summaryrefslogtreecommitdiffhomepage
path: root/haxe.html.markdown
diff options
context:
space:
mode:
Diffstat (limited to 'haxe.html.markdown')
-rw-r--r--haxe.html.markdown776
1 files changed, 776 insertions, 0 deletions
diff --git a/haxe.html.markdown b/haxe.html.markdown
new file mode 100644
index 00000000..f4694fcb
--- /dev/null
+++ b/haxe.html.markdown
@@ -0,0 +1,776 @@
+---
+language: haxe
+filename: LearnHaxe3.hx
+contributors:
+ - ["Justin Donaldson", "https://github.com/jdonaldson/"]
+---
+
+Haxe is a web-oriented language that provides platform support for C++, C#,
+Swf/ActionScript, Javascript, Java, and Neko byte code (also written by the
+Haxe author). Note that this guide is for Haxe version 3. Some of the guide
+may be applicable to older versions, but it is recommended to use other
+references.
+
+```haxe
+/*
+ Welcome to Learn Haxe 3 in 15 minutes. http://www.haxe.org
+ This is an executable tutorial. You can compile and run it using the haxe
+ compiler, while in the same directory as LearnHaxe.hx:
+ $> haxe -main LearnHaxe3 -x out
+
+ Look for the slash-star marks surrounding these paragraphs. We are inside
+ a "Multiline comment". We can leave some notes here that will get ignored
+ by the compiler.
+
+ Multiline comments are also used to generate javadoc-style documentation for
+ haxedoc. They will be used for haxedoc if they immediately precede a class,
+ class function, or class variable.
+
+ */
+
+// Double slashes like this will give a single-line comment
+
+
+/*
+ This is your first actual haxe code coming up, it's declaring an empty
+ package. A package isn't necessary, but it's useful if you want to create a
+ namespace for your code (e.g. org.module.ClassName).
+ */
+package; // empty package, no namespace.
+
+/*
+ Packages define modules for your code. Each module (e.g. org.module) must
+ be lower case, and should exist as a folder structure containing the class.
+ Class (and type) names must be capitalized. E.g, the class "org.module.Foo"
+ should have the folder structure org/module/Foo.hx, as accessible from the
+ compiler's working directory or class path.
+
+ If you import code from other files, it must be declared before the rest of
+ the code. Haxe provides a lot of common default classes to get you started:
+ */
+import haxe.ds.ArraySort;
+
+// you can import many classes/modules at once with "*"
+import haxe.ds.*;
+
+/*
+ You can also import classes in a special way, enabling them to extend the
+ functionality of other classes like a "mixin". More on 'using' later.
+ */
+using StringTools;
+
+/*
+ Typedefs are like variables... for types. They must be declared before any
+ code. More on this later.
+ */
+typedef FooString = String;
+
+// Typedefs can also reference "structural" types, more on that later as well.
+typedef FooObject = { foo: String };
+
+/*
+ Here's the class definition. It's the main class for the file, since it has
+ the same name (LearnHaxe3).
+ */
+class LearnHaxe3{
+ /*
+ If you want certain code to run automatically, you need to put it in
+ a static main function, and specify the class in the compiler arguments.
+ In this case, we've specified the "LearnHaxe3" class in the compiler
+ arguments above.
+ */
+ static function main(){
+
+ /*
+ Trace is the default method of printing haxe expressions to the
+ screen. Different targets will have different methods of
+ accomplishing this. E.g., java, c++, c#, etc. will print to std
+ out. Javascript will print to console.log, and flash will print to
+ an embedded TextField. All traces come with a default newline.
+ Finally, It's possible to prevent traces from showing by using the
+ "--no-traces" argument on the compiler.
+ */
+ trace("Hello World, with trace()!");
+
+ /*
+ Trace can handle any type of value or object. It will try to print
+ a representation of the expression as best it can. You can also
+ concatenate strings with the "+" operator:
+ */
+ trace( " Integer: " + 10 + " Float: " + 3.14 + " Boolean: " + true);
+
+ /*
+ In Haxe, it's required to separate expressions in the same block with
+ semicolons. But, you can put two expressions on one line:
+ */
+ trace('two expressions..'); trace('one line');
+
+
+ //////////////////////////////////////////////////////////////////
+ // Types & Variables
+ //////////////////////////////////////////////////////////////////
+ trace("***Types & Variables***");
+
+ /*
+ You can save values and references to data structures using the
+ "var" keyword:
+ */
+ var an_integer:Int = 1;
+ trace(an_integer + " is the value for an_integer");
+
+
+ /*
+ Haxe is statically typed, so "an_integer" is declared to have an
+ "Int" type, and the rest of the expression assigns the value "1" to
+ it. It's not necessary to declare the type in many cases. Here,
+ the haxe compiler is inferring that the type of another_integer
+ should be "Int".
+ */
+ var another_integer = 2;
+ trace(another_integer + " is the value for another_integer");
+
+ // The $type() method prints the type that the compiler assigns:
+ $type(another_integer);
+
+ // You can also represent integers with hexadecimal:
+ var hex_integer = 0xffffff;
+
+ /*
+ Haxe uses platform precision for Int and Float sizes. It also
+ uses the platform behavior for overflow.
+ (Other numeric types and behavior are possible using special
+ libraries)
+ */
+
+ /*
+ In addition to simple values like Integers, Floats, and Booleans,
+ Haxe provides standard library implementations for common data
+ structures like strings, arrays, lists, and maps:
+ */
+
+ var a_string = "some" + 'string'; // strings can have double or single quotes
+ trace(a_string + " is the value for a_string");
+
+ /*
+ Strings can be "interpolated" by inserting variables into specific
+ positions. The string must be single quoted, and the variable must
+ be preceded with "$". Expressions can be enclosed in ${...}.
+ */
+ var x = 1;
+ var an_interpolated_string = 'the value of x is $x';
+ var another_interpolated_string = 'the value of x + 1 is ${x + 1}';
+
+ /*
+ Strings are immutable, instance methods will return a copy of
+ parts or all of the string.
+ (See also the StringBuf class).
+ */
+ var a_sub_string = a_string.substr(0,4);
+ trace(a_sub_string + " is the value for a_sub_string");
+
+ /*
+ Regexes are also supported, but there's not enough space to go into
+ much detail.
+ */
+ trace((~/foobar/.match('foo')) + " is the value for (~/foobar/.match('foo')))");
+
+ /*
+ Arrays are zero-indexed, dynamic, and mutable. Missing values are
+ defined as null.
+ */
+ var a = new Array<String>(); // an array that contains Strings
+ a[0] = 'foo';
+ trace(a.length + " is the value for a.length");
+ a[9] = 'bar';
+ trace(a.length + " is the value for a.length (after modification)");
+ trace(a[3] + " is the value for a[3]"); //null
+
+ /*
+ Arrays are *generic*, so you can indicate which values they contain
+ with a type parameter:
+ */
+ var a2 = new Array<Int>(); // an array of Ints
+ var a3 = new Array<Array<String>>(); // an Array of Arrays (of Strings).
+
+ /*
+ Maps are simple key/value data structures. The key and the value
+ can be of any type.
+ */
+ var m = new Map<String, Int>(); // The keys are strings, the values are Ints.
+ m.set('foo', 4);
+ // You can also use array notation;
+ m['bar'] = 5;
+ trace(m.exists('bar') + " is the value for m.exists('bar')");
+ trace(m.get('bar') + " is the value for m.get('bar')");
+ trace(m['bar'] + " is the value for m['bar']");
+
+ var m2 = ['foo' => 4, 'baz' => 6]; // Alternative map syntax
+ trace(m2 + " is the value for m2");
+
+ /*
+ Remember, you can use type inference. The Haxe compiler will
+ decide the type of the variable the first time you pass an
+ argument that sets a type parameter.
+ */
+ var m3 = new Map();
+ m3.set(6, 'baz'); // m3 is now a Map<Int,String>
+ trace(m3 + " is the value for m3");
+
+ /*
+ Haxe has some more common datastructures in the haxe.ds module, such as
+ List, Stack, and BalancedTree
+ */
+
+
+ //////////////////////////////////////////////////////////////////
+ // Operators
+ //////////////////////////////////////////////////////////////////
+ trace("***OPERATORS***");
+
+ // basic arithmetic
+ trace((4 + 3) + " is the value for (4 + 3)");
+ trace((5 - 1) + " is the value for (5 - 1)");
+ trace((2 * 4) + " is the value for (2 * 4)");
+ trace((8 / 4) + " is the value for (8 / 3) (division always produces Floats)");
+ trace((12 % 4) + " is the value for (12 % 4)");
+
+
+ //basic comparison
+ trace((3 == 2) + " is the value for 3 == 2");
+ trace((3 != 2) + " is the value for 3 != 2");
+ trace((3 > 2) + " is the value for 3 > 2");
+ trace((3 < 2) + " is the value for 3 < 2");
+ trace((3 >= 2) + " is the value for 3 >= 2");
+ trace((3 <= 2) + " is the value for 3 <= 2");
+
+ // standard bitwise operators
+ /*
+ ~ Unary bitwise complement
+ << Signed left shift
+ >> Signed right shift
+ >>> Unsigned right shift
+ & Bitwise AND
+ ^ Bitwise exclusive OR
+ | Bitwise inclusive OR
+ */
+
+ //increments
+ var i = 0;
+ trace("Increments and decrements");
+ trace(i++); //i = 1. Post-Incrementation
+ trace(++i); //i = 2. Pre-Incrementation
+ trace(i--); //i = 1. Post-Decrementation
+ trace(--i); //i = 0. Pre-Decrementation
+
+ //////////////////////////////////////////////////////////////////
+ // Control Structures
+ //////////////////////////////////////////////////////////////////
+ trace("***CONTROL STRUCTURES***");
+
+ // if statements
+ var j = 10;
+ if (j == 10){
+ trace("this is printed");
+ } else if (j > 10){
+ trace("not greater than 10, so not printed");
+ } else {
+ trace("also not printed.");
+ }
+
+ // there is also a "ternary" if:
+ (j == 10) ? trace("equals 10") : trace("not equals 10");
+
+ /*
+ Finally, there is another form of control structures that operates
+ at compile time: conditional compilation.
+ */
+#if neko
+ trace('hello from neko');
+#elseif js
+ trace('hello from js');
+#else
+ trace('hello from another platform!');
+#end
+ /*
+ The compiled code will change depending on the platform target.
+ Since we're compiling for neko (-x or -neko), we only get the neko
+ greeting.
+ */
+
+
+ trace("Looping and Iteration");
+
+ // while loop
+ var k = 0;
+ while(k < 100){
+ // trace(counter); // will print out numbers 0-99
+ k++;
+ }
+
+ // do-while loop
+ var l = 0;
+ do{
+ trace("do statement always runs at least once");
+ } while (i > 0);
+
+ // for loop
+ /*
+ There is no c-style for loop in Haxe, because they are prone
+ to error, and not necessary. Instead, Haxe has a much simpler
+ and safer version that uses Iterators (more on those later).
+ */
+ var m = [1,2,3];
+ for (val in m){
+ trace(val + " is the value for val in the m array");
+ }
+
+ // Note that you can iterate on an index using a range
+ // (more on ranges later as well)
+ var n = ['foo', 'bar', 'baz'];
+ for (val in 0...n.length){
+ trace(val + " is the value for val (an index for m)");
+ }
+
+
+ trace("Array Comprehensions");
+
+ // Array comprehensions give you the ability to iterate over arrays
+ // while also creating filters and modifications.
+ var filtered_n = [for (val in n) if (val != "foo") val];
+ trace(filtered_n + " is the value for filtered_n");
+
+ var modified_n = [for (val in n) val += '!'];
+ trace(modified_n + " is the value for modified_n");
+
+ var filtered_and_modified_n = [for (val in n) if (val != "foo") val += "!"];
+ trace(filtered_and_modified_n + " is the value for filtered_and_modified_n");
+
+ //////////////////////////////////////////////////////////////////
+ // Switch Statements (Value Type)
+ //////////////////////////////////////////////////////////////////
+ trace("***SWITCH STATEMENTS (VALUE TYPES)***");
+
+ /*
+ Switch statements in Haxe are very powerful. In addition to working
+ on basic values like strings and ints, they can also work on the
+ generalized algebraic data types in enums (more on enums later).
+ Here's some basic value examples for now:
+ */
+ var my_dog_name = "fido";
+ var favorite_thing = "";
+ switch(my_dog_name){
+ case "fido" : favorite_thing = "bone";
+ case "rex" : favorite_thing = "shoe";
+ case "spot" : favorite_thing = "tennis ball";
+ default : favorite_thing = "some unknown treat";
+ // case _ : "some unknown treat"; // same as default
+ }
+ // The "_" case above is a "wildcard" value
+ // that will match anything.
+
+ trace("My dog's name is" + my_dog_name
+ + ", and his favorite thing is a: "
+ + favorite_thing);
+
+ //////////////////////////////////////////////////////////////////
+ // Expression Statements
+ //////////////////////////////////////////////////////////////////
+ trace("***EXPRESSION STATEMENTS***");
+
+ /*
+ Haxe control statements are very powerful because every statement
+ is also an expression, consider:
+ */
+
+ // if statements
+ var k = if (true){
+ 10;
+ } else {
+ 20;
+ }
+
+ trace("K equals ", k); // outputs 10
+
+ var other_favorite_thing = switch(my_dog_name) {
+ case "fido" : "teddy";
+ case "rex" : "stick";
+ case "spot" : "football";
+ default : "some unknown treat";
+ }
+
+ trace("My dog's name is" + my_dog_name
+ + ", and his other favorite thing is a: "
+ + other_favorite_thing);
+
+ //////////////////////////////////////////////////////////////////
+ // Converting Value Types
+ //////////////////////////////////////////////////////////////////
+ trace("***CONVERTING VALUE TYPES***");
+
+ // You can convert strings to ints fairly easily.
+
+ // string to integer
+ Std.parseInt("0"); // returns 0
+ Std.parseFloat("0.4"); // returns 0.4;
+
+ // integer to string
+ Std.string(0); // returns "0";
+ // concatenation with strings will auto-convert to string.
+ 0 + ""; // returns "0";
+ true + ""; // returns "true";
+ // See documentation for parsing in Std for more details.
+
+
+ //////////////////////////////////////////////////////////////////
+ // Dealing with Types
+ //////////////////////////////////////////////////////////////////
+
+ /*
+
+ As mentioned before, Haxe is a statically typed language. All in
+ all, static typing is a wonderful thing. It enables
+ precise autocompletions, and can be used to thoroughly check the
+ correctness of a program. Plus, the Haxe compiler is super fast.
+
+ *HOWEVER*, there are times when you just wish the compiler would let
+ something slide, and not throw a type error in a given case.
+
+ To do this, Haxe has two separate keywords. The first is the
+ "Dynamic" type:
+ */
+ var dyn: Dynamic = "any type of variable, such as this string";
+
+ /*
+ All that you know for certain with a Dynamic variable is that the
+ compiler will no longer worry about what type it is. It is like a
+ wildcard variable: You can pass it instead of any variable type,
+ and you can assign any variable type you want.
+
+ The other more extreme option is the "untyped" keyword:
+ */
+
+ untyped {
+ var x:Int = 'foo'; // this can't be right!
+ var y:String = 4; // madness!
+ }
+
+ /*
+ The untyped keyword operates on entire *blocks* of code, skipping
+ any type checks that might be otherwise required. This keyword should
+ be used very sparingly, such as in limited conditionally-compiled
+ situations where type checking is a hinderance.
+
+ In general, skipping type checks is *not* recommended. Use the
+ enum, inheritance, or structural type models in order to help ensure
+ the correctness of your program. Only when you're certain that none
+ of the type models work should you resort to "Dynamic" or "untyped".
+ */
+
+ //////////////////////////////////////////////////////////////////
+ // Basic Object Oriented Programming
+ //////////////////////////////////////////////////////////////////
+ trace("***BASIC OBJECT ORIENTED PROGRAMMING***");
+
+
+ /*
+ Create an instance of FooClass. The classes for this are at the
+ end of the file.
+ */
+ var foo_instance = new FooClass(3);
+
+ // read the public variable normally
+ trace(foo_instance.public_any + " is the value for foo_instance.public_any");
+
+ // we can read this variable
+ trace(foo_instance.public_read + " is the value for foo_instance.public_read");
+ // but not write it
+ // foo_instance.public_write = 4; // this will throw an error if uncommented:
+ // trace(foo_instance.public_write); // as will this.
+
+ trace(foo_instance + " is the value for foo_instance"); // calls the toString method
+ trace(foo_instance.toString() + " is the value for foo_instance.toString()"); // same thing
+
+
+ /*
+ The foo_instance has the "FooClass" type, while acceptBarInstance
+ has the BarClass type. However, since FooClass extends BarClass, it
+ is accepted.
+ */
+ BarClass.acceptBarInstance(foo_instance);
+
+ /*
+ The classes below have some more advanced examples, the "example()"
+ method will just run them here.
+ */
+ SimpleEnumTest.example();
+ ComplexEnumTest.example();
+ TypedefsAndStructuralTypes.example();
+ UsingExample.example();
+
+ }
+
+}
+
+/*
+ This is the "child class" of the main LearnHaxe3 Class
+ */
+class FooClass extends BarClass implements BarInterface{
+ public var public_any:Int; // public variables are accessible anywhere
+ public var public_read (default,null): Int; // use this style to only enable public read
+ public var public_write (null, default): Int; // or public write
+ public var property (get, set): Int; // use this style to enable getters/setters
+
+ // private variables are not available outside the class.
+ // see @:allow for ways around this.
+ var _private:Int; // variables are private if they are not marked public
+
+ // a public constructor
+ public function new(arg:Int){
+ super(); // call the constructor of the parent object, since we extended BarClass
+
+ this.public_any= 0;
+ this._private = arg;
+
+ }
+
+ // getter for _private
+ function get_property() : Int {
+ return _private;
+ }
+
+ // setter for _private
+ function set_property(val:Int) : Int {
+ _private = val;
+ return val;
+ }
+
+ // special function that is called whenever an instance is cast to a string.
+ public function toString(){
+ return _private + " with toString() method!";
+ }
+
+ // this class needs to have this function defined, since it implements
+ // the BarInterface interface.
+ public function baseFunction(x: Int) : String{
+ // convert the int to string automatically
+ return x + " was passed into baseFunction!";
+ }
+}
+
+/*
+ A simple class to extend
+*/
+class BarClass {
+ var base_variable:Int;
+ public function new(){
+ base_variable = 4;
+ }
+ public static function acceptBarInstance(b:BarClass){
+ }
+}
+
+/*
+ A simple interface to implement
+*/
+interface BarInterface{
+ public function baseFunction(x:Int):String;
+}
+
+//////////////////////////////////////////////////////////////////
+// Enums and Switch Statements
+//////////////////////////////////////////////////////////////////
+
+/*
+ Enums in Haxe are very powerful. In their simplest form, enums
+ are a type with a limited number of states:
+ */
+
+enum SimpleEnum {
+ Foo;
+ Bar;
+ Baz;
+}
+
+// Here's a class that uses it:
+
+class SimpleEnumTest{
+ public static function example(){
+ var e_explicit:SimpleEnum = SimpleEnum.Foo; // you can specify the "full" name
+ var e = Foo; // but inference will work as well.
+ switch(e){
+ case Foo: trace("e was Foo");
+ case Bar: trace("e was Bar");
+ case Baz: trace("e was Baz"); // comment this line to throw an error.
+ }
+
+ /*
+ This doesn't seem so different from simple value switches on strings.
+ However, if we don't include *all* of the states, the compiler will
+ complain. You can try it by commenting out a line above.
+
+ You can also specify a default for enum switches as well:
+ */
+ switch(e){
+ case Foo: trace("e was Foo again");
+ default : trace("default works here too");
+ }
+ }
+}
+
+/*
+ Enums go much further than simple states, we can also enumerate
+ *constructors*, but we'll need a more complex enum example
+ */
+enum ComplexEnum{
+ IntEnum(i:Int);
+ MultiEnum(i:Int, j:String, k:Float);
+ SimpleEnumEnum(s:SimpleEnum);
+ ComplexEnumEnum(c:ComplexEnum);
+}
+// Note: The enum above can include *other* enums as well, including itself!
+
+class ComplexEnumTest{
+ public static function example(){
+ var e1:ComplexEnum = IntEnum(4); // specifying the enum parameter
+ /*
+ Now we can switch on the enum, as well as extract any parameters
+ it might of had.
+ */
+ switch(e1){
+ case IntEnum(x) : trace('$x was the parameter passed to e1');
+ default: trace("Shouldn't be printed");
+ }
+
+ // another parameter here that is itself an enum... an enum enum?
+ var e2 = SimpleEnumEnum(Foo);
+ switch(e2){
+ case SimpleEnumEnum(s): trace('$s was the parameter passed to e2');
+ default: trace("Shouldn't be printed");
+ }
+
+ // enums all the way down
+ var e3 = ComplexEnumEnum(ComplexEnumEnum(MultiEnum(4, 'hi', 4.3)));
+ switch(e3){
+ // You can look for certain nested enums by specifying them explicitly:
+ case ComplexEnumEnum(ComplexEnumEnum(MultiEnum(i,j,k))) : {
+ trace('$i, $j, and $k were passed into this nested monster');
+ }
+ default: trace("Shouldn't be printed");
+ }
+ /*
+ Check out "generalized algebraic data types" (GADT) for more details
+ on why these are so great.
+ */
+ }
+}
+
+class TypedefsAndStructuralTypes {
+ public static function example(){
+ /*
+ Here we're going to use typedef types, instead of base types.
+ At the top we've declared the type "FooString" to mean a "String" type.
+ */
+ var t1:FooString = "some string";
+
+ /*
+ We can use typedefs for "structural types" as well. These types are
+ defined by their field structure, not by class inheritance. Here's
+ an anonymous object with a String field named "foo":
+ */
+
+ var anon_obj = { foo: 'hi' };
+
+ /*
+ The anon_obj variable doesn't have a type declared, and is an
+ anonymous object according to the compiler. However, remember back at
+ the top where we declared the FooObj typedef? Since anon_obj matches
+ that structure, we can use it anywhere that a "FooObject" type is
+ expected.
+ */
+
+ var f = function(fo:FooObject){
+ trace('$fo was passed in to this function');
+ }
+ f(anon_obj); // call the FooObject signature function with anon_obj.
+
+ /*
+ Note that typedefs can have optional fields as well, marked with "?"
+
+ typedef OptionalFooObj = {
+ ?optionalString: String,
+ requiredInt: Int
+ }
+ */
+
+ /*
+ Typedefs work well with conditional compilation. For instance,
+ we could have included this at the top of the file:
+
+#if( js )
+ typedef Surface = js.html.CanvasRenderingContext2D;
+#elseif( nme )
+ typedef Surface = nme.display.Graphics;
+#elseif( !flash9 )
+ typedef Surface = flash8.MovieClip;
+#elseif( java )
+ typedef Surface = java.awt.geom.GeneralPath;
+#end
+
+ That would give us a single "Surface" type to work with across
+ all of those platforms.
+ */
+ }
+}
+
+class UsingExample {
+ public static function example() {
+
+ /*
+ The "using" import keyword is a special type of class import that
+ alters the behavior of any static methods in the class.
+
+ In this file, we've applied "using" to "StringTools", which contains
+ a number of static methods for dealing with String types.
+ */
+ trace(StringTools.endsWith("foobar", "bar") + " should be true!");
+
+ /*
+ With a "using" import, the first argument type is extended with the
+ method. What does that mean? Well, since "endsWith" has a first
+ argument type of "String", that means all String types now have the
+ "endsWith" method:
+ */
+ trace("foobar".endsWith("bar") + " should be true!");
+
+ /*
+ This technique enables a good deal of expression for certain types,
+ while limiting the scope of modifications to a single file.
+
+ Note that the String instance is *not* modified in the run time.
+ The newly attached method is not really part of the attached
+ instance, and the compiler still generates code equivalent to a
+ static method.
+ */
+ }
+
+}
+
+```
+
+We're still only scratching the surface here of what Haxe can do. For a formal
+overiew of all Haxe features, checkout the [online
+manual](http://haxe.org/manual), the [online api](http://api.haxe.org/), and
+"haxelib", the [haxe library repo] (http://lib.haxe.org/).
+
+For more advanced topics, consider checking out:
+
+* [Abstract types](http://haxe.org/manual/abstracts)
+* [Macros](http://haxe.org/manual/macros), and [Compiler Macros](http://haxe.org/manual/macros_compiler)
+* [Tips and Tricks](http://haxe.org/manual/tips_and_tricks)
+
+
+Finally, please join us on [the mailing list](https://groups.google.com/forum/#!forum/haxelang), on IRC [#haxe on
+freenode](http://webchat.freenode.net/), or on
+[Google+](https://plus.google.com/communities/103302587329918132234).
+
+