summaryrefslogtreecommitdiffhomepage
path: root/julia.html.markdown
diff options
context:
space:
mode:
Diffstat (limited to 'julia.html.markdown')
-rw-r--r--julia.html.markdown44
1 files changed, 31 insertions, 13 deletions
diff --git a/julia.html.markdown b/julia.html.markdown
index 3a52018c..c5089dc3 100644
--- a/julia.html.markdown
+++ b/julia.html.markdown
@@ -8,13 +8,13 @@ filename: learnjulia.jl
Julia is a new homoiconic functional language focused on technical computing.
While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python.
-This is based on the current development version of Julia, as of October 18th, 2013.
+This is based on Julia 0.3.
```ruby
# Single line comments start with a hash (pound) symbol.
#= Multiline comments can be written
- by putting '#=' before the text and '=#'
+ by putting '#=' before the text and '=#'
after the text. They can also be nested.
=#
@@ -81,17 +81,20 @@ false
# Strings are created with "
"This is a string."
+# Julia has several types of strings, including ASCIIString and UTF8String.
+# More on this in the Types section.
+
# Character literals are written with '
'a'
-# A string can be indexed like an array of characters
+# Some strings can be indexed like an array of characters
"This is a string"[1] # => 'T' # Julia indexes from 1
# However, this is will not work well for UTF8 strings,
# so iterating over strings is recommended (map, for loops, etc).
# $ can be used for string interpolation:
"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
-# You can put any Julia expression inside the parenthesis.
+# You can put any Julia expression inside the parentheses.
# Another way to format strings is the printf macro.
@printf "%d is less than %f" 4.5 5.3 # 5 is less than 5.300000
@@ -190,7 +193,7 @@ end
# inside the julia folder to find these files.
# You can initialize arrays from ranges
-a = [1:5] # => 5-element Int64 Array: [1,2,3,4,5]
+a = [1:5;] # => 5-element Int64 Array: [1,2,3,4,5]
# You can look at ranges with slice syntax.
a[1:3] # => [1, 2, 3]
@@ -264,7 +267,7 @@ in(("two", 3), filled_dict) # => false
haskey(filled_dict, "one") # => true
haskey(filled_dict, 1) # => false
-# Trying to look up a non-existant key will raise an error
+# Trying to look up a non-existent key will raise an error
try
filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489
catch e
@@ -314,7 +317,7 @@ end
# For loops iterate over iterables.
-# Iterable types include Range, Array, Set, Dict, and String.
+# Iterable types include Range, Array, Set, Dict, and AbstractString.
for animal=["dog", "cat", "mouse"]
println("$animal is a mammal")
# You can use $ to interpolate variables or expression into strings
@@ -537,6 +540,17 @@ subtypes(Number) # => 6-element Array{Any,1}:
# Real
subtypes(Cat) # => 0-element Array{Any,1}
+# AbstractString, as the name implies, is also an abstract type
+subtypes(AbstractString) # 8-element Array{Any,1}:
+ # Base.SubstitutionString{T<:AbstractString}
+ # DirectIndexString
+ # RepString
+ # RevString{T<:AbstractString}
+ # RopeString
+ # SubString{T<:AbstractString}
+ # UTF16String
+ # UTF8String
+
# Every type has a super type; use the `super` function to get it.
typeof(5) # => Int64
super(Int64) # => Signed
@@ -546,17 +560,21 @@ super(Number) # => Any
super(super(Signed)) # => Number
super(Any) # => Any
# All of these type, except for Int64, are abstract.
+typeof("fire") # => ASCIIString
+super(ASCIIString) # => DirectIndexString
+super(DirectIndexString) # => AbstractString
+# Likewise here with ASCIIString
# <: is the subtyping operator
type Lion <: Cat # Lion is a subtype of Cat
mane_color
- roar::String
+ roar::AbstractString
end
# You can define more constructors for your type
# Just define a function of the same name as the type
# and call an existing constructor to get a value of the correct type
-Lion(roar::String) = Lion("green",roar)
+Lion(roar::AbstractString) = Lion("green",roar)
# This is an outer constructor because it's outside the type definition
type Panther <: Cat # Panther is also a subtype of Cat
@@ -670,7 +688,7 @@ square_area(l) = l * l # square_area (generic function with 1 method)
square_area(5) #25
# What happens when we feed square_area an integer?
-code_native(square_area, (Int32,))
+code_native(square_area, (Int32,))
# .section __TEXT,__text,regular,pure_instructions
# Filename: none
# Source line: 1 # Prologue
@@ -703,10 +721,10 @@ code_native(square_area, (Float64,))
# vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX)
# pop RBP
# ret
- #
+ #
# Note that julia will use floating point instructions if any of the
# arguements are floats.
-# Let's calculate the area of a circle
+# Let's calculate the area of a circle
circle_area(r) = pi * r * r # circle_area (generic function with 1 method)
circle_area(5) # 78.53981633974483
@@ -737,7 +755,7 @@ code_native(circle_area, (Float64,))
# vmulsd XMM0, XMM1, XMM0
# pop RBP
# ret
- #
+ #
```
## Further Reading