diff options
Diffstat (limited to 'julia.html.markdown')
-rw-r--r-- | julia.html.markdown | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/julia.html.markdown b/julia.html.markdown index 3a52018c..66329feb 100644 --- a/julia.html.markdown +++ b/julia.html.markdown @@ -8,13 +8,13 @@ filename: learnjulia.jl Julia is a new homoiconic functional language focused on technical computing. While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python. -This is based on the current development version of Julia, as of October 18th, 2013. +This is based on Julia 0.3. ```ruby # Single line comments start with a hash (pound) symbol. #= Multiline comments can be written - by putting '#=' before the text and '=#' + by putting '#=' before the text and '=#' after the text. They can also be nested. =# @@ -91,7 +91,7 @@ false # $ can be used for string interpolation: "2 + 2 = $(2 + 2)" # => "2 + 2 = 4" -# You can put any Julia expression inside the parenthesis. +# You can put any Julia expression inside the parentheses. # Another way to format strings is the printf macro. @printf "%d is less than %f" 4.5 5.3 # 5 is less than 5.300000 @@ -190,7 +190,7 @@ end # inside the julia folder to find these files. # You can initialize arrays from ranges -a = [1:5] # => 5-element Int64 Array: [1,2,3,4,5] +a = [1:5;] # => 5-element Int64 Array: [1,2,3,4,5] # You can look at ranges with slice syntax. a[1:3] # => [1, 2, 3] @@ -264,7 +264,7 @@ in(("two", 3), filled_dict) # => false haskey(filled_dict, "one") # => true haskey(filled_dict, 1) # => false -# Trying to look up a non-existant key will raise an error +# Trying to look up a non-existent key will raise an error try filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489 catch e @@ -670,7 +670,7 @@ square_area(l) = l * l # square_area (generic function with 1 method) square_area(5) #25 # What happens when we feed square_area an integer? -code_native(square_area, (Int32,)) +code_native(square_area, (Int32,)) # .section __TEXT,__text,regular,pure_instructions # Filename: none # Source line: 1 # Prologue @@ -703,10 +703,10 @@ code_native(square_area, (Float64,)) # vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX) # pop RBP # ret - # + # # Note that julia will use floating point instructions if any of the # arguements are floats. -# Let's calculate the area of a circle +# Let's calculate the area of a circle circle_area(r) = pi * r * r # circle_area (generic function with 1 method) circle_area(5) # 78.53981633974483 @@ -737,7 +737,7 @@ code_native(circle_area, (Float64,)) # vmulsd XMM0, XMM1, XMM0 # pop RBP # ret - # + # ``` ## Further Reading |