt.Printf("it's a %T", i)
- case <-cs: // o el valor puede ser descartado.
- fmt.Println("it's a string")
- case <-ccs: // Channel vacío, no está listo para la comunicación.
- fmt.Println("didn't happen.")
- }
-
- // En este punto un valor fue devuelvto de c o cs. Uno de las dos
- // goroutines que se iniciaron se ha completado, la otrá permancerá
- // bloqueada.
-
- learnWebProgramming() // Go lo hace. Tu también quieres hacerlo.
+func aprendeConcurrencia() {
+ // Misma función make utilizada antes para crear un sector. Make asigna
+ // e inicia sectores, mapas y canales.
+ c := make(chan int)
+ // Inicia tres rutinasgo concurrentes. Los números serán incrementados
+ // concurrentemente, quizás en paralelo si la máquina es capaz y está
+ // correctamente configurada. Las tres envían al mismo canal.
+ go inc(0, c) // go es una instrucción que inicia una nueva rutinago.
+ go inc(10, c)
+ go inc(-805, c)
+ // Lee los tres resultados del canal y los imprime.
+ // ¡No se puede saber en que orden llegarán los resultados!
+ fmt.Println(<-c, <-c, <-c) // Canal a la derecha, <- es el operador
+ // "recibe".
+
+ cs := make(chan string) // Otro canal, este gestiona cadenas.
+ ccs := make(chan chan string) // Un canal de canales cadena.
+ go func() { c <- 84 }() // Inicia una nueva rutinago solo para
+ // enviar un valor.
+ go func() { cs <- "verboso" }() // Otra vez, para cs en esta ocasión.
+ // Select tiene una sintáxis parecida a la instrucción switch pero cada
+ // caso involucra una operacion con un canal. Selecciona un caso de
+ // forma aleatoria de los casos que están listos para comunicarse.
+ select {
+ case i := <-c: // El valor recibido se puede asignar a una variable,
+ fmt.Printf("es un %T", i)
+ case <-cs: // o el valor se puede descartar.
+ fmt.Println("es una cadena")
+ case <-ccs: // Canal vacío, no está listo para la comunicación.
+ fmt.Println("no sucedió.")
+ }
+
+ // En este punto un valor fue devuelto de c o cs. Una de las dos
+ // rutinasgo que se iniciaron se ha completado, la otrá permancerá
+ // bloqueada.
+
+ aprendeProgramaciónWeb() // Go lo hace. Tú también quieres hacerlo.
}
// Una simple función del paquete http inicia un servidor web.
-func learnWebProgramming() {
- // El primer parámetro de la direccinón TCP a la que escuchar.
- // El segundo parámetro es una interfaz, concretamente http.Handler.
- err := http.ListenAndServe(":8080", pair{})
- fmt.Println(err) // no ignorar errores
+func aprendeProgramaciónWeb() {
+// El primer parámetro es la direccinón TCP a la que escuchar.
+ // El segundo parámetro es una interfaz, concretamente http.Handler.
+ go func() {
+ err := http.ListenAndServe(":8080", par{})
+ fmt.Println(err) // no ignora errores
+ }()
+ consultaAlServidor()
}
-// Haz pair un http.Handler implementando su único método, ServeHTTP.
-func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
- // Servir datos con un método de http.ResponseWriter.
- w.Write([]byte("You learned Go in Y minutes!"))
+// Hace un http.Handler de par implementando su único método, ServeHTTP.
+func (p par) ServeHTTP(w http.ResponseWriter, r *http.Request) {
+ // Sirve datos con un método de http.ResponseWriter.
+ w.Write([]byte("¡Aprendiste Go en Y minutos!"))
+}
+
+func consultaAlServidor() {
+ resp, err := http.Get("http://localhost:8080")
+ fmt.Println(err)
+ defer resp.Body.Close()
+ cuerpo, err := ioutil.ReadAll(resp.Body)
+ fmt.Printf("\nEl servidor web dijo: `%s`\n", string(cuerpo))
}
```
-## Para leer más
+## Más información
+
+La raíz de todas las cosas sobre Go es el
+[sitio web oficial de Go](http://golang.org/).
+Allí puedes seguir el tutorial, jugar interactivamente y leer mucho más.
-La raíz de todas las cosas de Go es la [web oficial de Go](http://golang.org/).
-Ahí puedes seguir el tutorial, jugar interactivamente y leer mucho.
+La definición del lenguaje es altamente recomendada. Es fácil de leer y
+sorprendentemente corta (como la definición del lenguaje Go en estos
+días).
-La propia definición del lenguaje también está altamente
-recomendada. Es fácil de leer e increíblemente corta (como otras
-definiciones de lenguajes hoy en día)
+Puedes jugar con el código en el
+[parque de diversiones Go](https://play.golang.org/p/ncRC2Zevag). ¡Trata
+de cambiarlo y ejecutarlo desde tu navegador! Ten en cuenta que puedes
+utilizar [https://play.golang.org]( https://play.golang.org) como un
+[REPL](https://en.wikipedia.org/wiki/Read-eval-print_loop) para probar
+cosas y el código en el navegador, sin ni siquiera instalar Go.
-En la lista de lectura de estudiantes de Go está el código fuente de
-la librería estándar. Muy bien documentada, demuestra lo mejor de Go
-leíble, comprendible, estilo Go y formas Go. Pincha en el nombre de
-una función en la documentación y te aparecerá el código fuente!
+En la lista de lecturas para estudiantes de Go está el
+[código fuente de la biblioteca estándar](http://golang.org/src/pkg/).
+Ampliamente documentado, que demuestra lo mejor del legible y comprensible
+Go, con su característico estilo y modismos. ¡O puedes hacer clic en un
+nombre de función en [la documentación](http://golang.org/pkg/) y
+aparecerá el código fuente!
+Otro gran recurso para aprender Go está en
+[Go con ejemplos](http://goconejemplos.com/).