diff options
Diffstat (limited to 'julia.html.markdown')
| -rw-r--r-- | julia.html.markdown | 825 | 
1 files changed, 462 insertions, 363 deletions
| diff --git a/julia.html.markdown b/julia.html.markdown index 5b3f6fd8..4d8eb497 100644 --- a/julia.html.markdown +++ b/julia.html.markdown @@ -2,17 +2,18 @@  language: Julia  contributors:      - ["Leah Hanson", "http://leahhanson.us"] -    - ["Pranit Bauva", "http://github.com/pranitbauva1997"] +    - ["Pranit Bauva", "https://github.com/pranitbauva1997"] +    - ["Daniel YC Lin", "https://github.com/dlintw"]  filename: learnjulia.jl  ---  Julia is a new homoiconic functional language focused on technical computing. -While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python. +While having the full power of homoiconic macros, first-class functions, +and low-level control, Julia is as easy to learn and use as Python. -This is based on Julia 0.4. - -```ruby +This is based on Julia version 1.0.0. +```julia  # Single line comments start with a hash (pound) symbol.  #= Multiline comments can be written     by putting '#=' before the text  and '=#' @@ -26,38 +27,45 @@ This is based on Julia 0.4.  # Everything in Julia is an expression.  # There are several basic types of numbers. -3 # => 3 (Int64) -3.2 # => 3.2 (Float64) -2 + 1im # => 2 + 1im (Complex{Int64}) -2//3 # => 2//3 (Rational{Int64}) +typeof(3)       # => Int64 +typeof(3.2)     # => Float64 +typeof(2 + 1im) # => Complex{Int64} +typeof(2 // 3)  # => Rational{Int64}  # All of the normal infix operators are available. -1 + 1 # => 2 -8 - 1 # => 7 -10 * 2 # => 20 -35 / 5 # => 7.0 -5 / 2 # => 2.5 # dividing an Int by an Int always results in a Float -div(5, 2) # => 2 # for a truncated result, use div -5 \ 35 # => 7.0 -2 ^ 2 # => 4 # power, not bitwise xor -12 % 10 # => 2 +1 + 1      # => 2 +8 - 1      # => 7 +10 * 2     # => 20 +35 / 5     # => 7.0 +10 / 2     # => 5.0  # dividing integers always results in a Float64 +div(5, 2)  # => 2    # for a truncated result, use div +5 \ 35     # => 7.0 +2^2        # => 4    # power, not bitwise xor +12 % 10    # => 2  # Enforce precedence with parentheses -(1 + 3) * 2 # => 8 +(1 + 3) * 2  # => 8 + +# Julia (unlike Python for instance) has integer under/overflow +10^19      # => -8446744073709551616 +# use bigint or floating point to avoid this +big(10)^19 # => 10000000000000000000 +1e19       # => 1.0e19 +10.0^19    # => 1.0e19  # Bitwise Operators -~2 # => -3   # bitwise not -3 & 5 # => 1 # bitwise and -2 | 4 # => 6 # bitwise or -2 $ 4 # => 6 # bitwise xor -2 >>> 1 # => 1 # logical shift right -2 >> 1  # => 1 # arithmetic shift right -2 << 1  # => 4 # logical/arithmetic shift left - -# You can use the bits function to see the binary representation of a number. -bits(12345) +~2         # => -3 # bitwise not +3 & 5      # => 1  # bitwise and +2 | 4      # => 6  # bitwise or +xor(2, 4)  # => 6  # bitwise xor +2 >>> 1    # => 1  # logical shift right +2 >> 1     # => 1  # arithmetic shift right +2 << 1     # => 4  # logical/arithmetic shift left + +# Use the bitstring function to see the binary representation of a number. +bitstring(12345)  # => "0000000000000000000000000000000000000000000000000011000000111001" -bits(12345.0) +bitstring(12345.0)  # => "0100000011001000000111001000000000000000000000000000000000000000"  # Boolean values are primitives @@ -65,72 +73,75 @@ true  false  # Boolean operators -!true # => false -!false # => true -1 == 1 # => true -2 == 1 # => false -1 != 1 # => false -2 != 1 # => true -1 < 10 # => true -1 > 10 # => false -2 <= 2 # => true -2 >= 2 # => true -# Comparisons can be chained -1 < 2 < 3 # => true -2 < 3 < 2 # => false +!true   # => false +!false  # => true +1 == 1  # => true +2 == 1  # => false +1 != 1  # => false +2 != 1  # => true +1 < 10  # => true +1 > 10  # => false +2 <= 2  # => true +2 >= 2  # => true +# Comparisons can be chained, like in Python but unlike many other languages +1 < 2 < 3  # => true +2 < 3 < 2  # => false  # Strings are created with "  "This is a string." -# Julia has several types of strings, including ASCIIString and UTF8String. -# More on this in the Types section. -  # Character literals are written with '  'a' -# Some strings can be indexed like an array of characters -"This is a string"[1] # => 'T' # Julia indexes from 1 -# However, this is will not work well for UTF8 strings, -# so iterating over strings is recommended (map, for loops, etc). +# Strings are UTF8 encoded, so strings like "π" or "☃" are not directly equivalent +# to an array of single characters. +# Only if they contain only ASCII characters can they be safely indexed. +ascii("This is a string")[1]    # => 'T' +# => 'T': ASCII/Unicode U+0054 (category Lu: Letter, uppercase) +# Beware, Julia indexes everything from 1 (like MATLAB), not 0 (like most languages). +# Otherwise, iterating over strings is recommended (map, for loops, etc). -# $ can be used for string interpolation: +# String can be compared lexicographically, in dictionnary order: +"good" > "bye"   # => true +"good" == "good" # => true +"1 + 2 = 3" == "1 + 2 = $(1 + 2)" # => true + +# $(..) can be used for string interpolation:  "2 + 2 = $(2 + 2)" # => "2 + 2 = 4"  # You can put any Julia expression inside the parentheses. -# Another way to format strings is the printf macro. -@printf "%d is less than %f" 4.5 5.3 # 5 is less than 5.300000 -  # Printing is easy -println("I'm Julia. Nice to meet you!") +println("I'm Julia. Nice to meet you!")  # => I'm Julia. Nice to meet you! + +# Another way to format strings is the printf macro from the stdlib Printf. +using Printf   # this is how you load (or import) a module +@printf "%d is less than %f\n" 4.5 5.3   # => 5 is less than 5.300000 -# String can be compared lexicographically -"good" > "bye" # => true -"good" == "good" # => true -"1 + 2 = 3" == "1 + 2 = $(1+2)" # => true  ####################################################  ## 2. Variables and Collections  ####################################################  # You don't declare variables before assigning to them. -some_var = 5 # => 5 -some_var # => 5 +someVar = 5  # => 5 +someVar      # => 5  # Accessing a previously unassigned variable is an error  try -    some_other_var # => ERROR: some_other_var not defined +    someOtherVar  # => ERROR: UndefVarError: someOtherVar not defined  catch e      println(e)  end  # Variable names start with a letter or underscore.  # After that, you can use letters, digits, underscores, and exclamation points. -SomeOtherVar123! = 6 # => 6 +SomeOtherVar123! = 6  # => 6  # You can also use certain unicode characters -☃ = 8 # => 8 -# These are especially handy for mathematical notation -2 * π # => 6.283185307179586 +# here ☃ is a Unicode 'snowman' characters, see http://emojipedia.org/%E2%98%83%EF%B8%8F if it displays wrongly here +☃ = 8  # => 8 +# These are especially handy for mathematical notation, like the constant π +2 * π  # => 6.283185307179586  # A note on naming conventions in Julia:  # @@ -147,250 +158,283 @@ SomeOtherVar123! = 6 # => 6  #   functions are sometimes called mutating functions or in-place functions.  # Arrays store a sequence of values indexed by integers 1 through n: -a = Int64[] # => 0-element Int64 Array +a = Int64[] # => 0-element Array{Int64,1}  # 1-dimensional array literals can be written with comma-separated values. -b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6] -b = [4; 5; 6] # => 3-element Int64 Array: [4, 5, 6] -b[1] # => 4 -b[end] # => 6 +b = [4, 5, 6] # => 3-element Array{Int64,1}: [4, 5, 6] +b = [4; 5; 6] # => 3-element Array{Int64,1}: [4, 5, 6] +b[1]    # => 4 +b[end]  # => 6  # 2-dimensional arrays use space-separated values and semicolon-separated rows. -matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4] +matrix = [1 2; 3 4] # => 2×2 Array{Int64,2}: [1 2; 3 4] -# Arrays of a particular Type -b = Int8[4, 5, 6] # => 3-element Int8 Array: [4, 5, 6] +# Arrays of a particular type +b = Int8[4, 5, 6] # => 3-element Array{Int8,1}: [4, 5, 6]  # Add stuff to the end of a list with push! and append! -push!(a,1)     # => [1] -push!(a,2)     # => [1,2] -push!(a,4)     # => [1,2,4] -push!(a,3)     # => [1,2,4,3] -append!(a,b) # => [1,2,4,3,4,5,6] +# By convention, the exclamation mark '!' is appended to names of functions +# that modify their arguments +push!(a, 1)    # => [1] +push!(a, 2)    # => [1,2] +push!(a, 4)    # => [1,2,4] +push!(a, 3)    # => [1,2,4,3] +append!(a, b)  # => [1,2,4,3,4,5,6]  # Remove from the end with pop -pop!(b)        # => 6 and b is now [4,5] +pop!(b)  # => 6 +b # => [4,5]  # Let's put it back -push!(b,6)   # b is now [4,5,6] again. +push!(b, 6)  # => [4,5,6] +b # => [4,5,6] -a[1] # => 1 # remember that Julia indexes from 1, not 0! +a[1]  # => 1  # remember that Julia indexes from 1, not 0!  # end is a shorthand for the last index. It can be used in any  # indexing expression -a[end] # => 6 +a[end]  # => 6 -# we also have shift and unshift -shift!(a) # => 1 and a is now [2,4,3,4,5,6] -unshift!(a,7) # => [7,2,4,3,4,5,6] +# we also have popfirst! and pushfirst! +popfirst!(a)  # => 1  +a # => [2,4,3,4,5,6] +pushfirst!(a, 7)  # => [7,2,4,3,4,5,6] +a # => [7,2,4,3,4,5,6]  # Function names that end in exclamations points indicate that they modify  # their argument. -arr = [5,4,6] # => 3-element Int64 Array: [5,4,6] -sort(arr) # => [4,5,6]; arr is still [5,4,6] -sort!(arr) # => [4,5,6]; arr is now [4,5,6] +arr = [5,4,6]  # => 3-element Array{Int64,1}: [5,4,6] +sort(arr)      # => [4,5,6] +arr            # => [5,4,6] +sort!(arr)     # => [4,5,6] +arr            # => [4,5,6]  # Looking out of bounds is a BoundsError  try -    a[0] # => ERROR: BoundsError() in getindex at array.jl:270 -    a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270 +    a[0]  +    # => ERROR: BoundsError: attempt to access 7-element Array{Int64,1} at  +    # index [0] +    # => Stacktrace: +    # =>  [1] getindex(::Array{Int64,1}, ::Int64) at .\array.jl:731 +    # =>  [2] top-level scope at none:0 +    # =>  [3] ... +    # => in expression starting at ...\LearnJulia.jl:180 +    a[end + 1]  +    # => ERROR: BoundsError: attempt to access 7-element Array{Int64,1} at  +    # index [8] +    # => Stacktrace: +    # =>  [1] getindex(::Array{Int64,1}, ::Int64) at .\array.jl:731 +    # =>  [2] top-level scope at none:0 +    # =>  [3] ... +    # => in expression starting at ...\LearnJulia.jl:188  catch e      println(e)  end  # Errors list the line and file they came from, even if it's in the standard -# library. If you built Julia from source, you can look in the folder base -# inside the julia folder to find these files. +# library. You can look in the folder share/julia inside the julia folder to +# find these files.  # You can initialize arrays from ranges -a = [1:5;] # => 5-element Int64 Array: [1,2,3,4,5] +a = [1:5;]  # => 5-element Array{Int64,1}: [1,2,3,4,5] +a2 = [1:5]  # => 1-element Array{UnitRange{Int64},1}: [1:5]  # You can look at ranges with slice syntax. -a[1:3] # => [1, 2, 3] -a[2:end] # => [2, 3, 4, 5] +a[1:3]    # => [1, 2, 3] +a[2:end]  # => [2, 3, 4, 5]  # Remove elements from an array by index with splice!  arr = [3,4,5] -splice!(arr,2) # => 4 ; arr is now [3,5] +splice!(arr, 2) # => 4  +arr # => [3,5]  # Concatenate lists with append!  b = [1,2,3] -append!(a,b) # Now a is [1, 2, 3, 4, 5, 1, 2, 3] +append!(a, b) # => [1, 2, 3, 4, 5, 1, 2, 3] +a # => [1, 2, 3, 4, 5, 1, 2, 3]  # Check for existence in a list with in -in(1, a) # => true +in(1, a)  # => true  # Examine the length with length -length(a) # => 8 +length(a)  # => 8  # Tuples are immutable. -tup = (1, 2, 3) # => (1,2,3) # an (Int64,Int64,Int64) tuple. +tup = (1, 2, 3)  # => (1,2,3) +typeof(tup) # => Tuple{Int64,Int64,Int64}  tup[1] # => 1 -try: -    tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64) +try +    tup[1] = 3   +    # => ERROR: MethodError: no method matching  +    # setindex!(::Tuple{Int64,Int64,Int64}, ::Int64, ::Int64)  catch e      println(e)  end -# Many list functions also work on tuples +# Many array functions also work on tuples  length(tup) # => 3 -tup[1:2] # => (1,2) -in(2, tup) # => true +tup[1:2]    # => (1,2) +in(2, tup)  # => true  # You can unpack tuples into variables -a, b, c = (1, 2, 3) # => (1,2,3)  # a is now 1, b is now 2 and c is now 3 +a, b, c = (1, 2, 3)  # => (1,2,3)   +a  # => 1 +b  # => 2 +c  # => 3  # Tuples are created even if you leave out the parentheses -d, e, f = 4, 5, 6 # => (4,5,6) +d, e, f = 4, 5, 6  # => (4,5,6) +d  # => 4 +e  # => 5 +f  # => 6  # A 1-element tuple is distinct from the value it contains  (1,) == 1 # => false -(1) == 1 # => true +(1) == 1  # => true  # Look how easy it is to swap two values -e, d = d, e  # => (5,4) # d is now 5 and e is now 4 - +e, d = d, e  # => (5,4)  +d  # => 5 +e  # => 4  # Dictionaries store mappings -empty_dict = Dict() # => Dict{Any,Any}() +emptyDict = Dict()  # => Dict{Any,Any} with 0 entries  # You can create a dictionary using a literal -filled_dict = Dict("one"=> 1, "two"=> 2, "three"=> 3) -# => Dict{ASCIIString,Int64} +filledDict = Dict("one" => 1, "two" => 2, "three" => 3) +# => Dict{String,Int64} with 3 entries: +# =>  "two" => 2, "one" => 1, "three" => 3  # Look up values with [] -filled_dict["one"] # => 1 +filledDict["one"]  # => 1  # Get all keys -keys(filled_dict) -# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2]) +keys(filledDict) +# => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys: +# =>  "two", "one", "three"  # Note - dictionary keys are not sorted or in the order you inserted them.  # Get all values -values(filled_dict) -# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2]) +values(filledDict) +# => Base.ValueIterator for a Dict{String,Int64} with 3 entries. Values:  +# =>  2, 1, 3  # Note - Same as above regarding key ordering.  # Check for existence of keys in a dictionary with in, haskey -in(("one" => 1), filled_dict) # => true -in(("two" => 3), filled_dict) # => false -haskey(filled_dict, "one") # => true -haskey(filled_dict, 1) # => false +in(("one" => 1), filledDict)  # => true +in(("two" => 3), filledDict)  # => false +haskey(filledDict, "one")     # => true +haskey(filledDict, 1)         # => false  # Trying to look up a non-existent key will raise an error  try -    filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489 +    filledDict["four"]  # => ERROR: KeyError: key "four" not found  catch e      println(e)  end  # Use the get method to avoid that error by providing a default value -# get(dictionary,key,default_value) -get(filled_dict,"one",4) # => 1 -get(filled_dict,"four",4) # => 4 +# get(dictionary, key, defaultValue) +get(filledDict, "one", 4)   # => 1 +get(filledDict, "four", 4)  # => 4  # Use Sets to represent collections of unordered, unique values -empty_set = Set() # => Set{Any}() +emptySet = Set()  # => Set(Any[])  # Initialize a set with values -filled_set = Set([1,2,2,3,4]) # => Set{Int64}(1,2,3,4) +filledSet = Set([1, 2, 2, 3, 4])  # => Set([4, 2, 3, 1])  # Add more values to a set -push!(filled_set,5) # => Set{Int64}(5,4,2,3,1) +push!(filledSet, 5)  # => Set([4, 2, 3, 5, 1])  # Check if the values are in the set -in(2, filled_set) # => true -in(10, filled_set) # => false +in(2, filledSet)   # => true +in(10, filledSet)  # => false  # There are functions for set intersection, union, and difference. -other_set = Set([3, 4, 5, 6]) # => Set{Int64}(6,4,5,3) -intersect(filled_set, other_set) # => Set{Int64}(3,4,5) -union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6) -setdiff(Set([1,2,3,4]),Set([2,3,5])) # => Set{Int64}(1,4) - +otherSet = Set([3, 4, 5, 6])         # => Set([4, 3, 5, 6]) +intersect(filledSet, otherSet)      # => Set([4, 3, 5]) +union(filledSet, otherSet)          # => Set([4, 2, 3, 5, 6, 1]) +setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])  ####################################################  ## 3. Control Flow  ####################################################  # Let's make a variable -some_var = 5 +someVar = 5  # Here is an if statement. Indentation is not meaningful in Julia. -if some_var > 10 -    println("some_var is totally bigger than 10.") -elseif some_var < 10    # This elseif clause is optional. -    println("some_var is smaller than 10.") +if someVar > 10 +    println("someVar is totally bigger than 10.") +elseif someVar < 10    # This elseif clause is optional. +    println("someVar is smaller than 10.")  else                    # The else clause is optional too. -    println("some_var is indeed 10.") +    println("someVar is indeed 10.")  end  # => prints "some var is smaller than 10" -  # For loops iterate over iterables.  # Iterable types include Range, Array, Set, Dict, and AbstractString. -for animal=["dog", "cat", "mouse"] +for animal = ["dog", "cat", "mouse"]      println("$animal is a mammal") -    # You can use $ to interpolate variables or expression into strings +    # You can use $ to interpolate variables or expression into strings. +    # In this special case, no need for parenthesis: $animal and $(animal) give the same  end -# prints: -#    dog is a mammal -#    cat is a mammal -#    mouse is a mammal +# => dog is a mammal +# => cat is a mammal +# => mouse is a mammal  # You can use 'in' instead of '='.  for animal in ["dog", "cat", "mouse"]      println("$animal is a mammal")  end -# prints: -#    dog is a mammal -#    cat is a mammal -#    mouse is a mammal +# => dog is a mammal +# => cat is a mammal +# => mouse is a mammal -for a in Dict("dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal") -    println("$(a[1]) is a $(a[2])") +for pair in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal") +    from, to = pair +    println("$from is a $to")  end -# prints: -#    dog is a mammal -#    cat is a mammal -#    mouse is a mammal +# => mouse is a mammal +# => cat is a mammal +# => dog is a mammal -for (k,v) in Dict("dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal") +for (k, v) in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal")      println("$k is a $v")  end -# prints: -#    dog is a mammal -#    cat is a mammal -#    mouse is a mammal +# => mouse is a mammal +# => cat is a mammal +# => dog is a mammal  # While loops loop while a condition is true -x = 0 -while x < 4 -    println(x) -    x += 1  # Shorthand for x = x + 1 +let x = 0 +    while x < 4 +        println(x) +        x += 1  # Shorthand for in place increment: x = x + 1 +    end  end -# prints: -#   0 -#   1 -#   2 -#   3 +# => 0 +# => 1 +# => 2 +# => 3  # Handle exceptions with a try/catch block  try -   error("help") +    error("help")  catch e -   println("caught it $e") +    println("caught it $e")  end  # => caught it ErrorException("help") -  ####################################################  ## 4. Functions  ####################################################  # The keyword 'function' creates new functions -#function name(arglist) -#  body... -#end +# function name(arglist) +#   body... +# end  function add(x, y)      println("x is $x and y is $y") @@ -398,15 +442,17 @@ function add(x, y)      x + y  end -add(5, 6) # => 11 after printing out "x is 5 and y is 6" +add(5, 6) +# => x is 5 and y is 6 +# => 11  # Compact assignment of functions -f_add(x, y) = x + y # => "f (generic function with 1 method)" -f_add(3, 4) # => 7 +f_add(x, y) = x + y  # => f_add (generic function with 1 method) +f_add(3, 4)  # => 7  # Function can also return multiple values as tuple -f(x, y) = x + y, x - y -f(3, 4) # => (7, -1) +fn(x, y) = x + y, x - y # => fn (generic function with 1 method) +fn(3, 4)  # => (7, -1)  # You can define functions that take a variable number of  # positional arguments @@ -416,54 +462,56 @@ function varargs(args...)  end  # => varargs (generic function with 1 method) -varargs(1,2,3) # => (1,2,3) +varargs(1, 2, 3)  # => (1,2,3)  # The ... is called a splat.  # We just used it in a function definition.  # It can also be used in a function call,  # where it will splat an Array or Tuple's contents into the argument list. -add([5,6]...) # this is equivalent to add(5,6) +add([5,6]...)  # this is equivalent to add(5,6) -x = (5,6)     # => (5,6) -add(x...)     # this is equivalent to add(5,6) +x = (5, 6)  # => (5,6) +add(x...)  # this is equivalent to add(5,6)  # You can define functions with optional positional arguments -function defaults(a,b,x=5,y=6) +function defaults(a, b, x=5, y=6)      return "$a $b and $x $y"  end +# => defaults (generic function with 3 methods) -defaults('h','g') # => "h g and 5 6" -defaults('h','g','j') # => "h g and j 6" -defaults('h','g','j','k') # => "h g and j k" +defaults('h', 'g')  # => "h g and 5 6" +defaults('h', 'g', 'j')  # => "h g and j 6" +defaults('h', 'g', 'j', 'k')  # => "h g and j k"  try -    defaults('h') # => ERROR: no method defaults(Char,) -    defaults() # => ERROR: no methods defaults() +    defaults('h')  # => ERROR: MethodError: no method matching defaults(::Char) +    defaults()  # => ERROR: MethodError: no method matching defaults()  catch e      println(e)  end  # You can define functions that take keyword arguments -function keyword_args(;k1=4,name2="hello") # note the ; -    return Dict("k1"=>k1,"name2"=>name2) +function keyword_args(;k1=4, name2="hello")  # note the ; +    return Dict("k1" => k1, "name2" => name2)  end +# => keyword_args (generic function with 1 method) -keyword_args(name2="ness") # => ["name2"=>"ness","k1"=>4] -keyword_args(k1="mine") # => ["k1"=>"mine","name2"=>"hello"] -keyword_args() # => ["name2"=>"hello","k1"=>4] +keyword_args(name2="ness")  # => ["name2"=>"ness", "k1"=>4] +keyword_args(k1="mine")     # => ["name2"=>"hello", "k1"=>"mine"] +keyword_args()              # => ["name2"=>"hello", "k1"=>4]  # You can combine all kinds of arguments in the same function -function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo") -    println("normal arg: $normal_arg") -    println("optional arg: $optional_positional_arg") -    println("keyword arg: $keyword_arg") +function all_the_args(normalArg, optionalPositionalArg=2; keywordArg="foo") +    println("normal arg: $normalArg") +    println("optional arg: $optionalPositionalArg") +    println("keyword arg: $keywordArg")  end +# => all_the_args (generic function with 2 methods) -all_the_args(1, 3, keyword_arg=4) -# prints: -#   normal arg: 1 -#   optional arg: 3 -#   keyword arg: 4 +all_the_args(1, 3, keywordArg=4) +# => normal arg: 1 +# => optional arg: 3 +# => keyword arg: 4  # Julia has first class functions  function create_adder(x) @@ -472,14 +520,16 @@ function create_adder(x)      end      return adder  end +# => create_adder (generic function with 1 method)  # This is "stabby lambda syntax" for creating anonymous functions -(x -> x > 2)(3) # => true +(x -> x > 2)(3)  # => true  # This function is identical to create_adder implementation above.  function create_adder(x)      y -> x + y  end +# => create_adder (generic function with 1 method)  # You can also name the internal function, if you want  function create_adder(x) @@ -488,18 +538,21 @@ function create_adder(x)      end      adder  end +# => create_adder (generic function with 1 method) -add_10 = create_adder(10) +add_10 = create_adder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})  +                          # (generic function with 1 method)  add_10(3) # => 13  # There are built-in higher order functions -map(add_10, [1,2,3]) # => [11, 12, 13] -filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7] +map(add_10, [1,2,3])  # => [11, 12, 13] +filter(x -> x > 5, [3, 4, 5, 6, 7])  # => [6, 7] -# We can use list comprehensions for nicer maps -[add_10(i) for i=[1, 2, 3]] # => [11, 12, 13] -[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13] +# We can use list comprehensions +[add_10(i) for i = [1, 2, 3]]   # => [11, 12, 13] +[add_10(i) for i in [1, 2, 3]]  # => [11, 12, 13] +[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]  ####################################################  ## 5. Types @@ -508,11 +561,11 @@ filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]  # Julia has a type system.  # Every value has a type; variables do not have types themselves.  # You can use the `typeof` function to get the type of a value. -typeof(5) # => Int64 +typeof(5)  # => Int64  # Types are first-class values -typeof(Int64) # => DataType -typeof(DataType) # => DataType +typeof(Int64)     # => DataType +typeof(DataType)  # => DataType  # DataType is the type that represents types, including itself.  # Types are used for documentation, optimizations, and dispatch. @@ -520,80 +573,76 @@ typeof(DataType) # => DataType  # Users can define types  # They are like records or structs in other languages. -# New types are defined using the `type` keyword. +# New types are defined using the `struct` keyword. -# type Name +# struct Name  #   field::OptionalType  #   ...  # end -type Tiger -  taillength::Float64 -  coatcolor # not including a type annotation is the same as `::Any` +struct Tiger +    taillength::Float64 +    coatcolor  # not including a type annotation is the same as `::Any`  end  # The default constructor's arguments are the properties  # of the type, in the order they are listed in the definition -tigger = Tiger(3.5,"orange") # => Tiger(3.5,"orange") +tigger = Tiger(3.5, "orange")  # => Tiger(3.5,"orange")  # The type doubles as the constructor function for values of that type -sherekhan = typeof(tigger)(5.6,"fire") # => Tiger(5.6,"fire") +sherekhan = typeof(tigger)(5.6, "fire")  # => Tiger(5.6,"fire")  # These struct-style types are called concrete types  # They can be instantiated, but cannot have subtypes.  # The other kind of types is abstract types.  # abstract Name -abstract Cat # just a name and point in the type hierarchy +abstract type Cat end  # just a name and point in the type hierarchy  # Abstract types cannot be instantiated, but can have subtypes.  # For example, Number is an abstract type -subtypes(Number) # => 2-element Array{Any,1}: -                 #     Complex{T<:Real} -                 #     Real -subtypes(Cat) # => 0-element Array{Any,1} +subtypes(Number)  # => 2-element Array{Any,1}: +                  # =>  Complex +                  # =>  Real +subtypes(Cat)  # => 0-element Array{Any,1}  # AbstractString, as the name implies, is also an abstract type -subtypes(AbstractString)    # 8-element Array{Any,1}: -                            #  Base.SubstitutionString{T<:AbstractString} -                            #  DirectIndexString -                            #  RepString -                            #  RevString{T<:AbstractString} -                            #  RopeString -                            #  SubString{T<:AbstractString} -                            #  UTF16String -                            #  UTF8String - -# Every type has a super type; use the `super` function to get it. +subtypes(AbstractString)  # => 4-element Array{Any,1}: +                          # =>  String +                          # =>  SubString +                          # =>  SubstitutionString +                          # =>  Test.GenericString + +# Every type has a super type; use the `supertype` function to get it.  typeof(5) # => Int64 -super(Int64) # => Signed -super(Signed) # => Integer -super(Integer) # => Real -super(Real) # => Number -super(Number) # => Any -super(super(Signed)) # => Real -super(Any) # => Any +supertype(Int64)    # => Signed +supertype(Signed)   # => Integer +supertype(Integer)  # => Real +supertype(Real)     # => Number +supertype(Number)   # => Any +supertype(supertype(Signed))  # => Real +supertype(Any)      # => Any  # All of these type, except for Int64, are abstract. -typeof("fire") # => ASCIIString -super(ASCIIString) # => DirectIndexString -super(DirectIndexString) # => AbstractString -# Likewise here with ASCIIString +typeof("fire")      # => String +supertype(String)   # => AbstractString +# Likewise here with String +supertype(SubString)  # => AbstractString  # <: is the subtyping operator -type Lion <: Cat # Lion is a subtype of Cat -  mane_color -  roar::AbstractString +struct Lion <: Cat  # Lion is a subtype of Cat +    maneColor +    roar::AbstractString  end  # You can define more constructors for your type  # Just define a function of the same name as the type  # and call an existing constructor to get a value of the correct type -Lion(roar::AbstractString) = Lion("green",roar) +Lion(roar::AbstractString) = Lion("green", roar)  # This is an outer constructor because it's outside the type definition -type Panther <: Cat # Panther is also a subtype of Cat -  eye_color -  Panther() = new("green") -  # Panthers will only have this constructor, and no default constructor. +struct Panther <: Cat  # Panther is also a subtype of Cat +    eyeColor +    Panther() = new("green") +    # Panthers will only have this constructor, and no default constructor.  end  # Using inner constructors, like Panther does, gives you control  # over how values of the type can be created. @@ -611,35 +660,36 @@ end  # Definitions for Lion, Panther, Tiger  function meow(animal::Lion) -  animal.roar # access type properties using dot notation +    animal.roar  # access type properties using dot notation  end  function meow(animal::Panther) -  "grrr" +    "grrr"  end  function meow(animal::Tiger) -  "rawwwr" +    "rawwwr"  end  # Testing the meow function -meow(tigger) # => "rawwr" -meow(Lion("brown","ROAAR")) # => "ROAAR" +meow(tigger)  # => "rawwwr" +meow(Lion("brown", "ROAAR"))  # => "ROAAR"  meow(Panther()) # => "grrr"  # Review the local type hierarchy -issubtype(Tiger,Cat) # => false -issubtype(Lion,Cat) # => true -issubtype(Panther,Cat) # => true +Tiger   <: Cat  # => false +Lion    <: Cat  # => true +Panther <: Cat  # => true  # Defining a function that takes Cats  function pet_cat(cat::Cat) -  println("The cat says $(meow(cat))") +    println("The cat says $(meow(cat))")  end +# => pet_cat (generic function with 1 method) -pet_cat(Lion("42")) # => prints "The cat says 42" +pet_cat(Lion("42")) # => The cat says 42  try -    pet_cat(tigger) # => ERROR: no method pet_cat(Tiger,) +    pet_cat(tigger) # => ERROR: MethodError: no method matching pet_cat(::Tiger)  catch e      println(e)  end @@ -649,130 +699,179 @@ end  # In Julia, all of the argument types contribute to selecting the best method.  # Let's define a function with more arguments, so we can see the difference -function fight(t::Tiger,c::Cat) -  println("The $(t.coatcolor) tiger wins!") +function fight(t::Tiger, c::Cat) +    println("The $(t.coatcolor) tiger wins!")  end  # => fight (generic function with 1 method) -fight(tigger,Panther()) # => prints The orange tiger wins! -fight(tigger,Lion("ROAR")) # => prints The orange tiger wins! +fight(tigger, Panther())  # => The orange tiger wins! +fight(tigger, Lion("ROAR")) # => The orange tiger wins!  # Let's change the behavior when the Cat is specifically a Lion -fight(t::Tiger,l::Lion) = println("The $(l.mane_color)-maned lion wins!") +fight(t::Tiger, l::Lion) = println("The $(l.maneColor)-maned lion wins!")  # => fight (generic function with 2 methods) -fight(tigger,Panther()) # => prints The orange tiger wins! -fight(tigger,Lion("ROAR")) # => prints The green-maned lion wins! +fight(tigger, Panther())  # => The orange tiger wins! +fight(tigger, Lion("ROAR")) # => The green-maned lion wins!  # We don't need a Tiger in order to fight -fight(l::Lion,c::Cat) = println("The victorious cat says $(meow(c))") +fight(l::Lion, c::Cat) = println("The victorious cat says $(meow(c))")  # => fight (generic function with 3 methods) -fight(Lion("balooga!"),Panther()) # => prints The victorious cat says grrr +fight(Lion("balooga!"), Panther())  # => The victorious cat says grrr  try -  fight(Panther(),Lion("RAWR")) # => ERROR: no method fight(Panther,Lion) -catch +    fight(Panther(), Lion("RAWR"))   +    # => ERROR: MethodError: no method matching fight(::Panther, ::Lion) +    # => Closest candidates are: +    # =>   fight(::Tiger, ::Lion) at ... +    # =>   fight(::Tiger, ::Cat) at ... +    # =>   fight(::Lion, ::Cat) at ... +    # => ... +catch e +    println(e)  end  # Also let the cat go first -fight(c::Cat,l::Lion) = println("The cat beats the Lion") -# => Warning: New definition -#    fight(Cat,Lion) at none:1 -# is ambiguous with -#    fight(Lion,Cat) at none:2. -# Make sure -#    fight(Lion,Lion) -# is defined first. -#fight (generic function with 4 methods) +fight(c::Cat, l::Lion) = println("The cat beats the Lion") +# => fight (generic function with 4 methods)  # This warning is because it's unclear which fight will be called in: -fight(Lion("RAR"),Lion("brown","rarrr")) # => prints The victorious cat says rarrr +try +    fight(Lion("RAR"), Lion("brown", "rarrr")) +    # => ERROR: MethodError: fight(::Lion, ::Lion) is ambiguous. Candidates: +    # =>   fight(c::Cat, l::Lion) in Main at ... +    # =>   fight(l::Lion, c::Cat) in Main at ... +    # => Possible fix, define +    # =>   fight(::Lion, ::Lion) +    # => ... +catch e +    println(e) +end  # The result may be different in other versions of Julia -fight(l::Lion,l2::Lion) = println("The lions come to a tie") -fight(Lion("RAR"),Lion("brown","rarrr")) # => prints The lions come to a tie +fight(l::Lion, l2::Lion) = println("The lions come to a tie")  +# => fight (generic function with 5 methods) +fight(Lion("RAR"), Lion("brown", "rarrr"))  # => The lions come to a tie  # Under the hood  # You can take a look at the llvm  and the assembly code generated. -square_area(l) = l * l      # square_area (generic function with 1 method) +square_area(l) = l * l  # square_area (generic function with 1 method) -square_area(5) #25 +square_area(5)  # => 25  # What happens when we feed square_area an integer? -code_native(square_area, (Int32,)) -	#	    .section    __TEXT,__text,regular,pure_instructions -	#	Filename: none -	#	Source line: 1              # Prologue -	#	    push    RBP -	#	    mov RBP, RSP -	#	Source line: 1 -	#	    movsxd  RAX, EDI        # Fetch l from memory? -	#	    imul    RAX, RAX        # Square l and store the result in RAX -	#	    pop RBP                 # Restore old base pointer -	#	    ret                     # Result will still be in RAX - -code_native(square_area, (Float32,)) -	#	    .section    __TEXT,__text,regular,pure_instructions -	#	Filename: none -	#	Source line: 1 -	#	    push    RBP -	#	    mov RBP, RSP -	#	Source line: 1 -	#	    vmulss  XMM0, XMM0, XMM0  # Scalar single precision multiply (AVX) -	#	    pop RBP -	#	    ret - -code_native(square_area, (Float64,)) -	#	    .section    __TEXT,__text,regular,pure_instructions -	#	Filename: none -	#	Source line: 1 -	#	    push    RBP -	#	    mov RBP, RSP -	#	Source line: 1 -	#	    vmulsd  XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX) -	#	    pop RBP -	#	    ret -	# +code_native(square_area, (Int32,), syntax = :intel) +	#         .text +	# ; Function square_area { +	# ; Location: REPL[116]:1       # Prologue +	#         push    rbp +	#         mov     rbp, rsp +	# ; Function *; { +	# ; Location: int.jl:54 +	#         imul    ecx, ecx      # Square l and store the result in ECX +	# ;} +	#         mov     eax, ecx +	#         pop     rbp           # Restore old base pointer +	#         ret                   # Result will still be in EAX +	#         nop     dword ptr [rax + rax] +	# ;} + +code_native(square_area, (Float32,), syntax = :intel) +    #         .text +    # ; Function square_area { +    # ; Location: REPL[116]:1 +    #         push    rbp +    #         mov     rbp, rsp +    # ; Function *; { +    # ; Location: float.jl:398 +    #         vmulss  xmm0, xmm0, xmm0  # Scalar single precision multiply (AVX) +    # ;} +    #         pop     rbp +    #         ret +    #         nop     word ptr [rax + rax] +    # ;} + +code_native(square_area, (Float64,), syntax = :intel) +    #         .text +    # ; Function square_area { +    # ; Location: REPL[116]:1 +    #         push    rbp +    #         mov     rbp, rsp +    # ; Function *; { +    # ; Location: float.jl:399 +    #         vmulsd  xmm0, xmm0, xmm0  # Scalar double precision multiply (AVX) +    # ;} +    #         pop     rbp +    #         ret +    #         nop     word ptr [rax + rax] +    # ;} +  # Note that julia will use floating point instructions if any of the  # arguments are floats.  # Let's calculate the area of a circle  circle_area(r) = pi * r * r     # circle_area (generic function with 1 method) -circle_area(5)                  # 78.53981633974483 - -code_native(circle_area, (Int32,)) -	#	    .section    __TEXT,__text,regular,pure_instructions -	#	Filename: none -	#	Source line: 1 -	#	    push    RBP -	#	    mov RBP, RSP -	#	Source line: 1 -	#	    vcvtsi2sd   XMM0, XMM0, EDI          # Load integer (r) from memory -	#	    movabs  RAX, 4593140240              # Load pi -	#	    vmulsd  XMM1, XMM0, QWORD PTR [RAX]  # pi * r -	#	    vmulsd  XMM0, XMM0, XMM1             # (pi * r) * r -	#	    pop RBP -	#	    ret -	# - -code_native(circle_area, (Float64,)) -	#	    .section    __TEXT,__text,regular,pure_instructions -	#	Filename: none -	#	Source line: 1 -	#	    push    RBP -	#	    mov RBP, RSP -	#	    movabs  RAX, 4593140496 -	#	Source line: 1 -	#	    vmulsd  XMM1, XMM0, QWORD PTR [RAX] -	#	    vmulsd  XMM0, XMM1, XMM0 -	#	    pop RBP -	#	    ret -	# +circle_area(5)  # 78.53981633974483 + +code_native(circle_area, (Int32,), syntax = :intel) +    #         .text +    # ; Function circle_area { +    # ; Location: REPL[121]:1 +    #         push    rbp +    #         mov     rbp, rsp +    # ; Function *; { +    # ; Location: operators.jl:502 +    # ; Function *; { +    # ; Location: promotion.jl:314 +    # ; Function promote; { +    # ; Location: promotion.jl:284 +    # ; Function _promote; { +    # ; Location: promotion.jl:261 +    # ; Function convert; { +    # ; Location: number.jl:7 +    # ; Function Type; { +    # ; Location: float.jl:60 +    #         vcvtsi2sd       xmm0, xmm0, ecx     # Load integer (r) from memory +    #         movabs  rax, 497710928              # Load pi +    # ;}}}}} +    # ; Function *; { +    # ; Location: float.jl:399 +    #         vmulsd  xmm1, xmm0, qword ptr [rax] # pi * r +    #         vmulsd  xmm0, xmm1, xmm0            # (pi * r) * r +    # ;}} +    #         pop     rbp +    #         ret +    #         nop     dword ptr [rax] +    # ;} + +code_native(circle_area, (Float64,), syntax = :intel) +    #         .text +    # ; Function circle_area { +    # ; Location: REPL[121]:1 +    #         push    rbp +    #         mov     rbp, rsp +    #         movabs  rax, 497711048 +    # ; Function *; { +    # ; Location: operators.jl:502 +    # ; Function *; { +    # ; Location: promotion.jl:314 +    # ; Function *; { +    # ; Location: float.jl:399 +    #         vmulsd  xmm1, xmm0, qword ptr [rax] +    # ;}}} +    # ; Function *; { +    # ; Location: float.jl:399 +    #         vmulsd  xmm0, xmm1, xmm0 +    # ;} +    #         pop     rbp +    #         ret +    #         nop     dword ptr [rax + rax] +    # ;}  ```  ## Further Reading -You can get a lot more detail from [The Julia Manual](http://docs.julialang.org/en/latest/manual/) +You can get a lot more detail from the [Julia Documentation](https://docs.julialang.org/) -The best place to get help with Julia is the (very friendly) [mailing list](https://groups.google.com/forum/#!forum/julia-users). +The best place to get help with Julia is the (very friendly) [Discourse forum](https://discourse.julialang.org/). | 
