summaryrefslogtreecommitdiffhomepage
path: root/fr-fr
diff options
context:
space:
mode:
Diffstat (limited to 'fr-fr')
-rw-r--r--fr-fr/erlang-fr.html.markdown327
-rw-r--r--fr-fr/json-fr.html.markdown62
-rw-r--r--fr-fr/livescript-fr.html.markdown360
-rw-r--r--fr-fr/lua-fr.html.markdown8
-rw-r--r--fr-fr/markdown.html.markdown2
-rw-r--r--fr-fr/r-fr.html.markdown747
-rw-r--r--fr-fr/typescript-fr.html.markdown174
7 files changed, 1675 insertions, 5 deletions
diff --git a/fr-fr/erlang-fr.html.markdown b/fr-fr/erlang-fr.html.markdown
new file mode 100644
index 00000000..55453c56
--- /dev/null
+++ b/fr-fr/erlang-fr.html.markdown
@@ -0,0 +1,327 @@
+---
+language: erlang
+contributors:
+ - ["Giovanni Cappellotto", "http://www.focustheweb.com/"]
+translators:
+ - ["Julien Cretel", "https://github.com/Jubobs"]
+filename: learnerlang-fr.erl
+lang: fr-fr
+---
+
+```erlang
+% Un signe pour cent marque le début d'un commentaire de fin de ligne.
+
+%% Deux signes pour cent sont utilisés pour commenter les fonctions.
+
+%%% Trois signes pour cent sont utilisés pour commenter les modules.
+
+% Trois symboles de ponctuation sont utilisés en Erlang.
+% Les virgules (`,`) servent à séparer les paramètres dans les appels de
+% fonctions, les contructeurs, et les motifs.
+% Les points (`.`) (suivis par des blancs) servent à séparer les fonctions et
+% les expressions dans l'interpréteur.
+% Les points-virgules (`;`) servent à séparer les clauses. Ces dernières
+% apparaissent dans différent cas de figure : définitions de fonctions et
+% expressions `case`, `if`, `try..catch`, `receive`.
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% 1. Variables et filtrage par motif
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+(L'équivalent anglais de *filtrage par motif* est *pattern patching*.)
+
+Nb = 42. % Chaque nom de variable doit commencer par une lettre majuscule.
+
+% Les variables Erlang ne peuvent être affectées qu'une seule fois ; si vous
+% essayez d'affecter une autre valeur à la variable `Nb`, vous obtiendrez
+% une erreur.
+Nb = 43. % ** exception error: no match of right hand side value 43
+
+% Dans la plupart des languages, `=` indique une affectation. En Erlang,
+% cependant, `=` indique un filtrage par motif. En fait, `Gauche = Droit`
+% signifie ce qui suit : évalue le côté droit (`Droit`), et ensuite filtre le
+% résultat à l'aide du motif du côté gauche (`Gauche`).
+Nb = 7 * 6.
+
+% Nombre en virgule flottante.
+Pi = 3.14159.
+
+% Les atomes représentent des valeurs constantes non-numériques. Un atome
+% commence par une lettre minuscule, suivie d'une séquence composée de
+% caractères alphanumériques, de tirets bas (`_`), ou d'arobases (`@`).
+Bonjour = bonjour.
+AutreNoeud = exemple@noeud.
+
+% Les atomes de valeur autre qu'alphanumérique peuvent être délimités par
+% des guillemets droits simples.
+AtomeAvecEspace = 'un atome contenant des espaces'.
+
+% Les tuples sont similaires aux enregistrements du language C.
+Point = {point, 10, 45}.
+
+% Pour extraire des valeurs d'un tuple, on filtre par motif avec
+% l'opérateur `=`.
+{point, X, Y} = Point. % X = 10, Y = 45
+
+% On peut utiliser `_` comme caractère joker pour les variables qui ne nous
+% intéressent pas. Le symbol `_` est appelé variable muette. Contrairement
+% aux variables normales, de multiples apparitions de `_` dans un même motif
+% ne lient pas nécessairement à la même valeur.
+Personne = {personne, {nom, {prenom, joe}, {famille, armstrong}},
+ {pointure, 42}}.
+{_, {_, {_, Qui}, _}, _} = Personne. % Qui = joe
+
+% Pour créer une liste, on écrit les éléments de la liste entre crochets, en
+% les séparant par des virgules.
+% Les éléments d'une liste peuvent avoir n'importe quel type.
+% Le premier élément d'une liste est appelé la tête de la liste. Si on retire
+% la tête d'une liste, ce qui reste est appelée la queue de la liste.
+Articles = [{pommes, 10}, {poires, 6}, {lait, 3}].
+
+% Si `Q` est une liste, alors `[T|Q]` est aussi une liste dont la tête est `T`
+% et dont la queue est `Q`. La barre verticale (`|`) sépare la tête d'une
+% liste de sa queue.
+% `[]` est la liste vide.
+% On peut extraire des éléments d'une liste par filtrage de motif. Si `L` est
+% une liste non vide, alors l'expression `[X|Y] = L`, où `X` et `Y` sont des
+% variables non affectées, va extraire la tête de la liste dans `X` et la
+% queue de la liste dans `Y`.
+[PremierArticle|AutresArticles] = Articles.
+% PremierArticle = {pommmes, 10}
+% AutresArticles = [{poires, 6}, {lait, 3}]
+
+% Il n'y a pas de chaînes de caractères en Erlang. Les chaînes de caractères
+% ne sont rien de plus que des listes d'entiers.
+% Les chaînes de caractères sont délimitées par des guillemets droits doubles
+% (`"`).
+Nom = "Bonjour".
+[66, 111, 110, 106, 111, 117, 114] = "Bonjour".
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% 2. Programmation séquentielle.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Les modules constituent l'unité de base d'un programme Erlang. Toutes les
+% fonctions que l'on écrit sont enregistrées dans des modules. Les modules sont
+% enregistrés dans des fichiers avec une extension `.erl`.
+% Les modules doivent être compilés afin d'éxecuter le programme.
+% Un module compilé a une extension `.beam`.
+-module(geometrie).
+-export([aire/1]). % la liste des fonctions exportées par le module.
+
+% La fonction `aire` est composée de deux clauses. Les clauses sont séparées
+% par un point-virgule, et la dernière clause est suivie d'un point et un
+% espace blanc. Chaque clause a une en-tête et un corps ; l'en-tête consiste
+% en un nom de fonction suivi d'un motif (entre parenthèses), et le corps
+% consiste en une séquence d'expressions, qui sont évaluées si le motif de
+% l'en-tête est cohérent par rapport à la valeur des paramètres d'appel.
+% L'expression est filtrée séquentiellement par les différents motifs, dans
+% l'ordre dans lequel ils apparaissent dans la définition de la fonction.
+aire({rectangle, Largeur, Hauteur}) -> Largeur * Hauteur;
+aire({cercle, R}) -> 3.14159 * R * R.
+
+% Compilation du code du fichier geometrie.erl.
+c(geometrie). % {ok,geometrie}
+
+% Le nom du module doit être inclus avec le nom de la fonction afin
+% d'identifier précisément quelle fonction on souhaite appeler.
+geometrie:aire({rectangle, 10, 5}). % 50
+geometrie:area({cercle, 1.4}). % 6.15752
+
+% En Erlang, deux fonctions portant le même nom mais ayant des arités
+% différentes (c'est à dire ne prenant pas le même nombre de paramètres)
+% au sein d'un même module représentent des fonctions complètement
+% différentes.
+-module(lib_divers).
+-export([somme/1]). % exporte la fonction `somme` d'arité 1
+ % acceptant un paramètre : une liste d'entiers.
+somme(L) -> somme(L, 0).
+somme([], N) -> N;
+somme([T|Q], N) -> somme(Q, T+N).
+
+% Les `fun`s sont des fonctions "anonymes" ; elles sont appelées ainsi parce
+% qu'elles n'ont pas de nom. Cependant, elles peuvent être affectées à des
+% variables.
+Doubler = fun(X) -> 2 * X end. % `Doubler` pointe vers une fonction anonyme
+ % dont le handle est : #Fun<erl_eval.6.17052888>
+Doubler(2). % 4
+
+% Les fonctions peuvent prendre des `fun`s comme paramètres et peuvent renvoyer
+% des `fun`s.
+Mult = fun(Fois) -> ( fun(X) -> X * Fois end ) end.
+Tripler = Mult(3).
+Tripler(5). % 15
+
+% Les listes en compréhension sont des expressions qui créent des listes sans
+% requérir ni `fun`s, ni maps, ni filters.
+% La notation `[F(X) || X <- L]` signifie "la liste des `F(X)` où `X` est
+% extrait de la liste `L`."
+L = [1,2,3,4,5].
+[2 * X || X <- L]. % [2,4,6,8,10]
+% Une liste en compréhension peut être constituée de générateurs, ainsi que de
+% gardes, qui sélectionnent un sous-ensemble des valeurs générées.
+NombresPairs = [N || N <- [1, 2, 3, 4], N rem 2 == 0]. % [2, 4]
+
+% La garde est un élément syntaxique qui rend le filtrage par motif encore
+% plus puissant. Les gardes permettent de d'effectuer de simple tests et
+% comparaisons sur les variables d'un motif. Les gardes peuvent être
+% utilisées dans les en-têtes de fonctions, au sein desquelles elles sont
+% introduites par le mot-clé `when`, ou encore à n'importe quel endroit où
+% une expression est autorisée.
+max(X, Y) when X > Y -> X;
+max(X, Y) -> Y.
+
+% Une garde est une série d'expressions gardes, séparées par des virgules (`,`).
+% La garde `ExprGarde1, ExprGarde2, ..., ExprGardeN` est vraie si toutes les
+% expressions gardes `ExprGarde1`, `ExprGarde2, ..., `ExprGardeN` ont pour
+% valeur `true`.
+est_chat(A) when is_atom(A), A =:= chat -> true;
+est_chat(A) -> false.
+est_chien(A) when is_atom(A), A =:= chien -> true;
+est_chien(A) -> false.
+
+% Une séquence de gardes est composée soit d'une seule garde ou bien d'une
+% série de gardes, séparées par des points-virgules (`;`). La séquence de
+% gardes `G1; G2; ...; Gn` est vraie si au moins l'une des gardes `G1`, `G2`,
+% ..., `Gn` a pour valeur `true`.
+est_animal(A) when is_atom(A), (A =:= chien) or (A =:= chat) -> true;
+est_animal(A) -> false.
+
+% Attention : toutes les expressions Erlang valides ne peuvent pas être
+% utilisées comme expressions gardes ; en particulier, nos fonctions
+% `est_chat` et `est_chien` ne sont pas autorisées au sein de la séquence de
+% gardes dans la définition de `est_animal`. Pour plus de détails sur les
+% expressions autorisées ands les séquences de gardes, voir cette
+% [section](http://erlang.org/doc/reference_manual/expressions.html#id81912)
+% du manuel Erlang.
+
+% Les enregistrements permettent d'associer un nom à un certain élément dans
+% un tuple.
+% Les enregistrements peuvent être définis dans des fichiers sources Erlang
+% ou bien dans des fichiers avec une extension `.hrl`, qui sont ensuite inclus
+% dans des fichiers sources Erlang.
+-record(afaire, {
+ statut = rappel, % Valeur par défaut
+ qui = joe,
+ texte
+}).
+
+% Les définitions d'enregistrements doivent être lues dans l'interpreteur
+% pour qu'on puisse définir un enregistrement. On utilise la fonction `rr`
+% (abbréviation de *read records* en anglais, ou *lire enregistrements* en
+% français) pour ça.
+rr("enregistrements.hrl"). % [afaire]
+
+% Création et mise à jour d'enregistrements :
+X = #afaire{}.
+% #afaire{statut = rappel, qui = joe, texte = undefined}
+X1 = #afaire{statut = urgent, texte = "Corriger erreurs dans livre"}.
+% #afaire{statut = urgent, qui = joe, texte = "Corriger erreurs dans livre"}
+X2 = X1#afaire{statut = fini}.
+% #afaire{statut = fini, qui = joe, texte = "Corriger erreurs dans livre"}
+
+% Expressions `case`.
+% `filter` renvoie une liste de tous les éléments `X` d'une liste `L` pour
+% lesquels `P(X)` est vrai.
+filter(P, [H|T]) ->
+ case P(H) of
+ true -> [H|filter(P, T)];
+ false -> filter(P, T)
+ end;
+filter(P, []) -> [].
+filter(fun(X) -> X rem 2 == 0 end, [1, 2, 3, 4]). % [2, 4]
+
+% Expressions `if`.
+max(X, Y) ->
+ if
+ X > Y -> X;
+ X < Y -> Y;
+ true -> nil
+ end.
+
+% Attention : au moins l'une des gardes dans l'expression `if` doit avoir pour
+% valeur `true` ; autrement, une exception sera lancée.
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% 3. Exceptions.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Des exceptions sont lancées par le système quand des erreurs internes
+% surviennent, ou de manière explicite dans le programme en appelant
+% `throw(Exception)`, `exit(Exception)`, ou `erlang:error(Exception)`.
+generer_exception(1) -> a;
+generer_exception(2) -> throw(a);
+generer_exception(3) -> exit(a);
+generer_exception(4) -> {'EXIT', a};
+generer_exception(5) -> erlang:error(a).
+
+% Erlang dispose de deux méthodes pour capturer une exception. La première
+% consiste à inclure l'appel de de la fonction qui lance l'exception dans une
+% expression `try...catch`.
+catcher(N) ->
+ try generer_exception(N) of
+ Val -> {N, normal, Val}
+ catch
+ throw:X -> {N, caught, thrown, X};
+ exit:X -> {N, caught, exited, X};
+ error:X -> {N, caught, error, X}
+ end.
+
+% L'autre méthode consiste à inclure l'appel dans une expression `catch`.
+% Quand une exception est capturée, elle est convertie en un tuple qui décrit
+% l'erreur.
+catcher(N) -> catch generer_exception(N).
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% 4. Concurrence
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Erlang est basé sur le modèle d'acteur pour la concurrence. Seulement trois
+% opérations sont requises pour écrire des programmes concurrents en Erlang :
+% la création de processus, l'envoi de messages, et la réception de messages.
+
+% Pour démarrer un nouveau processus, on utilise la fonction `spawn`, qui
+% prend une fonction comme paramètre.
+
+F = fun() -> 2 + 2 end. % #Fun<erl_eval.20.67289768>
+spawn(F). % <0.44.0>
+
+% `spawn` renvoie un pid (*process identifier* en anglais, ou *identifiant de
+% processus* en français), qui peut être utilisé pour envoyer des messages au
+% processus en question. Pour passer des messages, on utilise l'opérateur `!`.
+% Pour que cela soit utile, on doit aussi être en mesure de recevoir des
+% messages, ce qui est accompli grâce à une clause `receive` :
+
+-module(calculerGeometrie).
+-compile(export_all).
+calculerAire() ->
+ receive
+ {rectangle, W, H} ->
+ W * H;
+ {cercle, R} ->
+ 3.14 * R * R;
+ _ ->
+ io:format("Seule l'aire d'un rectangle / cercle peut etre calculee.")
+ end.
+
+% Compilation du module and création d'un processus qui évalue `calculerAire`
+% dans l'interpréteur.
+c(calculerGeometrie).
+CalculerAire = spawn(calculerGeometrie, calculerAire, []).
+CalculerAire ! {cercle, 2}. % 12.56000000000000049738
+
+% L'interpréteur est lui-même un processus ; on peut utiliser `self` pour
+% obtenir le pid actuel.
+self(). % <0.41.0>
+
+```
+
+## Ressources (en anglais)
+
+* ["Learn You Some Erlang for great good!"](http://learnyousomeerlang.com/)
+* ["Programming Erlang: Software for a Concurrent World" by Joe Armstrong](http://pragprog.com/book/jaerlang/programming-erlang)
+* [Erlang/OTP Reference Documentation](http://www.erlang.org/doc/)
+* [Erlang - Programming Rules and Conventions](http://www.erlang.se/doc/programming_rules.shtml)
diff --git a/fr-fr/json-fr.html.markdown b/fr-fr/json-fr.html.markdown
new file mode 100644
index 00000000..49c95820
--- /dev/null
+++ b/fr-fr/json-fr.html.markdown
@@ -0,0 +1,62 @@
+---
+language: json
+filename: learnjson-fr.json
+contributors:
+ - ["Anna Harren", "https://github.com/iirelu"]
+ - ["Marco Scannadinari", "https://github.com/marcoms"]
+translators:
+ - ["Alois de Gouvello","https://github.com/aloisdg"]
+lang: fr-fr
+---
+
+Comme JSON est un format d'échange de données extrêmement simple, ce Apprendre X en Y minutes
+est susceptible d'être le plus simple jamais réalisé.
+
+JSON dans son état le plus pur n'a aucun commentaire, mais la majorité des parseurs accepterons
+les commentaires du langage C (`//`, `/* */`). Pour les besoins de ce document, cependant,
+tout sera du JSON 100% valide. Heureusement, il s'explique par lui-même.
+
+
+```json
+{
+ "Clé": "valeur",
+
+ "Clés": "devront toujours être entourées par des guillemets",
+ "nombres": 0,
+ "chaînes de caractères": "Hellø, wørld. Tous les caractères Unicode sont autorisés, accompagné d'un \"caractère d'échappement\".",
+ "a des booléens ?": true,
+ "rien": null,
+
+ "grand nombre": 1.2e+100,
+
+ "objets": {
+ "commentaire": "La majorité de votre strucutre sera des objets.",
+
+ "tableau": [0, 1, 2, 3, "Les tableaux peuvent contenir n'importe quoi.", 5],
+
+ "un autre objet": {
+ "commentaire": "Ces choses peuvent être imbriquées. C'est très utile."
+ }
+ },
+
+ "bêtises": [
+ {
+ "sources de potassium": ["bananes"]
+ },
+ [
+ [1, 0, 0, 0],
+ [0, 1, 0, 0],
+ [0, 0, 1, "neo"],
+ [0, 0, 0, 1]
+ ]
+ ],
+
+ "style alternatif": {
+ "commentaire": "regarde ça !"
+ , "position de la virgule": "n'a pas d'importance - aussi longtemps qu'elle est avant la valeur, alors elle est valide."
+ , "un autre commentaire": "comme c'est gentil"
+ },
+
+ "C'était court": "Et, vous avez terminé. Maintenant, vous savez tout ce que JSON a à offrir."
+}
+```
diff --git a/fr-fr/livescript-fr.html.markdown b/fr-fr/livescript-fr.html.markdown
new file mode 100644
index 00000000..9c3b8003
--- /dev/null
+++ b/fr-fr/livescript-fr.html.markdown
@@ -0,0 +1,360 @@
+---
+language: LiveScript
+filename: learnLivescript-fr.ls
+contributors:
+ - ["Christina Whyte", "http://github.com/kurisuwhyte/"]
+translators:
+ - ["Morgan Bohn", "https://github.com/morganbohn"]
+lang: fr-fr
+---
+
+LiveScript est un langage qui compile en JavaScript. Il a un rapport direct
+avec JavaScript, et vous permet d'écrire du JavaScript plus simplement, plus
+efficacement et sans répétitivité. LiveScript ajoute non seulement des
+fonctionnalités pour écrire du code fonctionnel, mais possède aussi nombre
+d'améliorations pour la programmation orientée objet et la programmation
+impérative.
+
+LiveScript est un descendant direct de [Coco][], indirect de [CoffeeScript][],
+avec lequel il a beaucoup plus de compatibilité.
+
+[Coco]: http://satyr.github.io/coco/
+[CoffeeScript]: http://coffeescript.org/
+
+Vous pouvez contacter l'auteur du guide original en anglais ici :
+[@kurisuwhyte](https://twitter.com/kurisuwhyte)
+
+
+```coffeescript
+# Comme son cousin CoffeeScript, LiveScript utilise le symbole dièse pour les
+# commentaires sur une ligne.
+
+/*
+ Les commentaires sur plusieurs lignes utilisent la syntaxe du C. Utilisez-les
+ si vous voulez préserver les commentaires dans la sortie JavaScript.
+ */
+```
+```coffeescript
+# LiveScript utilise l'indentation pour délimiter les blocs de code plutôt que
+# les accolades, et les espaces pour appliquer les fonctions (bien que les
+# parenthèses soient utilisables).
+
+
+########################################################################
+## 1. Valeurs basiques
+########################################################################
+
+# Les valeurs non définies sont représentées par le mot clé `void` à la place de
+# `undefined`
+void # comme `undefined` mais plus sûr (ne peut pas être redéfini)
+
+# Une valeur non valide est représentée par Null.
+null
+
+
+# Les booléens s'utilisent de la façon suivante:
+true
+false
+
+# Et il existe divers alias les représentant également:
+on; off
+yes; no
+
+
+# Puis viennent les nombres entiers et décimaux.
+10
+0.4 # Notez que le `0` est requis
+
+# Dans un souci de lisibilité, vous pouvez utiliser les tirets bas et les
+# suffixes sur les nombres. Il seront ignorés à la compilation.
+12_344km
+
+
+# Les chaînes sont des séquences immutables de caractères, comme en JS:
+"Christina" # Les apostrophes fonctionnent également!
+"""Multi-line
+ strings
+ are
+ okay
+ too."""
+
+# De temps à autre, vous voulez encoder un mot clé; la notation en backslash
+# rend cela facile:
+\keyword # => 'keyword'
+
+
+# Les tableaux sont des collections ordonnées de valeurs.
+fruits =
+ * \apple
+ * \orange
+ * \pear
+
+# Il peuvent être écrits de manière plus consises à l'aide des crochets:
+fruits = [ \apple, \orange, \pear ]
+
+# Vous pouvez également utiliser la syntaxe suivante, à l'aide d'espaces, pour
+# créer votre liste de valeurs:
+fruits = <[ apple orange pear ]>
+
+# Vous pouvez récupérer une entrée à l'aide de son index:
+fruits[0] # => "apple"
+
+# Les objets sont une collection non ordonnées de paires clé/valeur, et
+# d'autres choses (que nous verrons plus tard).
+person =
+ name: "Christina"
+ likes:
+ * "kittens"
+ * "and other cute stuff"
+
+# A nouveau, vous pouvez utiliser une expression plus consise à l'aide des
+# accolades:
+person = {name: "Christina", likes: ["kittens", "and other cute stuff"]}
+
+# Vous pouvez récupérer une entrée via sa clé:
+person.name # => "Christina"
+person["name"] # => "Christina"
+
+
+# Les expressions régulières utilisent la même syntaxe que JavaScript:
+trailing-space = /\s$/ # les mots-composés deviennent motscomposés
+
+# A l'exception que vous pouvez pouvez utiliser des expressions sur plusieurs
+# lignes!
+# (les commentaires et les espaces seront ignorés)
+funRE = //
+ function\s+(.+) # nom
+ \s* \((.*)\) \s* # arguments
+ { (.*) } # corps
+ //
+
+
+########################################################################
+## 2. Les opérations basiques
+########################################################################
+
+# Les opérateurs arithmétiques sont les mêmes que pour JavaScript:
+1 + 2 # => 3
+2 - 1 # => 1
+2 * 3 # => 6
+4 / 2 # => 2
+3 % 2 # => 1
+
+
+# Les comparaisons sont presque identiques, à l'exception que `==` équivaut au
+# `===` de JS, là où le `==` de JS est `~=` en LiveScript, et `===` active la
+# comparaison d'objets et de tableaux, ainsi que les comparaisons strictes
+# (sans conversion de type)
+2 == 2 # => true
+2 == "2" # => false
+2 ~= "2" # => true
+2 === "2" # => false
+
+[1,2,3] == [1,2,3] # => false
+[1,2,3] === [1,2,3] # => true
+
++0 == -0 # => true
++0 === -0 # => false
+
+# Les opérateurs suivants sont également disponibles: <, <=, > et >=
+
+# Les valeurs logiques peuvent être combinéees grâce aux opérateurs logiques
+# `or`, `and` et `not`
+true and false # => false
+false or true # => true
+not false # => true
+
+
+# Les collections ont également des opérateurs additionnels
+[1, 2] ++ [3, 4] # => [1, 2, 3, 4]
+'a' in <[ a b c ]> # => true
+'name' of { name: 'Chris' } # => true
+
+
+########################################################################
+## 3. Fonctions
+########################################################################
+
+# Puisque LiveScript est fonctionnel, vous vous attendez à une bonne prise en
+# charge des fonctions. En LiveScript, il est encore plus évident que les
+# fonctions sont de premier ordre:
+add = (left, right) -> left + right
+add 1, 2 # => 3
+
+# Les fonctions qui ne prennent pas d'arguments peuvent être appelées avec un
+# point d'exclamation!
+two = -> 2
+two!
+
+# LiveScript utilise l'environnement de la fonction, comme JavaScript.
+# A l'inverse de JavaScript, le `=` fonctionne comme un opérateur de
+# déclaration, et il déclarera toujours la variable située à gauche (sauf si
+# la variable a été déclarée dans l'environnement parent).
+
+# L'opérateur `:=` est disponible pour réutiliser un nom provenant de
+# l'environnement parent.
+
+
+# Vous pouvez extraire les arguments d'une fonction pour récupérer
+# rapidement les valeurs qui vous intéressent dans une structure de données
+# complexe:
+tail = ([head, ...rest]) -> rest
+tail [1, 2, 3] # => [2, 3]
+
+# Vous pouvez également transformer les arguments en utilisant les opérateurs
+# binaires et unaires. Définir des arguments par défaut est aussi possible.
+foo = (a = 1, b = 2) -> a + b
+foo! # => 3
+
+# You pouvez utiliser cela pour cloner un argument en particulier pour éviter
+# les effets secondaires. Par exemple:
+copy = (^^target, source) ->
+ for k,v of source => target[k] = v
+ target
+a = { a: 1 }
+copy a, { b: 2 } # => { a: 1, b: 2 }
+a # => { a: 1 }
+
+
+# Une fonction peut être curryfiée en utilisant une longue flèche à la place
+# d'une courte:
+add = (left, right) --> left + right
+add1 = add 1
+add1 2 # => 3
+
+# Les fonctions ont un argument `it` implicite si vous n'en déclarez pas:
+identity = -> it
+identity 1 # => 1
+
+# Les opérateurs ne sont pas des fonctions en LiveScript, mais vous pouvez
+# facilement les transformer en fonction:
+divide-by-two = (/ 2)
+[2, 4, 8, 16].map(divide-by-two).reduce (+)
+
+# Comme dans tout bon langage fonctionnel, vous pouvez créer des fonctions
+# composées d'autres fonctions:
+double-minus-one = (- 1) . (* 2)
+
+# En plus de la formule mathématique `f . g`, vous avez les opérateurs `>>`
+# et `<<`, qui décrivent l'ordre d'application des fonctions composées.
+double-minus-one = (* 2) >> (- 1)
+double-minus-one = (- 1) << (* 2)
+
+
+# Pour appliquer une valeur à une fonction, vous pouvez utiliser les opérateurs
+# `|>` et `<|`:
+map = (f, xs) --> xs.map f
+[1 2 3] |> map (* 2) # => [2 4 6]
+
+# La version sans pipe correspond à:
+((map (* 2)) [1, 2, 3])
+
+# You pouvez aussi choisir où vous voulez que la valeur soit placée, en
+# marquant la position avec un tiret bas (_):
+reduce = (f, xs, initial) --> xs.reduce f, initial
+[1 2 3] |> reduce (+), _, 0 # => 6
+
+
+# Le tiret bas est également utilisé pour l'application partielle,
+# que vous pouvez utiliser pour toute fonction:
+div = (left, right) -> left / right
+div-by-two = div _, 2
+div-by-two 4 # => 2
+
+
+# Pour conclure, LiveScript vous permet d'utiliser les fonctions de rappel.
+# (mais vous devriez essayer des approches plus fonctionnelles, comme
+# Promises).
+# Un fonction de rappel est une fonction qui est passée en argument à une autre
+# fonction:
+readFile = (name, f) -> f name
+a <- readFile 'foo'
+b <- readFile 'bar'
+console.log a + b
+
+# Equivalent à:
+readFile 'foo', (a) -> readFile 'bar', (b) -> console.log a + b
+
+
+########################################################################
+## 4. Conditionnalités
+########################################################################
+
+# Vous pouvez faire de la conditionnalité à l'aide de l'expression `if...else`:
+x = if n > 0 then \positive else \negative
+
+# A la place de `then`, vous pouvez utiliser `=>`
+x = if n > 0 => \positive
+ else \negative
+
+# Pour les conditions complexes, il vaut mieux utiliser l'expresssion `switch`:
+y = {}
+x = switch
+ | (typeof y) is \number => \number
+ | (typeof y) is \string => \string
+ | 'length' of y => \array
+ | otherwise => \object # `otherwise` et `_` correspondent.
+
+# Le corps des fonctions, les déclarations et les assignements disposent d'un
+# `switch` implicite, donc vous n'avez pas besoin de le réécrire:
+take = (n, [x, ...xs]) -->
+ | n == 0 => []
+ | _ => [x] ++ take (n - 1), xs
+
+
+########################################################################
+## 5. Compréhensions
+########################################################################
+
+# Comme en python, vous allez pouvoir utiliser les listes en compréhension,
+# ce qui permet de générer rapidement et de manière élégante une liste de
+# valeurs:
+oneToTwenty = [1 to 20]
+evens = [x for x in oneToTwenty when x % 2 == 0]
+
+# `when` et `unless` peuvent être utilisés comme des filtres.
+
+# Cette technique fonctionne sur les objets de la même manière. Vous allez
+# pouvoir générer l'ensemble de paires clé/valeur via la syntaxe suivante:
+copy = { [k, v] for k, v of source }
+
+
+########################################################################
+## 4. Programmation orientée objet
+########################################################################
+
+# Bien que LiveScript soit un langage fonctionnel, il dispose d'intéressants
+# outils pour la programmation objet. La syntaxe de déclaration d'une classe
+# est héritée de CoffeeScript:
+class Animal
+ (@name, kind) ->
+ @kind = kind
+ action: (what) -> "*#{@name} (a #{@kind}) #{what}*"
+
+class Cat extends Animal
+ (@name) -> super @name, 'cat'
+ purr: -> @action 'purrs'
+
+kitten = new Cat 'Mei'
+kitten.purr! # => "*Mei (a cat) purrs*"
+
+# En plus de l'héritage classique, vous pouvez utiliser autant de mixins
+# que vous voulez pour votre classe. Les mixins sont juste des objets:
+Huggable =
+ hug: -> @action 'is hugged'
+
+class SnugglyCat extends Cat implements Huggable
+
+kitten = new SnugglyCat 'Purr'
+kitten.hug! # => "*Mei (a cat) is hugged*"
+```
+
+## Lectures complémentaires
+
+Il y a beaucoup plus de choses à dire sur LiveScript, mais ce guide devrait
+suffire pour démarrer l'écriture de petites fonctionnalités.
+Le [site officiel](http://livescript.net/) dispose de beaucoup d'information,
+ainsi que d'un compilateur en ligne vous permettant de tester le langage!
+
+Jetez également un coup d'oeil à [prelude.ls](http://gkz.github.io/prelude-ls/),
+et consultez le channel `#livescript` sur le réseau Freenode.
diff --git a/fr-fr/lua-fr.html.markdown b/fr-fr/lua-fr.html.markdown
index b4e2a161..1f592320 100644
--- a/fr-fr/lua-fr.html.markdown
+++ b/fr-fr/lua-fr.html.markdown
@@ -434,9 +434,9 @@ les librairies standard:
Autres références complémentaires:
-* <a href="http://nova-fusion.com/2012/08/27/lua-for-programmers-part-1/">Lua for programmers</a>
-* <a href="lua-users.org/files/wiki_insecure/users/thomasl/luarefv51.pdf">Courte de référence de Lua</a>
-* <a href="http://www.lua.org/pil/contents.html">Programming In Lua</a>
+* <a href="http://nova-fusion.com/2012/08/27/lua-for-programmers-part-1/">Lua pour programmeurs</a>
+* <a href="lua-users.org/files/wiki_insecure/users/thomasl/luarefv51.pdf">Référence condensée de Lua</a>
+* <a href="http://www.lua.org/pil/contents.html">Programmer en Lua</a>
* <a href="http://www.lua.org/manual/">Les manuels de référence Lua</a>
A propos, ce fichier est exécutable. Sauvegardez-le sous le nom *learn.lua* et
@@ -446,4 +446,4 @@ Ce tutoriel a été originalement écrit pour <a href="tylerneylon.com">tylerney
disponible en tant que <a href="https://gist.github.com/tylerneylon/5853042">gist</a>.
Il a été traduit en français par Roland Yonaba (voir son <a href="http://github.com/Yonaba">github</a>).
-Amusez-vous bien avec Lua! \ No newline at end of file
+Amusez-vous bien avec Lua!
diff --git a/fr-fr/markdown.html.markdown b/fr-fr/markdown.html.markdown
index 29c0d65d..e5e7c73a 100644
--- a/fr-fr/markdown.html.markdown
+++ b/fr-fr/markdown.html.markdown
@@ -177,7 +177,7 @@ des syntaxes spécifiques -->
\`\`\`ruby
<!-- mais enlevez les backslashes quand vous faites ça,
-gardez juste ```ruby ( ou nom de la synatxe correspondant à votre code )-->
+gardez juste ```ruby ( ou nom de la syntaxe correspondant à votre code )-->
def foobar
puts "Hello world!"
end
diff --git a/fr-fr/r-fr.html.markdown b/fr-fr/r-fr.html.markdown
new file mode 100644
index 00000000..7d30a48d
--- /dev/null
+++ b/fr-fr/r-fr.html.markdown
@@ -0,0 +1,747 @@
+---
+language: R
+contributors:
+ - ["e99n09", "http://github.com/e99n09"]
+ - ["isomorphismes", "http://twitter.com/isomorphisms"]
+translators:
+ - ["Anne-Catherine Dehier", "https://github.com/spellart"]
+filename: learnr-fr.r
+lang: fr-fr
+---
+
+R est un langage de programmation statistique. Il dispose de nombreuses
+bibliothèques pour le téléchargement et le nettoyage d'ensembles de données,
+l'exécution de procédures statistiques, et la réalisation de graphiques.
+On peut également exécuter des commmandes `R` au sein d'un document LaTeX.
+
+
+```r
+
+# Les commentaires commencent avec des symboles numériques.
+
+# Il n'est pas possible de faire des commentaires multilignes,
+# mais on peut placer plusieurs commentaires les uns en dessous
+# des autres comme ceci.
+
+# Sur Mac, taper COMMAND-ENTER pour exécuter une ligne
+# et sur Windows taper CTRL-ENTER
+
+
+
+########################################################################
+# Les choses que vous pouvez faire sans rien comprendre
+# à la programmation
+########################################################################
+
+# Dans cette section, nous vous montrons quelques trucs cools que vous
+# pouvez faire avec R sans rien comprendre à la programmation.
+# Ne vous inquiétez pas si vous ne comprenez pas tout ce que le code fait.
+# Profitez simplement !
+
+data() # parcours les ensembles de données préchargées
+data(rivers) # récupère ceci : "Lengths of Major North American Rivers"
+ls() # notez que "rivers" apparaît maintenant dans votre espace de travail
+head(rivers) # donne un aperçu des données
+# 735 320 325 392 524 450
+
+length(rivers) # Combien de rivers ont été mesurées ?
+# 141
+summary(rivers) # Quelles sont les principales données statistiques ?
+# Min. 1st Qu. Median Mean 3rd Qu. Max.
+# 135.0 310.0 425.0 591.2 680.0 3710.0
+
+# Fait un diagramme à tiges et à feuilles (visualisation de données de
+# types histogramme)
+stem(rivers)
+
+
+# Le point décimal est de 2 chiffres à droite du |
+#
+# 0 | 4
+# 2 | 011223334555566667778888899900001111223333344455555666688888999
+# 4 | 111222333445566779001233344567
+# 6 | 000112233578012234468
+# 8 | 045790018
+# 10 | 04507
+# 12 | 1471
+# 14 | 56
+# 16 | 7
+# 18 | 9
+# 20 |
+# 22 | 25
+# 24 | 3
+# 26 |
+# 28 |
+# 30 |
+# 32 |
+# 34 |
+# 36 | 1
+
+stem(log(rivers)) # Notez que les données ne sont ni normales
+# ni lognormales !
+# Prenez-ça, la courbe en cloche
+
+# Le point décimal est à 1 chiffre à gauche du |
+#
+# 48 | 1
+# 50 |
+# 52 | 15578
+# 54 | 44571222466689
+# 56 | 023334677000124455789
+# 58 | 00122366666999933445777
+# 60 | 122445567800133459
+# 62 | 112666799035
+# 64 | 00011334581257889
+# 66 | 003683579
+# 68 | 0019156
+# 70 | 079357
+# 72 | 89
+# 74 | 84
+# 76 | 56
+# 78 | 4
+# 80 |
+# 82 | 2
+
+# Fait un histogramme :
+hist(rivers, col="#333333", border="white", breaks=25) # amusez-vous avec ces paramètres
+hist(log(rivers), col="#333333", border="white", breaks=25) # vous ferez plus de tracés plus tard
+
+# Ici d'autres données qui viennent préchargées. R en a des tonnes.
+data(discoveries)
+plot(discoveries, col="#333333", lwd=3, xlab="Year",
+ main="Number of important discoveries per year")
+plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year",
+ main="Number of important discoveries per year")
+
+# Plutôt que de laisser l'ordre par défaut (par année)
+# Nous pourrions aussi trier pour voir ce qu'il y a de typique
+sort(discoveries)
+# [1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
+# [26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
+# [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
+# [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12
+
+stem(discoveries, scale=2)
+#
+# Le point décimale est à la |
+#
+# 0 | 000000000
+# 1 | 000000000000
+# 2 | 00000000000000000000000000
+# 3 | 00000000000000000000
+# 4 | 000000000000
+# 5 | 0000000
+# 6 | 000000
+# 7 | 0000
+# 8 | 0
+# 9 | 0
+# 10 | 0
+# 11 |
+# 12 | 0
+
+max(discoveries)
+# 12
+summary(discoveries)
+# Min. 1st Qu. Median Mean 3rd Qu. Max.
+# 0.0 2.0 3.0 3.1 4.0 12.0
+
+# Lance un dé plusieurs fois
+round(runif(7, min=.5, max=6.5))
+# 1 4 6 1 4 6 4
+# Vos numéros diffèreront des miens à moins que nous mettions
+# le même random.seed(31337)
+
+# Dessine à partir d'une normale Gaussienne 9 fois
+rnorm(9)
+# [1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271
+# [7] -0.59975593 0.57629164 1.08455362
+
+
+
+##############################################################
+# les types de données et l'arithmétique de base
+##############################################################
+
+# Maintenant pour la partie orientée programmation du tutoriel.
+# Dans cette section vous rencontrerez les types de données importants de R :
+# les entiers, les numériques, les caractères, les logiques, et les facteurs.
+
+# LES ENTIERS
+# Les entiers de type long sont écrits avec L
+5L # 5
+class(5L) # "integer"
+# (Essayez ?class pour plus d'informations sur la fonction class().)
+# Avec R, chaque valeur seule, comme 5L, est considérée comme
+# un vecteur de longueur 1
+length(5L) # 1
+# On peut avoir un vecteur d'entiers avec une longueur > 1 :
+c(4L, 5L, 8L, 3L) # 4 5 8 3
+length(c(4L, 5L, 8L, 3L)) # 4
+class(c(4L, 5L, 8L, 3L)) # "integer"
+
+# LES NUMÉRIQUES
+# Un "numeric" est un nombre à virgule flottante d'une précision double
+5 # 5
+class(5) # "numeric"
+# Encore une fois, tout dans R est un vecteur ;
+# Vous pouvez faire un vecteur numérique avec plus d'un élément
+c(3,3,3,2,2,1) # 3 3 3 2 2 1
+# Vous pouvez aussi utiliser la notation scientifique
+5e4 # 50000
+6.02e23 # nombre d'Avogadro
+1.6e-35 # longueur de Planck
+# Vous pouvez également avoir des nombres infiniments grands ou petits
+class(Inf) # "numeric"
+class(-Inf) # "numeric"
+# Vous pouvez utiliser "Inf", par exemple, dans integrate(dnorm, 3, Inf);
+# Ça permet d'éviter de réaliser une table de la loi normale.
+
+# ARITHMÉTIQUES DE BASE
+# Vous pouvez faire de l'arithmétique avec des nombres
+# Faire des opérations arithmétiques en mixant des entiers
+# et des numériques
+# donne un autre numérique
+10L + 66L # 76 # un entier plus un entier donne un entier
+53.2 - 4 # 49.2 # un numérique moins un numérique donne un numérique
+2.0 * 2L # 4 # un numérique multiplié par un entier donne un numérique
+3L / 4 # 0.75 # un entier sur un numérique donne un numérique
+3 %% 2 # 1 # le reste de deux numériques est un autre numérique
+# Les opérations arithmétiques illégales donnent un "Not A Number" :
+0 / 0 # NaN
+class(NaN) # "numeric"
+# Vous pouvez faire des opérations arithmétiques avec deux vecteurs d'une
+# longueur plus grande que 1, à condition que la longueur du plus grand
+# vecteur soit un multiple entier du plus petit
+c(1,2,3) + c(1,2,3) # 2 4 6
+
+# LES CARACTÈRES
+# Il n'y a pas de différences entre les chaînes de caractères et
+# les caractères en R
+"Horatio" # "Horatio"
+class("Horatio") # "character"
+class('H') # "character"
+# Ceux-ci sont tous les deux des vecteurs de longueur 1
+# Ici un plus long :
+c('alef', 'bet', 'gimmel', 'dalet', 'he')
+# =>
+# "alef" "bet" "gimmel" "dalet" "he"
+length(c("Call","me","Ishmael")) # 3
+# Vous pouvez utiliser des expressions rationnelles sur les vecteurs de caractères :
+substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
+gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."
+# R possède plusieurs vecteurs de caractères préconstruits :
+letters
+# =>
+# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
+# [20] "t" "u" "v" "w" "x" "y" "z"
+month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
+
+# LES TYPES BOOLÉENS
+# En R, un "logical" est un booléen
+class(TRUE) # "logical"
+class(FALSE) # "logical"
+# Leur comportement est normal
+TRUE == TRUE # TRUE
+TRUE == FALSE # FALSE
+FALSE != FALSE # FALSE
+FALSE != TRUE # TRUE
+# Les données manquantes (NA) sont logiques également
+class(NA) # "logical"
+# On utilise | et & pour les operations logiques.
+# OR
+TRUE | FALSE # TRUE
+# AND
+TRUE & FALSE # FALSE
+# Vous pouvez tester si x est TRUE
+isTRUE(TRUE) # TRUE
+# Ici nous avons un vecteur de type logique avec plusieurs éléments :
+c('Z', 'o', 'r', 'r', 'o') == "Zorro" # FALSE FALSE FALSE FALSE FALSE
+c('Z', 'o', 'r', 'r', 'o') == "Z" # TRUE FALSE FALSE FALSE FALSE
+
+# LES FACTEURS
+# Les facteurs sont généralement utilisés pour y stocker des
+# variables qualitatives (catégorielles).
+# Les facteurs peuvent être ordonnés (comme le niveau scolaire
+# des enfants) ou non ordonnés (comme le sexe)
+factor(c("female", "female", "male", NA, "female"))
+# female female male <NA> female
+# Les niveaux : female male
+# Les facteurs possèdent un attribut appelé niveau ("level").
+# Les niveaux sont des vecteurs contenant toutes les valeurs
+# que peuvent prendre les données catégorielles.
+# Notez que les données manquantes n'entrent pas dans le niveau
+levels(factor(c("male", "male", "female", NA, "female"))) # "female" "male"
+# Si le vecteur de facteurs a une longueur 1, ses niveaux seront
+# de longueur 1 également
+length(factor("male")) # 1
+length(levels(factor("male"))) # 1
+# On rencontre communément des facteurs dans des "data frame",
+# un type de données que nous couvrirons plus tard
+data(infert) # "Infertility after Spontaneous and Induced Abortion"
+levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs"
+
+# NULL
+# "NULL" est bizarre ; on l'utilise pour effacer un vecteur
+class(NULL) # NULL
+parakeet = c("beak", "feathers", "wings", "eyes")
+parakeet
+# =>
+# [1] "beak" "feathers" "wings" "eyes"
+parakeet <- NULL
+parakeet
+# =>
+# NULL
+
+# LES CONVERSIONS DE TYPES
+# Les conversions de types servent à forcer une valeur à prendre
+# un type différent
+as.character(c(6, 8)) # "6" "8"
+as.logical(c(1,0,1,1)) # TRUE FALSE TRUE TRUE
+# Si vous mettez des éléments de différents types dans un vecteur,
+# des coercitions bizarres se produisent :
+c(TRUE, 4) # 1 4
+c("dog", TRUE, 4) # "dog" "TRUE" "4"
+as.numeric("Bilbo")
+# =>
+# [1] NA
+# Message d'avertissement :
+# NAs est introduit par coercition
+
+# Notez également : ce n'étaient que des types de données basiques
+# Il y a beaucoup d'autres types de données, comme les dates,
+# les séries temporelles, etc ...
+
+
+
+#######################################
+# Variables, boucles , if/else
+#######################################
+
+# Une variable est comme une boîte dans laquelle on garde une valeur
+# pour l'utiliser plus tard.
+# Nous appellons ça "assigner" une valeur à une variable.
+# Avoir des variables nous permet d'écrire des boucles, des fonctions, et
+# des instructions conditionnelles (if/else)
+
+# LES VARIABLES
+# Beaucoup de façons d'assigner des choses :
+x = 5 # c'est correct
+y <- "1" # c'est préféré
+TRUE -> z # ça marche mais c'est bizarre
+
+# LES BOUCLES
+# Il y a les boucles for :
+for (i in 1:4) {
+ print(i)
+}
+# Il y a les boucles while :
+a <- 10
+while (a > 4) {
+ cat(a, "...", sep = "")
+ a <- a - 1
+}
+# Gardez à l'esprit que les boucles for et while s'exécutent lentement
+# en R.
+# Des opérations sur la totalité d'un vecteur (ex une ligne entière,
+# une colonne entière),
+# ou les fonctions de type apply() (nous en parlerons plus tard),
+# sont préférées.
+
+# IF/ELSE
+# Encore une fois assez standard
+if (4 > 3) {
+ print("4 is greater than 3")
+} else {
+ print("4 is not greater than 3")
+}
+# =>
+# [1] "4 is greater than 3"
+
+# LES FONCTIONS
+# se définissent comme ceci :
+jiggle <- function(x) {
+ x = x + rnorm(1, sd=.1) # ajoute un peu de bruit (contrôlé)
+ return(x)
+}
+# Appelées comme n'importe quelles autres fonction R :
+jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043
+
+
+
+##########################################################################
+# Les structures de données : les vecteurs, les matrices,
+# les data frames et les tableaux
+##########################################################################
+
+# À UNE DIMENSION
+
+# Commençons par le tout début, et avec quelque chose que
+# vous connaissez déjà : les vecteurs.
+vec <- c(8, 9, 10, 11)
+vec # 8 9 10 11
+# Nous demandons des éléments spécifiques en les mettant entre crochets
+# (Notez que R commence à compter à partir de 1)
+vec[1] # 8
+letters[18] # "r"
+LETTERS[13] # "M"
+month.name[9] # "September"
+c(6, 8, 7, 5, 3, 0, 9)[3] # 7
+# Nous pouvons également rechercher des indices de composants spécifiques,
+which(vec %% 2 == 0) # 1 3
+# Récupèrer seulement les premières ou dernières entrées du vecteur,
+head(vec, 1) # 8
+tail(vec, 2) # 10 11
+# ou vérifier si un certaine valeur est dans le vecteur
+any(vec == 10) # TRUE
+# Si un index "dépasse" vous obtiendrez NA :
+vec[6] # NA
+# Vous pouvez trouver la longueur de votre vecteur avec length()
+length(vec) # 4
+# Vous pouvez réaliser des opérations sur des vecteurs entiers ou des
+# sous-ensembles de vecteurs
+vec * 4 # 16 20 24 28
+vec[2:3] * 5 # 25 30
+any(vec[2:3] == 8) # FALSE
+# Et R a beaucoup de méthodes statistiques pré-construites pour les vecteurs :
+mean(vec) # 9.5
+var(vec) # 1.666667
+sd(vec) # 1.290994
+max(vec) # 11
+min(vec) # 8
+sum(vec) # 38
+# Quelques fonctions préconstruites sympas supplémentaires :
+5:15 # 5 6 7 8 9 10 11 12 13 14 15
+seq(from=0, to=31337, by=1337)
+# =>
+# [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707
+# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
+
+# À DEUX DIMENSIONS (TOUT DANS UNE CLASSE)
+
+# Vous pouvez créer une matrice à partir d'entrées du même type comme ceci :
+mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6))
+mat
+# =>
+# [,1] [,2]
+# [1,] 1 4
+# [2,] 2 5
+# [3,] 3 6
+# Différemment du vecteur, la classe d'une matrice est "matrix",
+# peut importe ce qu'elle contient
+class(mat) # => "matrix"
+# Récupérer la première ligne
+mat[1,] # 1 4
+# Réaliser une opération sur la première colonne
+3 * mat[,1] # 3 6 9
+# Demander une cellule spécifique
+mat[3,2] # 6
+
+# Transposer la matrice entière
+t(mat)
+# =>
+# [,1] [,2] [,3]
+# [1,] 1 2 3
+# [2,] 4 5 6
+
+# La multiplication de matrices
+mat %*% t(mat)
+# =>
+# [,1] [,2] [,3]
+# [1,] 17 22 27
+# [2,] 22 29 36
+# [3,] 27 36 45
+
+# cbind() colle des vecteurs ensemble en colonne pour faire une matrice
+mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog"))
+mat2
+# =>
+# [,1] [,2]
+# [1,] "1" "dog"
+# [2,] "2" "cat"
+# [3,] "3" "bird"
+# [4,] "4" "dog"
+class(mat2) # matrix
+# Encore une fois regardez ce qui se passe !
+# Parce que les matrices peuvent contenir des entrées de toutes sortes de
+# classes, tout sera converti en classe caractère
+c(class(mat2[,1]), class(mat2[,2]))
+
+# rbind() colle des vecteurs ensemble par lignes pour faire une matrice
+mat3 <- rbind(c(1,2,4,5), c(6,7,0,4))
+mat3
+# =>
+# [,1] [,2] [,3] [,4]
+# [1,] 1 2 4 5
+# [2,] 6 7 0 4
+# Ah, tout de la même classe. Pas de coercitions. Beaucoup mieux.
+
+# À DEUX DIMENSIONS (DE CLASSES DIFFÉRENTES)
+
+# Pour des colonnes de différents types, utiliser une data frame
+# Cette structure de données est si utile pour la programmation statistique,
+# qu'une version a été ajoutée à Python dans le paquet "pandas".
+
+students <- data.frame(c("Cedric","Fred","George","Cho","Draco","Ginny"),
+ c(3,2,2,1,0,-1),
+ c("H", "G", "G", "R", "S", "G"))
+names(students) <- c("name", "year", "house") # name the columns
+class(students) # "data.frame"
+students
+# =>
+# name year house
+# 1 Cedric 3 H
+# 2 Fred 2 G
+# 3 George 2 G
+# 4 Cho 1 R
+# 5 Draco 0 S
+# 6 Ginny -1 G
+class(students$year) # "numeric"
+class(students[,3]) # "factor"
+# Trouver les dimensions
+nrow(students) # 6
+ncol(students) # 3
+dim(students) # 6 3
+# La fonction data.frame() convertit les vecteurs caractères en vecteurs de
+# facteurs par défaut; désactiver cette fonction en règlant
+# stringsAsFactors = FALSE quand vous créer la data.frame
+?data.frame
+
+# Il y a plusieurs façons de subdiviser les data frames,
+# toutes subtilement différentes
+students$year # 3 2 2 1 0 -1
+students[,2] # 3 2 2 1 0 -1
+students[,"year"] # 3 2 2 1 0 -1
+
+# Une version améliorée de la structure data.frame est data.table.
+# Si vous travaillez avec des données volumineuses ou des panels, ou avez
+# besoin de fusionner quelques ensembles de données, data.table peut être
+# un bon choix. Ici un tour éclair :
+install.packages("data.table") # télécharge le paquet depuis CRAN
+require(data.table) # le charge
+students <- as.data.table(students)
+students # regardez la différence à l'impression
+# =>
+# name year house
+# 1: Cedric 3 H
+# 2: Fred 2 G
+# 3: George 2 G
+# 4: Cho 1 R
+# 5: Draco 0 S
+# 6: Ginny -1 G
+students[name=="Ginny"] # obtiens les lignes avec name == "Ginny"
+# =>
+# name year house
+# 1: Ginny -1 G
+students[year==2] # obtiens les lignes avec year == 2
+# =>
+# name year house
+# 1: Fred 2 G
+# 2: George 2 G
+# data.table facilite la fusion entre deux ensembles de données
+# Faisons une autre data.table pour fusionner students
+founders <- data.table(house=c("G","H","R","S"),
+ founder=c("Godric","Helga","Rowena","Salazar"))
+founders
+# =>
+# house founder
+# 1: G Godric
+# 2: H Helga
+# 3: R Rowena
+# 4: S Salazar
+setkey(students, house)
+setkey(founders, house)
+students <- founders[students] # merge les deux ensembles de données qui matchent "house"
+setnames(students, c("house","houseFounderName","studentName","year"))
+students[,order(c("name","year","house","houseFounderName")), with=F]
+# =>
+# studentName year house houseFounderName
+# 1: Fred 2 G Godric
+# 2: George 2 G Godric
+# 3: Ginny -1 G Godric
+# 4: Cedric 3 H Helga
+# 5: Cho 1 R Rowena
+# 6: Draco 0 S Salazar
+
+# data.table facilite le résumé des tableaux
+students[,sum(year),by=house]
+# =>
+# house V1
+# 1: G 3
+# 2: H 3
+# 3: R 1
+# 4: S 0
+
+# Pour supprimer une colonne d'une data.frame ou data.table,
+# assignez-lui la valeur NULL
+students$houseFounderName <- NULL
+students
+# =>
+# studentName year house
+# 1: Fred 2 G
+# 2: George 2 G
+# 3: Ginny -1 G
+# 4: Cedric 3 H
+# 5: Cho 1 R
+# 6: Draco 0 S
+
+# Supprimer une ligne en subdivisant
+# En utilisant data.table :
+students[studentName != "Draco"]
+# =>
+# house studentName year
+# 1: G Fred 2
+# 2: G George 2
+# 3: G Ginny -1
+# 4: H Cedric 3
+# 5: R Cho 1
+# En utilisant data.frame :
+students <- as.data.frame(students)
+students[students$house != "G",]
+# =>
+# house houseFounderName studentName year
+# 4 H Helga Cedric 3
+# 5 R Rowena Cho 1
+# 6 S Salazar Draco 0
+
+# MULTI-DIMENSIONNELLE (TOUS ÉLÉMENTS D'UN TYPE)
+
+# Les arrays créent des tableaux de n dimensions.
+# Tous les éléments doivent être du même type.
+# Vous pouvez faire un tableau à 2 dimensions (une sorte de matrice)
+array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4))
+# =>
+# [,1] [,2] [,3] [,4]
+# [1,] 1 4 8 3
+# [2,] 2 5 9 6
+# Vous pouvez aussi utiliser array pour faire des matrices à 3 dimensions :
+array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
+# =>
+# , , 1
+#
+# [,1] [,2]
+# [1,] 2 8
+# [2,] 300 9
+# [3,] 4 0
+#
+# , , 2
+#
+# [,1] [,2]
+# [1,] 5 66
+# [2,] 60 7
+# [3,] 0 847
+
+# LES LISTES (MULTI-DIMENSIONNELLES, ÉVENTUELLEMMENT DÉCHIRÉES,
+# DE DIFFÉRENTS TYPES)
+
+# Enfin, R a des listes (de vecteurs)
+list1 <- list(time = 1:40)
+list1$price = c(rnorm(40,.5*list1$time,4)) # random
+list1
+# Vous pouvez obtenir des éléments de la liste comme ceci
+list1$time # une façon
+list1[["time"]] # une autre façon
+list1[[1]] # encore une façon différente
+# =>
+# [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
+# [34] 34 35 36 37 38 39 40
+# Vous pouvez subdiviser les éléments d'une liste comme n'importe quel vecteur
+list1$price[4]
+
+# Les listes ne sont pas les structures de données les plus efficaces
+# à utiliser avec R ;
+# À moins d'avoir une très bonne raison, vous devriez utiliser data.frames
+# Les listes sont souvent retournées par des fonctions qui effectuent
+# des régressions linéaires.
+
+##########################################
+# La famille de fonction apply()
+##########################################
+
+# Vous vous rappelez mat ?
+mat
+# =>
+# [,1] [,2]
+# [1,] 1 4
+# [2,] 2 5
+# [3,] 3 6
+# Utilisez apply(X, MARGIN, FUN) pour appliquer la fonction FUN à la matrice X
+# sur les lignes (MAR = 1) ou les colonnes (MAR = 2)
+# R exécute FUN à chaque lignes (ou colonnes) de X, beaucoup plus rapidement
+# que le ferait une boucle for ou while
+apply(mat, MAR = 2, jiggle)
+# =>
+# [,1] [,2]
+# [1,] 3 15
+# [2,] 7 19
+# [3,] 11 23
+# D'autres fonctions : ?lapply, ?sapply
+
+# Ne soyez pas trop intimidé ; tout le monde reconnaît que c'est un peu déroutant
+
+# Le paquet plyr vise à remplacer (et améliorer !) la famille *apply().
+install.packages("plyr")
+require(plyr)
+?plyr
+
+
+
+############################
+# Charger des données
+############################
+
+# "pets.csv" est un fichier sur internet
+# (mais il pourrait être tout aussi facilement sur votre ordinateur)
+pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv")
+pets
+head(pets, 2) # first two rows
+tail(pets, 1) # last row
+
+# Pour sauvegarder une data frame ou une matrice en fichier .csv
+write.csv(pets, "pets2.csv") # to make a new .csv file
+# définir le répertoire de travail avec setwd(), le récupérer avec getwd()
+
+# Essayez ?read.csv et ?write.csv pour plus d'informations
+
+
+
+################
+# Les tracés
+################
+
+# LES FONCTIONS DE TRACÉ PRÉCONSTRUITES
+# Les diagrammes de dispersion !
+plot(list1$time, list1$price, main = "fake data")
+# Les régressions !
+linearModel <- lm(price ~ time, data = list1)
+linearModel # sort le résultat de la régression
+# Tracer une ligne de regression sur une tracé existant
+abline(linearModel, col = "red")
+# Obtenir une variété de diagnostiques sympas
+plot(linearModel)
+# Les histogrammes !
+hist(rpois(n = 10000, lambda = 5), col = "thistle")
+# Les diagrammes en bâtons !
+barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow"))
+
+# GGPLOT2
+# Mais ceux-ci ne sont même pas les plus jolis tracés de R
+# Essayez le paquet ggplot2 pour d'avantages de graphiques
+install.packages("ggplot2")
+require(ggplot2)
+?ggplot2
+pp <- ggplot(students, aes(x=house))
+pp + geom_histogram()
+ll <- as.data.table(list1)
+pp <- ggplot(ll, aes(x=time,price))
+pp + geom_point()
+# ggplot2 a une documentation excellente
+#(disponible sur http://docs.ggplot2.org/current/)
+
+
+
+```
+
+## Comment obtenir R ?
+
+* Obtiens R et R GUI depuis [http://www.r-project.org/](http://www.r-project.org/)
+* [RStudio](http://www.rstudio.com/ide/) est un autre GUI
diff --git a/fr-fr/typescript-fr.html.markdown b/fr-fr/typescript-fr.html.markdown
new file mode 100644
index 00000000..b8807104
--- /dev/null
+++ b/fr-fr/typescript-fr.html.markdown
@@ -0,0 +1,174 @@
+---
+language: TypeScript
+contributors:
+ - ["Philippe Vlérick", "https://github.com/pvlerick"]
+translators:
+ - ["Alois de Gouvello", "https://github.com/aloisdg"]
+filename: learntypescript-fr.ts
+lang: fr-fr
+---
+
+TypeScript est un langage visant à faciliter le développement d'applications larges et scalables, écrites en JavaScript.
+TypeScript ajoute des concepts classiques comme les classes, les modules, les interfaces, les génériques et le typage statique (optionnel) à JavaScript.
+C'est une surcouche de JavaScript : tout le code JavaScript est valide en TypeScript ce qui permet de l'ajouter de façon transparente à n'importe quel projet. Le code TypeScript est transcompilé en JavaScript par le compilateur.
+
+Cet article se concentrera seulement sur la syntaxe supplémentaire de TypeScript, plutôt que celle de [JavaScript] (../javascript/).
+
+Pour tester le compilateur de TypeScript, rendez-vous au [Playground] (http://www.typescriptlang.org/Playground) où vous pourrez coder, profiter d'une autocomplétion et accéder directement au rendu JavaScript.
+
+```js
+// Il y a 3 types basiques en TypeScript
+var isDone: boolean = false;
+var lines: number = 42;
+var name: string = "Anders";
+
+// Si nous ne pouvons pas déterminer le type, on utilise `Any`
+var notSure: any = 4;
+notSure = "maybe a string instead";
+notSure = false; // ok, définitivement un booléen
+
+// Pour les collections, il y a les tableaux typés et les tableaux génériques
+var list: number[] = [1, 2, 3]; // Un tableaux typé
+var list: Array<number> = [1, 2, 3]; // un tableau générique
+
+// Pour les énumeration
+enum Color { Red, Green, Blue };
+var c: Color = Color.Green;
+
+// Enfin, `void` est utilisé dans le cas spécifique
+// d'une fonction ne retournant rien
+function bigHorribleAlert(): void {
+ alert("Je suis une petite boîte ennuyeuse !");
+}
+
+// Les fonctions sont des entités de première classe. Le langage supporte
+// les expressions lambda et utilise l'inférence de type
+
+// Les fonctions ci-dessous sont équivalentes, une signature identique
+// sera inférée par le compilateur, et le même JavaScript sera généré
+var f1 = function(i: number): number { return i * i; }
+// Retourne un type inféré
+var f2 = function(i: number) { return i * i; }
+var f3 = (i: number): number => { return i * i; }
+// Retourne un type inféré
+var f4 = (i: number) => { return i * i; }
+// Retourne un type inféré, ici le mot clé `return` n'est pas nécessaire
+var f5 = (i: number) => i * i;
+
+// Les interfaces sont structurées, tout les objets qui ont ces propriétés
+// sont compatible avec l'interface
+interface Person {
+ name: string;
+ // Les propriétés optionnelles sont identifiées avec un "?"
+ age?: number;
+ // Et bien sûr, les fonctions
+ move(): void;
+}
+
+// Un objet implémentant l'interface "Person" peut être traité comme
+// une Person car il a les propriétés "name" et "move"
+var p: Person = { name: "Bobby", move: () => {} };
+// Des objets implémentants la propriété optionnelle :
+// valide car "age" est un nombre
+var validPerson: Person = { name: "Bobby", age: 42, move: () => {} };
+// invalide car "age" n'est pas un nombre
+var invalidPerson: Person = { name: "Bobby", age: true };
+
+// Les interfaces peuvent aussi décrire un type de fonction
+interface SearchFunc {
+ (source: string, subString: string): boolean;
+}
+
+// Seul les types des paramètres sont importants. Les noms ne le sont pas.
+var mySearch: SearchFunc;
+mySearch = function(src: string, sub: string) {
+ return src.search(sub) != -1;
+}
+
+// Les membres des classes sont publiques par défaut.
+class Point {
+ // Propriétés
+ x: number;
+
+ // Constructeur - Les mots clés "public" et "private" dans ce contexte
+ // génèrent le code de la propriété et son initialisation dans le
+ // constructeur. Ici, "y" sera défini de la même façon que "x",
+ // mais avec moins de code. Les valeurs par défaut sont supportées.
+ constructor(x: number, public y: number = 0) {
+ this.x = x;
+ }
+
+ // Fonctions
+ dist() { return Math.sqrt(this.x * this.x + this.y * this.y); }
+
+ // Membres statiques
+ static origin = new Point(0, 0);
+}
+
+var p1 = new Point(10 ,20);
+var p2 = new Point(25); // y sera 0
+
+// Héritage
+class Point3D extends Point {
+ constructor(x: number, y: number, public z: number = 0) {
+ // Un appel explicite au constructeur de la super classe
+ // est obligatoire.
+ super(x, y);
+ }
+
+ // Redéfinition
+ dist() {
+ var d = super.dist();
+ return Math.sqrt(d * d + this.z * this.z);
+ }
+}
+
+// Modules, "." peut être utilisé comme un séparateur de sous modules.
+module Geometry {
+ export class Square {
+ constructor(public sideLength: number = 0) {
+ }
+ area() {
+ return Math.pow(this.sideLength, 2);
+ }
+ }
+}
+
+var s1 = new Geometry.Square(5);
+
+// Alias local pour référencer un module
+import G = Geometry;
+
+var s2 = new G.Square(10);
+
+// Génériques
+// Classes
+class Tuple<T1, T2> {
+ constructor(public item1: T1, public item2: T2) {
+ }
+}
+
+// Interfaces
+interface Pair<T> {
+ item1: T;
+ item2: T;
+}
+
+// Et fonctions
+var pairToTuple = function<T>(p: Pair<T>) {
+ return new Tuple(p.item1, p.item2);
+};
+
+var tuple = pairToTuple({ item1:"hello", item2:"world"});
+
+// Inclure des références à un fichier :
+/// <reference path="jquery.d.ts" />
+
+```
+
+## Lectures complémentaires
+ * [Site officiel de TypeScript] (http://www.typescriptlang.org/)
+ * [Spécification du langage TypeScript (pdf)] (http://go.microsoft.com/fwlink/?LinkId=267238)
+ * [Anders Hejlsberg - Introducing TypeScript on Channel 9] (http://channel9.msdn.com/posts/Anders-Hejlsberg-Introducing-TypeScript)
+ * [Code source sur GitHub] (https://github.com/Microsoft/TypeScript)
+ * [Definitely Typed - repository for type definitions] (http://definitelytyped.org/)