diff options
Diffstat (limited to 'fr-fr')
-rw-r--r-- | fr-fr/asymptotic-notation-fr.html.markdown | 14 | ||||
-rw-r--r-- | fr-fr/awk-fr.html.markdown | 146 | ||||
-rw-r--r-- | fr-fr/bash-fr.html.markdown | 2 | ||||
-rw-r--r-- | fr-fr/git-fr.html.markdown | 2 | ||||
-rw-r--r-- | fr-fr/java-fr.html.markdown | 64 | ||||
-rw-r--r-- | fr-fr/objective-c-fr.html.markdown | 4 | ||||
-rw-r--r-- | fr-fr/rust-fr.html.markdown | 6 | ||||
-rw-r--r-- | fr-fr/set-theory-fr.html.markdown | 132 | ||||
-rw-r--r-- | fr-fr/typescript-fr.html.markdown | 2 |
9 files changed, 267 insertions, 105 deletions
diff --git a/fr-fr/asymptotic-notation-fr.html.markdown b/fr-fr/asymptotic-notation-fr.html.markdown index 491dc3c4..fb0a8220 100644 --- a/fr-fr/asymptotic-notation-fr.html.markdown +++ b/fr-fr/asymptotic-notation-fr.html.markdown @@ -67,21 +67,21 @@ f(n) = 3log n + 100 g(n) = log n ``` -Est-ce que `f(n)` O(g(n))? -Est-ce que `3 log n + 100` O(log n)? +Est-ce que `f(n)` est égal à O(g(n))? +Est-ce que `3 log n + 100` est égal à O(log n)? Regardons maintenant la définition de Big-O. ``` 3log n + 100 <= c * log n ``` -Existe t-il une paire de constantes c, n<sub>0</sub> qui satisfait cela pour tout n > <sub>0</sub>? +Existe t-il une paire de constantes c, n<sub>0</sub> qui satisfait cela pour tout n > n<sub>0</sub>? ``` 3log n + 100 <= 150 * log n, n > 2 (Indéfini avec n = 1) ``` -Oui ! La définition de Big-O a été satisfaite, donc `f(n)` is O(g(n)). +Oui ! La définition de Big-O a été satisfaite, donc `f(n)` est égal à O(g(n)). *Exemple 2* @@ -90,15 +90,15 @@ f(n) = 3*n^2 g(n) = n ``` -Est-ce que `f(n)` O(g(n))? -Est-ce que `3 * n^2` O(n)? +Est-ce que `f(n)` est égal à O(g(n))? +Est-ce que `3 * n^2` est égal à O(n)? Regardons de nouveau la définition de Big-O. ``` 3 * n^2 <= c * n ``` -Existe t-il une paire de constantes c, n<sub>0</sub> qui satisfait cela pour tout n > <sub>0</sub>? +Existe t-il une paire de constantes c, n<sub>0</sub> qui satisfait cela pour tout n > n<sub>0</sub>? Non, il n'en existe pas. `f(n)` n'est pas égal à O(g(n)). ### Big-Omega diff --git a/fr-fr/awk-fr.html.markdown b/fr-fr/awk-fr.html.markdown index 75c48811..9e45a89b 100644 --- a/fr-fr/awk-fr.html.markdown +++ b/fr-fr/awk-fr.html.markdown @@ -10,13 +10,19 @@ lang: fr-fr --- -AWK est un outil standard présent dans chaque système UNIX conforme aux normes POSIX. -C’est un outil en ligne de commande qui ressemble au Perl et qui est excellent dans les tâches de traitement de fichiers texte. -Vous pouvez l’appeler à partir d’un script shell, ou l’utiliser comme un langage de script autonome. +AWK est un outil standard présent dans chaque système UNIX conforme aux normes +POSIX. C’est un outil en ligne de commande qui ressemble au Perl et qui est +excellent dans les tâches de traitement de fichiers texte. +Vous pouvez l’appeler à partir d’un script shell, ou l’utiliser comme un langage +de script autonome. Pourquoi utiliser AWK au lieu du langage Perl ? -Principalement, car AWK fait partie d'UNIX et est donc présent par défaut sur une très grande partie des systèmes d'exploitation UNIX et Linux. -AWK est aussi plus facile à lire que le langage Perl ; et est l'outil idéal pour ce qui concerne le traitement de texte simple. Notamment le traitement de ceux qui necéssitent de lire des fichiers ligne par ligne ; chaque ligne comportant des champs séparés par des délimiteur. +Principalement, car AWK fait partie d'UNIX et est donc présent par défaut sur +une très grande partie des systèmes d'exploitation UNIX et Linux. +AWK est aussi plus facile à lire que le langage Perl ; et est l'outil idéal pour +ce qui concerne le traitement de texte simple. Notamment le traitement de ceux +qui nécessitent de lire des fichiers ligne par ligne ; chaque ligne comportant +des champs séparés par des délimiteur. ```awk @@ -30,17 +36,25 @@ règle1 { action; } règle2 { action; } # AWK lit et analyse automatiquement chaque ligne de chaque fichier fourni. -# Chaque ligne est divisée par un délimiteur FS qui est par défaut l'espace (plusieurs espaces ou une tabulation comptent pour un espace). Ce délimiteur peut être changer grâce à l'option -F ou être renseigné au début d'un bloc (exemple: FS = " "). - -# BEGIN est une règle spécifique exécutée au début du programme. C'est à cet endroit que vous mettrez tout le code à exécuter avant de traiter les fichiers texte. Si vous ne disposez pas de fichiers texte, considérez BEGIN comme le point d’entrée principal du script. -# A l'opposé de BEGIN, il existe la règle END. Cette règle est présente après chaque fin de fichier (EOF : End Of File). +# Chaque ligne est divisée par un délimiteur FS qui est par défaut l'espace +# (plusieurs espaces ou une tabulation comptent pour un espace). Ce délimiteur +# peut être changé grâce à l'option -F ou être renseigné au début d'un bloc +# (exemple: FS = " "). + +# BEGIN est une règle spécifique exécutée au début du programme. C'est à cet +# endroit que vous mettrez tout le code à exécuter avant de traiter les fichiers +# texte. Si vous ne disposez pas de fichiers texte, considérez BEGIN comme le +# point d’entrée principal du script. +# À l'opposé de BEGIN, il existe la règle END. Cette règle est présente après +#chaque fin de fichier (EOF : End Of File). BEGIN { # Les variables sont globales. Pas besoin de les déclarer. count = 0; - # les opérateurs sont identiques au langage C et aux langages similaires (exemple: C#, C++) + # les opérateurs sont identiques au langage C et aux langages similaires + # (tels que C#, C++, etc.) a = count + 1; # addition b = count - 1; # soustraction c = count * 1; # multiplication @@ -74,7 +88,8 @@ BEGIN { # Les blocs sont composés d'une multitude de lignes entre accolades while (a < 10) { - print "La concaténation de chaînes de caractères" " se fait avec des séries de chaînes " " séparées par des espaces"; + print "La concaténation de chaînes de caractères" " se fait avec" + "des séries de chaînes " "séparées par des espaces"; print a; a++; @@ -113,7 +128,9 @@ BEGIN { assoc["foo"] = "bar"; assoc["bar"] = "baz"; - # et les tableaux multi-dimentions, avec certaines limitations que l'on ne mentionnera pas ici + # et les tableaux multi-dimensions, avec certaines limitations que l'on ne + # mentionnera pas ici + multidim[0,0] = "foo"; multidim[0,1] = "bar"; multidim[1,0] = "baz"; @@ -123,7 +140,8 @@ BEGIN { if ("foo" in assoc) print "Fooey!"; - # Vous pouvez aussi utilisez l'opérateur 'in' pour parcourir les clés d'un tableau + # Vous pouvez aussi utilisez l'opérateur 'in' pour parcourir les clés + # d'un tableau for (key in assoc) print assoc[key]; @@ -132,10 +150,12 @@ BEGIN { print ARGV[argnum]; # Vous pouvez supprimer des éléments d'un tableau - # C'est utile pour empêcher AWK de supposer que certains arguments soient des fichiers à traiter. + # C'est utile pour empêcher AWK de supposer que certains arguments soient + # des fichiers à traiter. + delete ARGV[1]; - # Le nombre d'arguments de la ligne de commande est dans une variable appellée ARGC + # Le nombre d'arguments de la ligne de commande est assigné à la variable ARGC print ARGC; # AWK inclue trois catégories de fonction. @@ -149,22 +169,24 @@ BEGIN { # Voici comment définir une fonction function arithmetic_functions(a, b, c, d) { - # La partie la plus ennuieuse de AWK est probablement l’absence de variables locales. - # Tout est global. Pour les scripts courts, c'est très utile, mais pour les scripts plus longs, - # cela peut poser problème. + # La partie la plus ennuyeuse de AWK est probablement l’absence de variables + # locales. Tout est global. Pour les scripts courts, c'est très utile, mais + # pour les scripts plus longs, cela peut poser un problème. - # Il y a cepandant une solution de contournement (enfin ... une bidouille). + # Il y a cependant une solution de contournement (enfin ... une bidouille). # Les arguments d'une fonction sont locaux à cette fonction. # Et AWK vous permet de définir plus d'arguments à la fonction que nécessaire. # Il suffit donc de mettre une variable locale dans la déclaration de fonction, - # comme ci-dessus. La convention veut que vous mettiez quelques espaces supplémentaires - # pour faire la distinction entre les paramètres réels et les variables locales. + # comme ci-dessus. La convention veut que vous mettiez quelques espaces + # supplémentaires pour faire la distinction entre les paramètres réels et + # les variables locales. # Dans cet exemple, a, b et c sont des paramètres réels, # alors que d est simplement une variable locale. # Maintenant, les fonctions arithmétiques - # La plupart des implémentations de AWK ont des fonctions trigonométriques standards + # La plupart des implémentations de AWK ont des fonctions trigonométriques + # standards localvar = sin(a); localvar = cos(a); localvar = atan2(b, a); # arc tangente de b / a @@ -180,10 +202,10 @@ function arithmetic_functions(a, b, c, d) { localvar = int(5.34); # localvar => 5 # Les nombres aléatoires - srand(); + srand(); # L'argument de la fonction srand() est la valeur de départ pour générer # les nombres aléatoires . Par défaut, il utilise l'heure du système - + localvar = rand(); # Nombre aléatoire entre 0 et 1. # Maintenant on retourne la valeur @@ -195,11 +217,13 @@ function string_functions( localvar, arr) { # AWK a plusieurs fonctions pour le traitement des chaînes de caractères, # dont beaucoup reposent sur des expressions régulières. - # Chercher et remplacer, la première occurence (sub) ou toutes les occurences (gsub) + # Chercher et remplacer, la première occurrence (sub) ou toutes les + # occurrences (gsub) # Les deux renvoient le nombre de correspondances remplacées + localvar = "fooooobar"; sub("fo+", "Meet me at the ", localvar); # localvar => "Meet me at the bar" - gsub("e+", ".", localvar); # localvar => "m..t m. at th. bar" + gsub("e", ".", localvar); # localvar => "m..t m. at th. bar" # Rechercher une chaîne de caractères qui correspond à une expression régulière # index() fait la même chose, mais n'autorise pas les expressions régulières @@ -226,7 +250,8 @@ function io_functions( localvar) { printf("%s %d %d %d\n", "Testing", 1, 2, 3); # AWK n'a pas de descripteur de fichier en soi. Il ouvrira automatiquement - # un descripteur de fichier lorsque vous utilisez quelque chose qui en a besoin. + # un descripteur de fichier lorsque vous utilisez quelque chose qui en a + # besoin. # La chaîne de caractères que vous avez utilisée pour cela peut être traitée # comme un descripteur de fichier à des fins d'entrée / sortie. @@ -241,11 +266,12 @@ function io_functions( localvar) { # Voici comment exécuter quelque chose dans le shell system("echo foobar"); # => affiche foobar - # Lire quelque chose depuis l'entrée standard et la stocker dans une variable locale + # Lire quelque chose depuis l'entrée standard et la stocker dans une variable + # locale getline localvar; - # Lire quelque chose à partir d'un pipe (encore une fois, utilisez une chaine de caractère - # que vous fermerez proprement) + # Lire quelque chose à partir d'un pipe (encore une fois, utilisez une + # chaîne de caractère que vous fermerez proprement) "echo foobar" | getline localvar # localvar => "foobar" close("echo foobar") @@ -256,18 +282,19 @@ function io_functions( localvar) { } # Comme dit au début, AWK consiste en une collection de règles et d'actions. -# Vous connaissez déjà les règles BEGIN et END. Les autres règles ne sont utilisées que si vous traitez -# des lignes à partir de fichiers ou l'entrée standard (stdin). -# Quand vous passez des arguments à AWK, ils sont considérés comme des noms de fichiers à traiter. -# AWK les traitera tous dans l'ordre. Voyez les comme dans à une boucle implicite, -# parcourant les lignes de ces fichiers. -# Ces règles et ces actions ressemblent à des instructions switch dans la boucle. +# Vous connaissez déjà les règles BEGIN et END. Les autres règles ne sont +# utilisées que si vous traitez des lignes à partir de fichiers ou l'entrée +# standard (stdin). +# Quand vous passez des arguments à AWK, ils sont considérés comme des noms de +# fichiers à traiter. AWK les traitera tous dans l'ordre. Voyez les comme dans +# une boucle implicite, parcourant les lignes de ces fichiers. Ces règles et ces +# actions ressemblent à des instructions switch dans la boucle. /^fo+bar$/ { - # Cette action sera exécutée pour chaque ligne qui correspond à l'expression régulière, - # /^fo+bar$/, et sera ignorée pour toute ligne qui n'y correspond pas. - # Imprimons simplement la ligne: + # Cette action sera exécutée pour chaque ligne qui correspond à l'expression + # régulière, /^fo+bar$/, et sera ignorée pour toute ligne qui n'y correspond + # pas. Imprimons simplement la ligne: print; @@ -275,14 +302,15 @@ function io_functions( localvar) { # $0 est le nom de la ligne en cours de traitement. Il est créé automatiquement. # Vous devinez probablement qu'il existe d'autres variables $. - # Chaque ligne est divisée implicitement avant que chaque action soit exécutée, comme - # le fait le shell. Et, comme le shell, chaque champ est accessible avec un signe dollar + # Chaque ligne est divisée implicitement avant que chaque action soit exécutée, + # comme le fait le shell. Et, comme le shell, chaque champ est accessible + # avec un signe dollar # Ceci affichera les deuxième et quatrième champs de la ligne. print $2, $4; - # AWK défini automatiquement beaucoup d'autres variables qui peuvent vous aider - # à inspecter et traiter chaque ligne. La plus importante est NF + # AWK défini automatiquement beaucoup d'autres variables qui peuvent vous + # aider à inspecter et traiter chaque ligne. La plus importante est NF # Affiche le nombre de champs de la ligne print NF; @@ -291,33 +319,37 @@ function io_functions( localvar) { print $NF; } -# Chaque règle est en réalité un test conditionel. +# Chaque règle est en réalité un test conditionnel. a > 0 { # Ceci s’exécutera une fois pour chaque ligne, tant que le test est positif } -# Les expressions régulières sont également des tests conditionels. -#Si le test de l'expression régulières n'est pas vrais alors le bloc n'est pas executé -$0 /^fobar/ { - print "la ligne commance par fobar" +# Les expressions régulières sont également des tests conditionnels. +# Si le test de l'expression régulières n'est pas vrais alors le bloc +# n'est pas exécuté. + +$0 /^fobar/ { + print "la ligne commence par foobar" } -# Dans le cas où vous voulez tester votre chaine de caractères sur la ligne en cours de traitement -# $0 est optionnelle. +# Dans le cas où vous voulez tester votre chaîne de caractères sur la ligne +# en cours de traitement $0 est optionnelle. /^[a-zA-Z0-9]$/ { print "La ligne courante ne contient que des caractères alphanumériques."; } -# AWK peut parcourir un fichier texte ligne par ligne et exécuter des actions en fonction de règles établies -# Cela est si courant sous UNIX qu'AWK est un langage de script. +# AWK peut parcourir un fichier texte ligne par ligne et exécuter des actions en +# fonction de règles établies. Cela est si courant sous UNIX qu'AWK est un +# langage de script. -# Ce qui suit est un exemple rapide d'un petit script, pour lequel AWK est parfait. -# Le script lit un nom à partir de l'entrée standard, puis affiche l'âge moyen de toutes les -# personnes portant ce prénom. -# Supposons que vous fournissiez comme argument le nom d'un fichier comportant ces données: +# Ce qui suit est un exemple rapide d'un petit script, pour lequel AWK est +# parfait. Le script lit un nom à partir de l'entrée standard, puis affiche +# l'âge moyen de toutes les personnes portant ce prénom. +# Supposons que vous fournissiez comme argument le nom d'un fichier comportant +# ces données: # # Bob Jones 32 # Jane Doe 22 @@ -330,7 +362,7 @@ $0 /^fobar/ { BEGIN { # Premièrement, on demande à l'utilisateur le prénom voulu - print "Pour quel prénom vouldriez vous savoir l'age moyen ?"; + print "Pour quel prénom voudriez vous savoir l'age moyen ?"; # On récupère la ligne à partir de l'entrée standard, pas de la ligne de commande getline name < "/dev/stdin"; diff --git a/fr-fr/bash-fr.html.markdown b/fr-fr/bash-fr.html.markdown index 0e764d7d..58d01e6a 100644 --- a/fr-fr/bash-fr.html.markdown +++ b/fr-fr/bash-fr.html.markdown @@ -17,7 +17,7 @@ lang: fr-fr --- Bash est le nom du shell UNIX, qui était aussi distribué avec le système -d’exploitation GNU et est le shell par défaut sur Linux et Mac OS X. +d’exploitation GNU et est le shell par défaut sur Linux et macOS. Presque tous les exemples ci-dessous peuvent être écrits dans un script shell ou exécutés directement dans le terminal. diff --git a/fr-fr/git-fr.html.markdown b/fr-fr/git-fr.html.markdown index 510459fe..00b6b6e1 100644 --- a/fr-fr/git-fr.html.markdown +++ b/fr-fr/git-fr.html.markdown @@ -574,8 +574,6 @@ $ git rm /chemin/vers/le/fichier/HelloWorld.c * [SalesForce Cheat Sheet (EN)](https://na1.salesforce.com/help/doc/en/salesforce_git_developer_cheatsheet.pdf) -* [GitGuys (EN)](http://www.gitguys.com/) - * [Git - the simple guide (EN)](http://rogerdudler.github.io/git-guide/index.html) * [Livre Pro Git](http://www.git-scm.com/book/fr/v1) diff --git a/fr-fr/java-fr.html.markdown b/fr-fr/java-fr.html.markdown index d6c68343..b72200d6 100644 --- a/fr-fr/java-fr.html.markdown +++ b/fr-fr/java-fr.html.markdown @@ -31,7 +31,7 @@ Les commentaires sur plusieurs lignes ressemblent à ceci. /** * Les commentaires de la JavaDoc ressemblent à ceci. Ils sont utilisés pour * décrire la classe et ses différents attributs. - * Attributs principaux: + * Attributs principaux : * * @author Nom (et information de contact comme l'email) de(s) auteur(s). * @version Version actuelle du programme. @@ -82,7 +82,7 @@ public class JavaFr { */ // Utilisez Scanner pour lire l'entrée - // Nécessite: import java.util.Scanner; + // Nécessite : import java.util.Scanner; Scanner scanner = new Scanner(System.in); // Lire une chaîne de caractères @@ -160,7 +160,7 @@ public class JavaFr { // L est utilisé pour indiquer que la variable est de type long; // le nombre serait traité comme un int sans le L - // Note: byte, short, int et long sont signés. Ils peuvent avoir des + // Note : byte, short, int et long sont signés. Ils peuvent avoir des // valeurs positives et négatives. // Il n'existe pas de variantes non-signées. // char, toutefois, est non-signé sur 16 bits @@ -203,7 +203,7 @@ public class JavaFr { // BigDecimal - entier immuable et positif de taille arbitraire // - // BigDecimal comprend deux parties: une entier de taille arbitraire + // BigDecimal comprend deux parties : une entier de taille arbitraire // (BigInteger) et un entier de 32 bits représantant la position de la // virgule. // @@ -240,13 +240,13 @@ public class JavaFr { // C'est la manière la plus simple et optimisé par le compilateur String plusConcatenated = "Strings can " + "be concatenated " + "via + operator."; System.out.println(plusConcatenated); - // Affiche: Strings can be concatenated via + operator. + // Affiche : Strings can be concatenated via + operator. // #2 - avec StringBuilder // Cette méthode ne nécessite pas d'objet String intermédiaire. Elle // stocke juste les différentes chaînes de caractères et les assemble // lorsque la méthode toString() est appelée. - // Attention: Cette classe n'est pas thread-safe (l'objet ne peut pas être partagé + // Attention : Cette classe n'est pas thread-safe (l'objet ne peut pas être partagé // entre les threads). Une alternative // (avec un impact sur les performances) thread-safe est d'utiliser la // classe StringBuffer. @@ -255,7 +255,7 @@ public class JavaFr { builderConcatenated.append("can use "); builderConcatenated.append("the StringBuilder class."); System.out.println(builderConcatenated.toString()); // only now is the string built - // Affiche: You can use the StringBuilder class. + // Affiche : You can use the StringBuilder class. // StringBuffer est efficace quand la chaîne de caractères n'est pas // utilisée avec la fin de sa construction. @@ -276,7 +276,7 @@ public class JavaFr { // #3 - avec la méthode format() de la classe String. // Une autre alternative. Rapide et lisible. String.format("%s may prefer %s.", "Or you", "String.format()"); - // Affiche: Or you may prefer String.format(). + // Affiche : Or you may prefer String.format(). // Tableau // La taille du tableau doit être précisée à l'instantiation @@ -419,7 +419,7 @@ public class JavaFr { System.out.println("fooFor Value: " + fooFor); // Fin d'une boucle for avec un label - outer: + outer : for (int i = 0; i < 10; i++) { for (int j = 0; j < 10; j++) { if (i == 5 && j ==5) { @@ -433,9 +433,9 @@ public class JavaFr { // La boucle for est également capable d'itérer aussi bien sur un // tableau que sur des objets qui implémentent l'interface Iterable. int[] fooList = {1, 2, 3, 4, 5, 6, 7, 8, 9}; - // De la forme: for (<object> : <iterable>) - // Lu comme: "Pour chaque élément du tableau" - // note: le type doit correspondre à celui de l'objet itérable + // De la forme : for (<object> : <iterable>) + // Lu comme : "Pour chaque élément du tableau" + // note : le type doit correspondre à celui de l'objet itérable for (int bar : fooList) { System.out.println(bar); //Itère 9 fois et affiche les chiffres de 1 à 9 @@ -511,7 +511,7 @@ public class JavaFr { // Convert Integer To String Integer.toString(123); // retourne un object String correspondant à"123" - // Pour les autres conversions, référer vous aux classes suivantes: + // Pour les autres conversions, référer vous aux classes suivantes : // Double // Long // String @@ -537,7 +537,7 @@ public class JavaFr { // Initialisation avec double accolades // Le langage Java ne permet pas de créer des collections statiques d'une - // manière simple. Généralement, on utilise la forme suivante: + // manière simple. Généralement, on utilise la forme suivante : private static final Set<String> COUNTRIES = new HashSet<String>(); static { COUNTRIES.add("DENMARK"); @@ -566,7 +566,7 @@ public class JavaFr { // Cependant, il est préférable de séparer les // classes dans des fichiers différents. -// Syntaxe de déclaration des classes: +// Syntaxe de déclaration des classes : // <public/private/protected> class <Nom de la classe> { // // Les attributs, les constructeurs et les méthodes de la classe vont ici. // // Les functions de classes sont appelées méthode. @@ -575,11 +575,11 @@ public class JavaFr { class Bicycle { // Attributs et variables de la classe Bicycle - public int cadence; // Public: Peut être accesible depuis n'importe où - private int speed; // Private: Accisible depuis la classe - protected int gear; // Protected: Accisible depuis la classe et ses sous- + public int cadence; // Public : Peut être accesible depuis n'importe où + private int speed; // Private : Accisible depuis la classe + protected int gear; // Protected : Accisible depuis la classe et ses sous- // classes - String name; // default: Uniquement accesible depuis ce package + String name; // default : Uniquement accesible depuis ce package static String className; // Variable de classe static // Bloc static @@ -595,7 +595,7 @@ class Bicycle { // Ceci est le constructeur de la classe Bicycle public Bicycle() { // Vous pouvez aussie appeler un autre constructeur. Par exemple en - // appelant le constructeur de la classe mère (voir héritage): + // appelant le constructeur de la classe mère (voir héritage) : // this(1, 50, 5, "Bontrager"); gear = 1; cadence = 50; @@ -665,7 +665,7 @@ class PennyFarthing extends Bicycle { // Ici nous modifions la méthode setGear() de la classe mère. Il faut donc // utiliser l'annotation @Overide. Pour en savoir plus sur les annotations, // consulter la documention officiel (en anglais) : - // out: http://docs.oracle.com/javase/tutorial/java/annotations/ + // out : http://docs.oracle.com/javase/tutorial/java/annotations/ @Override public void setGear(int gear) { this.gear = 0; @@ -719,7 +719,7 @@ public class Fruit implements Edible, Digestible { } // En Java, on peut hériter uniquement d'une classe mais on peut implémenter -// plusieurs interfaces: +// plusieurs interfaces : public class ExampleClass extends ExampleClassParent implements InterfaceOne, InterfaceTwo { @Override @@ -734,7 +734,7 @@ public class ExampleClass extends ExampleClassParent implements InterfaceOne, // Classes abstraites -// Syntaxe de déclaration: +// Syntaxe de déclaration : // <niveau d'accès> abstract class <nom de la classe abstraite> extends <nom de la // classe mère abstraite> { // // Constantes et variables @@ -758,7 +758,7 @@ public abstract class Animal public void eat() { System.out.println("I am an animal and I am Eating."); - // Note: On peut accéder à une variable privée ici. + // Note : On peut accéder à une variable privée ici. age = 30; } @@ -790,7 +790,7 @@ class Dog extends Animal // age = 30; ==> ERREUR! age est privé et n'est pas accesible. } - // NOTE: Vous obtiendrez une erreur si vous utilisé l'annotation @Override + // NOTE : Vous obtiendrez une erreur si vous utilisé l'annotation @Override // ici car Java n'autorise pas la surcharge de méthodes statiques. Ce qui ce // passe est appelé "method hiding". Si vous voulez en savoir plus, // consultez cette discussion (en anglais) : @@ -828,7 +828,7 @@ public final class SaberToothedCat extends Animal // Méthodes final public abstract class Mammal() { - // Syntaxe: + // Syntaxe : // <niveau d'accès> final <type de retour> <nom de la fonction>(<arguments>) // Les méthodes déclarées comme final ne peuvent pas être surchargées par @@ -846,13 +846,13 @@ public abstract class Mammal() // des valeurs pédéfinies pour celle-ci. En Java, les variables constantes sont // notées en majuscules. // On définie un type enum en utilisant le mot clé enum. Par exemple pour les -// jours de l'année: +// jours de la semaine : public enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY } -// On l'utilise ainsi: +// On l'utilise ainsi : public class EnumTest { // On utilise notre énumération Day day; @@ -889,7 +889,7 @@ public class EnumTest { // Le type enum permet de faire bien plus que ce qui est montré ici. Il ne se // limite pas à une liste de constante mais peut inclure des champs et méthodes. -// Vous pouvez en savoir plus ici (en anglais): +// Vous pouvez en savoir plus ici (en anglais) : //https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html ``` @@ -899,7 +899,7 @@ public class EnumTest { Les liens ci-dessous sont données si vous souhaitez approfondir sur le sujet, n'hésitez pas à consulter Google pour trouver des exemples spécifiques. -**Guides officiels d'Oracle**: +**Guides officiels d'Oracle** : * [Java Tutorial Trail from Sun / Oracle](https://docs.oracle.com/javase/tutorial/index.html) @@ -918,7 +918,7 @@ n'hésitez pas à consulter Google pour trouver des exemples spécifiques. * [Java Code Conventions](https://www.oracle.com/technetwork/java/codeconvtoc-136057.html) -* Nouvelles fonctionnalités Java 8: +* Nouvelles fonctionnalités Java 8 : * [Lambda expressions (functional programming)](https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html) * [Date and time API (java.time package)](http://www.oracle.com/technetwork/articles/java/jf14-date-time-2125367.html) @@ -928,7 +928,7 @@ n'hésitez pas à consulter Google pour trouver des exemples spécifiques. * [Codingbat.com](http://codingbat.com/java) -**Livres**: +**Livres** : * [Head First Java](http://www.headfirstlabs.com/books/hfjava/) diff --git a/fr-fr/objective-c-fr.html.markdown b/fr-fr/objective-c-fr.html.markdown index fbe1741e..191cdfb6 100644 --- a/fr-fr/objective-c-fr.html.markdown +++ b/fr-fr/objective-c-fr.html.markdown @@ -10,7 +10,7 @@ filename: LearnObjectiveC-fr.m lang: fr-fr --- -L'Objective-C est un langage de programmation orienté objet réflexif principalement utilisé par Apple pour les systèmes d'exploitations Mac OS X et iOS et leurs frameworks respectifs, Cocoa et Cocoa Touch. +L'Objective-C est un langage de programmation orienté objet réflexif principalement utilisé par Apple pour les systèmes d'exploitations macOS et iOS et leurs frameworks respectifs, Cocoa et Cocoa Touch. ```objective-c // Les commentaires sur une seule ligne commencent par // @@ -30,7 +30,7 @@ ceci #import <Foundation/Foundation.h> #import "MaClasse.h" -// Si vous activez les modules dans les projets iOS >= 7 ou Mac OS X >= 10.9 +// Si vous activez les modules dans les projets iOS >= 7 ou OS X >= 10.9 // dans Xcode 5, vous pouvez importer les frameworks comme cela : @import Foundation; diff --git a/fr-fr/rust-fr.html.markdown b/fr-fr/rust-fr.html.markdown index b3675f5b..6fc0d07d 100644 --- a/fr-fr/rust-fr.html.markdown +++ b/fr-fr/rust-fr.html.markdown @@ -1,5 +1,5 @@ --- -language: rust +language: Rust contributors: - ["P1start", "http://p1start.github.io/"] translators: @@ -221,7 +221,7 @@ fn main() { // `for` boucles / itération let array = [1, 2, 3]; - for i in array.iter() { + for i in array { println!("{}", i); } @@ -309,7 +309,7 @@ fn main() { Il y a beaucoup plus à Rust -- ce est juste l'essentiel de Rust afin que vous puissiez comprendre les choses les plus importantes. Pour en savoir plus sur Rust, lire [La Programmation Rust -Langue](http://doc.rust-lang.org/book/index.html) et etudier la +Langue](http://doc.rust-lang.org/book/index.html) et étudier la [/r/rust](http://reddit.com/r/rust) subreddit. Les gens sur le canal de #rust sur irc.mozilla.org sont aussi toujours prêts à aider les nouveaux arrivants. diff --git a/fr-fr/set-theory-fr.html.markdown b/fr-fr/set-theory-fr.html.markdown new file mode 100644 index 00000000..543bd98b --- /dev/null +++ b/fr-fr/set-theory-fr.html.markdown @@ -0,0 +1,132 @@ +--- +category: Algorithms & Data Structures +name: Set theory +lang: fr-fr +contributors: + - ["kieutrang", "https://github.com/kieutrang1729"] +--- + +La théorie des ensembles est une branche des mathématiques qui étudie les ensembles, leurs opérations et leurs propriétés. + +* Un ensemble est une collection d'éléments disjoints. + +## Symboles de base + +### Opérateurs +* l'opérateur réunion, `∪`, signifie "ou" ; +* l'opérateur intersection, `∩`, signifie "et" ; +* l'opérateur différence, `\`, signifie "sans", (lire "A moins B") ; +* l'opérateur complémentaire, `'`, signifie "le complémentaire de" ; +* l'opérateur croix, `×`, signifie "le produit cartésien de". + +### Autres symboles +* le symbole deux-points, `:`, signifie "tel que" ; +* le symbole d'appartenance, `∈`, signifie "appartient à" ; +* le symbole sous-ensemble, `⊆`, signifie "est un sous-ensemble de" ; +* le symbole sous-ensemble propre, `⊂`, signifie "est un sous-ensemble de mais n'est pas égal à". + +### Ensembles importants +* `∅`, l'ensemble vide, c'est-à-dire l'ensemble ne contenant aucun élément ; +* `ℕ`, l'ensemble des nombres naturels ; +* `ℤ`, l'ensemble des entiers ; +* `ℚ`, l'ensemble des nombres rationnels ; +* `ℝ`, l'ensemble des nombres réels. + +Quelques mise en gardes sur les ensembles définis ci-dessus: +1. Même si l'ensemble vide ne contient aucun élément, il est lui-même un sous-ensemble de n'importe quel ensemble. +2. Il n'y a pas d'accord général sur l'appartenance de zéro dans l'ensemble des nombres naturels, et les livres indiquent explicitement si l'auteur considère le zéro comme nombre naturel ou pas. + + +### Cardinalité + +La cardinalité, ou taille, d'un ensemble est déterminée par le nombre d'éléments dans l'ensemble. L'opérateur de cardinalité s'écrit, `| ... |`. +Par exemple, si `S = { 1, 2, 4 }`, alors `|S| = 3`. + +### L'ensemble vide +* L'ensemble vide peut se définir en compréhension à l'aide d'une propriété qui n'est satisfaite par nul élément, e.g. `∅ = { x : x ≠ x }`, ou `∅ = { x : x ∈ N, x < 0 }`. +* il n'y a qu'un seul ensemble vide. +* l'ensemble vide est sous-ensemble de tout ensemble. +* la cardinalité de l'ensemble vide est 0, ou `|∅| = 0`. + +## Notation ensembliste + +### Définition par extension + +Un ensemble peut être defini en extension par une liste de tous les éléments qui sont contenus dans l'ensemble. Par exemple, `S = { a, b, c, d }`. + +Quand le contexte est clair, on peut raccourcir la liste en utilisant des points de suspension. Par exemple, `E = { 2, 4, 6, 8, ... }` est clairement l'ensemble de tous les nombres pairs, contenant un nombre infini des éléments, même si on a explicitement écrit seulement les quatre premiers. + +### Définition par compréhension + +C'est une notation plus descriptif qui permet de définir un ensemble à l'aide d'un sujet et d'une propriété, et il est noté `S = { sujet : propriété }`. Par exemple, + +``` +A = { x : x est une voyelle } = { a, e, i, o, u, y} +B = { x : x ∈ N, x < 10 } = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } +C = { x : x = 2k, k ∈ N } = { 0, 2, 4, 6, 8, ... } +``` + +On peut même appliquer une fonction au sujet, e.g. + +``` +D = { 2x : x ∈ N } = { 0, 2, 4, 6, 8, ... } +``` + +## Relations + +### Appartenance + +* Si l'élément `a` est dans l'ensemble `A`, on dit que `a` appartient à `A` et on le note `a ∈ A`. +* Si l'élément `a` n'est pas dans l'ensemble `A`, on dit que `a` n'appartient pas à `A` et on le note `a ∉ A`. + +### Égalité + +* On dit que deux ensembles `A` et `B` sont égaux s'ils contiennent les mêmes éléments, et on le note `A = B`. +* Les ensembles n'ont pas de notion d'ordre, par exemple `{ 1, 2, 3, 4 } = { 2, 3, 1, 4 }`. +* Un élément ne peut apparaître qu'au plus une seule fois - il n'y a jamais de répétition, e.g. `{ 1, 2, 2, 3, 4, 3, 4, 2 } = { 1, 2, 3, 4 }`. +* Deux ensembles `A` et `B` sont égaux si et seulement si `A ⊆ B` et `B ⊆ A`. + +## Ensemble puissance +* L'ensemble puissance d'un ensemble `A` est l'ensemble contenant tous les sous-ensembles de `A`. Il est noté `P(A)`. Si la cardinalité de `A` est `n`, la cardinalité de `P(A)` est `2^n`. + +``` +P(A) = { x : x ⊆ A } +``` + +## Opérations ensemblistes +### Réunion +La réunion de deux ensembles `A` et `B` est l'ensemble contenant tous les éléments qui appartient à `A` ou à `B`. + +``` +A ∪ B = { x : x ∈ A ∪ x ∈ B } +``` + +### Intersection +L'intersection de deux ensembles `A` et `B` est l'ensemble contenant tous les éléments qui appartient à la fois à `A` et à `B`. + +``` +A ∩ B = { x : x ∈ A, x ∈ B } +``` + +### Différence +La différence de deux ensembles `A` et `B` est l'ensemble contenant tous les éléments de l'ensemble `A` qui n'appartient pas à `B`. + +``` +A \ B = { x : x ∈ A, x ∉ B } +``` + +### Différence symétrique +Le différence symétrique de deux ensembles `A` et `B` est l'ensemble contenant tous les éléments de `A` et `B` qui n'apparaissent pas dans leur intersection. + +``` +A △ B = { x : ((x ∈ A) ∩ (x ∉ B)) ∪ ((x ∈ B) ∩ (x ∉ A)) } + +A △ B = (A \ B) ∪ (B \ A) +``` + +### Produit cartésien +Le produit cartésien de deux ensembles `A` et `B` est l'ensemble contenant tous les couples dont la première élément appartient à `A` et la deuxième à `B`. + +``` +A × B = { (x, y) | x ∈ A, y ∈ B } +``` diff --git a/fr-fr/typescript-fr.html.markdown b/fr-fr/typescript-fr.html.markdown index 52d34650..8a761f61 100644 --- a/fr-fr/typescript-fr.html.markdown +++ b/fr-fr/typescript-fr.html.markdown @@ -12,7 +12,7 @@ TypeScript est un langage visant à faciliter le développement d'applications l TypeScript ajoute des concepts classiques comme les classes, les modules, les interfaces, les génériques et le typage statique (optionnel) à JavaScript. C'est une surcouche de JavaScript : tout le code JavaScript est valide en TypeScript ce qui permet de l'ajouter de façon transparente à n'importe quel projet. Le code TypeScript est transcompilé en JavaScript par le compilateur. -Cet article se concentrera seulement sur la syntaxe supplémentaire de TypeScript, plutôt que celle de [JavaScript] (../javascript/). +Cet article se concentrera seulement sur la syntaxe supplémentaire de TypeScript, plutôt que celle de [JavaScript] (../javascript-fr/). Pour tester le compilateur de TypeScript, rendez-vous au [Playground] (http://www.typescriptlang.org/Playground) où vous pourrez coder, profiter d'une autocomplétion et accéder directement au rendu JavaScript. |