diff options
Diffstat (limited to 'julia.html.markdown')
-rw-r--r-- | julia.html.markdown | 36 |
1 files changed, 27 insertions, 9 deletions
diff --git a/julia.html.markdown b/julia.html.markdown index 5ccd6484..c5089dc3 100644 --- a/julia.html.markdown +++ b/julia.html.markdown @@ -14,7 +14,7 @@ This is based on Julia 0.3. # Single line comments start with a hash (pound) symbol. #= Multiline comments can be written - by putting '#=' before the text and '=#' + by putting '#=' before the text and '=#' after the text. They can also be nested. =# @@ -81,10 +81,13 @@ false # Strings are created with " "This is a string." +# Julia has several types of strings, including ASCIIString and UTF8String. +# More on this in the Types section. + # Character literals are written with ' 'a' -# A string can be indexed like an array of characters +# Some strings can be indexed like an array of characters "This is a string"[1] # => 'T' # Julia indexes from 1 # However, this is will not work well for UTF8 strings, # so iterating over strings is recommended (map, for loops, etc). @@ -314,7 +317,7 @@ end # For loops iterate over iterables. -# Iterable types include Range, Array, Set, Dict, and String. +# Iterable types include Range, Array, Set, Dict, and AbstractString. for animal=["dog", "cat", "mouse"] println("$animal is a mammal") # You can use $ to interpolate variables or expression into strings @@ -537,6 +540,17 @@ subtypes(Number) # => 6-element Array{Any,1}: # Real subtypes(Cat) # => 0-element Array{Any,1} +# AbstractString, as the name implies, is also an abstract type +subtypes(AbstractString) # 8-element Array{Any,1}: + # Base.SubstitutionString{T<:AbstractString} + # DirectIndexString + # RepString + # RevString{T<:AbstractString} + # RopeString + # SubString{T<:AbstractString} + # UTF16String + # UTF8String + # Every type has a super type; use the `super` function to get it. typeof(5) # => Int64 super(Int64) # => Signed @@ -546,17 +560,21 @@ super(Number) # => Any super(super(Signed)) # => Number super(Any) # => Any # All of these type, except for Int64, are abstract. +typeof("fire") # => ASCIIString +super(ASCIIString) # => DirectIndexString +super(DirectIndexString) # => AbstractString +# Likewise here with ASCIIString # <: is the subtyping operator type Lion <: Cat # Lion is a subtype of Cat mane_color - roar::String + roar::AbstractString end # You can define more constructors for your type # Just define a function of the same name as the type # and call an existing constructor to get a value of the correct type -Lion(roar::String) = Lion("green",roar) +Lion(roar::AbstractString) = Lion("green",roar) # This is an outer constructor because it's outside the type definition type Panther <: Cat # Panther is also a subtype of Cat @@ -670,7 +688,7 @@ square_area(l) = l * l # square_area (generic function with 1 method) square_area(5) #25 # What happens when we feed square_area an integer? -code_native(square_area, (Int32,)) +code_native(square_area, (Int32,)) # .section __TEXT,__text,regular,pure_instructions # Filename: none # Source line: 1 # Prologue @@ -703,10 +721,10 @@ code_native(square_area, (Float64,)) # vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX) # pop RBP # ret - # + # # Note that julia will use floating point instructions if any of the # arguements are floats. -# Let's calculate the area of a circle +# Let's calculate the area of a circle circle_area(r) = pi * r * r # circle_area (generic function with 1 method) circle_area(5) # 78.53981633974483 @@ -737,7 +755,7 @@ code_native(circle_area, (Float64,)) # vmulsd XMM0, XMM1, XMM0 # pop RBP # ret - # + # ``` ## Further Reading |