diff options
Diffstat (limited to 'julia.html.markdown')
-rw-r--r-- | julia.html.markdown | 758 |
1 files changed, 419 insertions, 339 deletions
diff --git a/julia.html.markdown b/julia.html.markdown index a30871eb..15c09da4 100644 --- a/julia.html.markdown +++ b/julia.html.markdown @@ -2,18 +2,18 @@ language: Julia contributors: - ["Leah Hanson", "http://leahhanson.us"] - - ["Pranit Bauva", "http://github.com/pranitbauva1997"] - - ["Daniel YC Lin", "http://github.com/dlintw"] + - ["Pranit Bauva", "https://github.com/pranitbauva1997"] + - ["Daniel YC Lin", "https://github.com/dlintw"] filename: learnjulia.jl --- Julia is a new homoiconic functional language focused on technical computing. -While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python. +While having the full power of homoiconic macros, first-class functions, +and low-level control, Julia is as easy to learn and use as Python. -This is based on Julia 0.6.4 - -```ruby +This is based on Julia 1.0.0 +```julia # Single line comments start with a hash (pound) symbol. #= Multiline comments can be written by putting '#=' before the text and '=#' @@ -27,38 +27,38 @@ This is based on Julia 0.6.4 # Everything in Julia is an expression. # There are several basic types of numbers. -3 # => 3 (Int64) -3.2 # => 3.2 (Float64) -2 + 1im # => 2 + 1im (Complex{Int64}) -2//3 # => 2//3 (Rational{Int64}) +typeof(3) # => Int64 +typeof(3.2) # => Float64 +typeof(2 + 1im) # => Complex{Int64} +typeof(2 // 3) # => Rational{Int64} # All of the normal infix operators are available. -1 + 1 # => 2 -8 - 1 # => 7 -10 * 2 # => 20 -35 / 5 # => 7.0 -5 / 2 # => 2.5 # dividing an Int by an Int always results in a Float -div(5, 2) # => 2 # for a truncated result, use div -5 \ 35 # => 7.0 -2 ^ 2 # => 4 # power, not bitwise xor -12 % 10 # => 2 +1 + 1 # => 2 +8 - 1 # => 7 +10 * 2 # => 20 +35 / 5 # => 7.0 +10 / 2 # => 5.0 # dividing integers always results in a Float64 +div(5, 2) # => 2 # for a truncated result, use div +5 \ 35 # => 7.0 +2^2 # => 4 # power, not bitwise xor +12 % 10 # => 2 # Enforce precedence with parentheses -(1 + 3) * 2 # => 8 +(1 + 3) * 2 # => 8 # Bitwise Operators -~2 # => -3 # bitwise not -3 & 5 # => 1 # bitwise and -2 | 4 # => 6 # bitwise or -xor(2, 4) # => 6 # bitwise xor -2 >>> 1 # => 1 # logical shift right -2 >> 1 # => 1 # arithmetic shift right -2 << 1 # => 4 # logical/arithmetic shift left - -# You can use the bits function to see the binary representation of a number. -bits(12345) +~2 # => -3 # bitwise not +3 & 5 # => 1 # bitwise and +2 | 4 # => 6 # bitwise or +xor(2, 4) # => 6 # bitwise xor +2 >>> 1 # => 1 # logical shift right +2 >> 1 # => 1 # arithmetic shift right +2 << 1 # => 4 # logical/arithmetic shift left + +# Use the bitstring function to see the binary representation of a number. +bitstring(12345) # => "0000000000000000000000000000000000000000000000000011000000111001" -bits(12345.0) +bitstring(12345.0) # => "0100000011001000000111001000000000000000000000000000000000000000" # Boolean values are primitives @@ -66,78 +66,70 @@ true false # Boolean operators -!true # => false -!false # => true -1 == 1 # => true -2 == 1 # => false -1 != 1 # => false -2 != 1 # => true -1 < 10 # => true -1 > 10 # => false -2 <= 2 # => true -2 >= 2 # => true +!true # => false +!false # => true +1 == 1 # => true +2 == 1 # => false +1 != 1 # => false +2 != 1 # => true +1 < 10 # => true +1 > 10 # => false +2 <= 2 # => true +2 >= 2 # => true # Comparisons can be chained -1 < 2 < 3 # => true -2 < 3 < 2 # => false +1 < 2 < 3 # => true +2 < 3 < 2 # => false # Strings are created with " -try "This is a string." -catch ; end - -# Julia has several types of strings, including ASCIIString and UTF8String. -# More on this in the Types section. # Character literals are written with ' -try 'a' -catch ; end -# Some strings can be indexed like an array of characters -try -"This is a string"[1] # => 'T' # Julia indexes from 1 -catch ; end -# However, this is will not work well for UTF8 strings, -# so iterating over strings is recommended (map, for loops, etc). +# Strings are UTF8 encoded. Only if they contain only ASCII characters can +# they be safely indexed. +ascii("This is a string")[1] +# => 'T': ASCII/Unicode U+0054 (category Lu: Letter, uppercase) +# Julia indexes from 1 +# Otherwise, iterating over strings is recommended (map, for loops, etc). # $ can be used for string interpolation: -try "2 + 2 = $(2 + 2)" # => "2 + 2 = 4" -catch ; end # You can put any Julia expression inside the parentheses. -# Another way to format strings is the printf macro. -@printf "%d is less than %f" 4.5 5.3 # 4 is less than 5.300000 +# Another way to format strings is the printf macro from the stdlib Printf. +using Printf +@printf "%d is less than %f\n" 4.5 5.3 # => 5 is less than 5.300000 # Printing is easy -println("I'm Julia. Nice to meet you!") +println("I'm Julia. Nice to meet you!") # => I'm Julia. Nice to meet you! # String can be compared lexicographically "good" > "bye" # => true "good" == "good" # => true -"1 + 2 = 3" == "1 + 2 = $(1+2)" # => true +"1 + 2 = 3" == "1 + 2 = $(1 + 2)" # => true #################################################### ## 2. Variables and Collections #################################################### # You don't declare variables before assigning to them. -some_var = 5 # => 5 -some_var # => 5 +some_var = 5 # => 5 +some_var # => 5 # Accessing a previously unassigned variable is an error try - some_other_var # => ERROR: some_other_var not defined + some_other_var # => ERROR: UndefVarError: some_other_var not defined catch e println(e) end # Variable names start with a letter or underscore. # After that, you can use letters, digits, underscores, and exclamation points. -SomeOtherVar123! = 6 # => 6 +SomeOtherVar123! = 6 # => 6 # You can also use certain unicode characters -☃ = 8 # => 8 +☃ = 8 # => 8 # These are especially handy for mathematical notation 2 * π # => 6.283185307179586 @@ -156,166 +148,201 @@ SomeOtherVar123! = 6 # => 6 # functions are sometimes called mutating functions or in-place functions. # Arrays store a sequence of values indexed by integers 1 through n: -a = Int64[] # => 0-element Int64 Array +a = Int64[] # => 0-element Array{Int64,1} # 1-dimensional array literals can be written with comma-separated values. -b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6] -b = [4; 5; 6] # => 3-element Int64 Array: [4, 5, 6] -b[1] # => 4 -b[end] # => 6 +b = [4, 5, 6] # => 3-element Array{Int64,1}: [4, 5, 6] +b = [4; 5; 6] # => 3-element Array{Int64,1}: [4, 5, 6] +b[1] # => 4 +b[end] # => 6 # 2-dimensional arrays use space-separated values and semicolon-separated rows. -matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4] +matrix = [1 2; 3 4] # => 2×2 Array{Int64,2}: [1 2; 3 4] -# Arrays of a particular Type -b = Int8[4, 5, 6] # => 3-element Int8 Array: [4, 5, 6] +# Arrays of a particular type +b = Int8[4, 5, 6] # => 3-element Array{Int8,1}: [4, 5, 6] # Add stuff to the end of a list with push! and append! -push!(a,1) # => [1] -push!(a,2) # => [1,2] -push!(a,4) # => [1,2,4] -push!(a,3) # => [1,2,4,3] -append!(a,b) # => [1,2,4,3,4,5,6] +push!(a, 1) # => [1] +push!(a, 2) # => [1,2] +push!(a, 4) # => [1,2,4] +push!(a, 3) # => [1,2,4,3] +append!(a, b) # => [1,2,4,3,4,5,6] # Remove from the end with pop -pop!(b) # => 6 and b is now [4,5] +pop!(b) # => 6 +b # => [4,5] # Let's put it back -push!(b,6) # b is now [4,5,6] again. +push!(b, 6) # => [4,5,6] +b # => [4,5,6] -a[1] # => 1 # remember that Julia indexes from 1, not 0! +a[1] # => 1 # remember that Julia indexes from 1, not 0! # end is a shorthand for the last index. It can be used in any # indexing expression -a[end] # => 6 +a[end] # => 6 -# we also have shift and unshift -shift!(a) # => 1 and a is now [2,4,3,4,5,6] -unshift!(a,7) # => [7,2,4,3,4,5,6] +# we also have popfirst! and pushfirst! +popfirst!(a) # => 1 +a # => [2,4,3,4,5,6] +pushfirst!(a, 7) # => [7,2,4,3,4,5,6] +a # => [7,2,4,3,4,5,6] # Function names that end in exclamations points indicate that they modify # their argument. -arr = [5,4,6] # => 3-element Int64 Array: [5,4,6] -sort(arr) # => [4,5,6]; arr is still [5,4,6] -sort!(arr) # => [4,5,6]; arr is now [4,5,6] +arr = [5,4,6] # => 3-element Array{Int64,1}: [5,4,6] +sort(arr) # => [4,5,6] +arr # => [5,4,6] +sort!(arr) # => [4,5,6] +arr # => [4,5,6] # Looking out of bounds is a BoundsError try - a[0] # => ERROR: BoundsError() in getindex at array.jl:270 - a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270 + a[0] + # => ERROR: BoundsError: attempt to access 7-element Array{Int64,1} at + # index [0] + # => Stacktrace: + # => [1] getindex(::Array{Int64,1}, ::Int64) at .\array.jl:731 + # => [2] top-level scope at none:0 + # => [3] ... + # => in expression starting at ...\LearnJulia.jl:180 + a[end + 1] + # => ERROR: BoundsError: attempt to access 7-element Array{Int64,1} at + # index [8] + # => Stacktrace: + # => [1] getindex(::Array{Int64,1}, ::Int64) at .\array.jl:731 + # => [2] top-level scope at none:0 + # => [3] ... + # => in expression starting at ...\LearnJulia.jl:188 catch e println(e) end # Errors list the line and file they came from, even if it's in the standard -# library. If you built Julia from source, you can look in the folder base -# inside the julia folder to find these files. +# library. You can look in the folder share/julia inside the julia folder to +# find these files. # You can initialize arrays from ranges -a = [1:5;] # => 5-element Int64 Array: [1,2,3,4,5] +a = [1:5;] # => 5-element Array{Int64,1}: [1,2,3,4,5] +a2 = [1:5] # => 1-element Array{UnitRange{Int64},1}: [1:5] # You can look at ranges with slice syntax. -a[1:3] # => [1, 2, 3] -a[2:end] # => [2, 3, 4, 5] +a[1:3] # => [1, 2, 3] +a[2:end] # => [2, 3, 4, 5] # Remove elements from an array by index with splice! arr = [3,4,5] -splice!(arr,2) # => 4 ; arr is now [3,5] +splice!(arr, 2) # => 4 +arr # => [3,5] # Concatenate lists with append! b = [1,2,3] -append!(a,b) # Now a is [1, 2, 3, 4, 5, 1, 2, 3] +append!(a, b) # => [1, 2, 3, 4, 5, 1, 2, 3] +a # => [1, 2, 3, 4, 5, 1, 2, 3] # Check for existence in a list with in -in(1, a) # => true +in(1, a) # => true # Examine the length with length -length(a) # => 8 +length(a) # => 8 # Tuples are immutable. -tup = (1, 2, 3) # => (1,2,3) # an (Int64,Int64,Int64) tuple. +tup = (1, 2, 3) # => (1,2,3) +typeof(tup) # => Tuple{Int64,Int64,Int64} tup[1] # => 1 -try: - tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64) +try + tup[1] = 3 + # => ERROR: MethodError: no method matching + # setindex!(::Tuple{Int64,Int64,Int64}, ::Int64, ::Int64) catch e println(e) end -# Many list functions also work on tuples +# Many array functions also work on tuples length(tup) # => 3 -tup[1:2] # => (1,2) -in(2, tup) # => true +tup[1:2] # => (1,2) +in(2, tup) # => true # You can unpack tuples into variables -a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3 +a, b, c = (1, 2, 3) # => (1,2,3) +a # => 1 +b # => 2 +c # => 3 # Tuples are created even if you leave out the parentheses -d, e, f = 4, 5, 6 # => (4,5,6) +d, e, f = 4, 5, 6 # => (4,5,6) +d # => 4 +e # => 5 +f # => 6 # A 1-element tuple is distinct from the value it contains (1,) == 1 # => false -(1) == 1 # => true +(1) == 1 # => true # Look how easy it is to swap two values -e, d = d, e # => (5,4) # d is now 5 and e is now 4 - +e, d = d, e # => (5,4) +d # => 5 +e # => 4 # Dictionaries store mappings -empty_dict = Dict() # => Dict{Any,Any}() +empty_dict = Dict() # => Dict{Any,Any} with 0 entries # You can create a dictionary using a literal -filled_dict = Dict("one"=> 1, "two"=> 2, "three"=> 3) -# => Dict{ASCIIString,Int64} +filled_dict = Dict("one" => 1, "two" => 2, "three" => 3) +# => Dict{String,Int64} with 3 entries: +# => "two" => 2, "one" => 1, "three" => 3 # Look up values with [] -filled_dict["one"] # => 1 +filled_dict["one"] # => 1 # Get all keys keys(filled_dict) -# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2]) +# => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys: +# => "two", "one", "three" # Note - dictionary keys are not sorted or in the order you inserted them. # Get all values values(filled_dict) -# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2]) +# => Base.ValueIterator for a Dict{String,Int64} with 3 entries. Values: +# => 2, 1, 3 # Note - Same as above regarding key ordering. # Check for existence of keys in a dictionary with in, haskey -in(("one" => 1), filled_dict) # => true -in(("two" => 3), filled_dict) # => false -haskey(filled_dict, "one") # => true -haskey(filled_dict, 1) # => false +in(("one" => 1), filled_dict) # => true +in(("two" => 3), filled_dict) # => false +haskey(filled_dict, "one") # => true +haskey(filled_dict, 1) # => false # Trying to look up a non-existent key will raise an error try - filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489 + filled_dict["four"] # => ERROR: KeyError: key "four" not found catch e println(e) end # Use the get method to avoid that error by providing a default value -# get(dictionary,key,default_value) -get(filled_dict,"one",4) # => 1 -get(filled_dict,"four",4) # => 4 +# get(dictionary, key, default_value) +get(filled_dict, "one", 4) # => 1 +get(filled_dict, "four", 4) # => 4 # Use Sets to represent collections of unordered, unique values -empty_set = Set() # => Set{Any}() +empty_set = Set() # => Set(Any[]) # Initialize a set with values -filled_set = Set([1,2,2,3,4]) # => Set{Int64}(1,2,3,4) +filled_set = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1]) # Add more values to a set -push!(filled_set,5) # => Set{Int64}(5,4,2,3,1) +push!(filled_set, 5) # => Set([4, 2, 3, 5, 1]) # Check if the values are in the set -in(2, filled_set) # => true -in(10, filled_set) # => false +in(2, filled_set) # => true +in(10, filled_set) # => false # There are functions for set intersection, union, and difference. -other_set = Set([3, 4, 5, 6]) # => Set{Int64}(6,4,5,3) -intersect(filled_set, other_set) # => Set{Int64}(3,4,5) -union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6) -setdiff(Set([1,2,3,4]),Set([2,3,5])) # => Set{Int64}(1,4) - +other_set = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6]) +intersect(filled_set, other_set) # => Set([4, 3, 5]) +union(filled_set, other_set) # => Set([4, 2, 3, 5, 6, 1]) +setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1]) #################################################### ## 3. Control Flow @@ -334,72 +361,67 @@ else # The else clause is optional too. end # => prints "some var is smaller than 10" - # For loops iterate over iterables. # Iterable types include Range, Array, Set, Dict, and AbstractString. -for animal=["dog", "cat", "mouse"] +for animal = ["dog", "cat", "mouse"] println("$animal is a mammal") # You can use $ to interpolate variables or expression into strings end -# prints: -# dog is a mammal -# cat is a mammal -# mouse is a mammal +# => dog is a mammal +# => cat is a mammal +# => mouse is a mammal # You can use 'in' instead of '='. for animal in ["dog", "cat", "mouse"] println("$animal is a mammal") end -# prints: -# dog is a mammal -# cat is a mammal -# mouse is a mammal +# => dog is a mammal +# => cat is a mammal +# => mouse is a mammal -for a in Dict("dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal") - println("$(a[1]) is a $(a[2])") +for pair in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal") + from, to = pair + println("$from is a $to") end -# prints: -# dog is a mammal -# cat is a mammal -# mouse is a mammal +# => mouse is a mammal +# => cat is a mammal +# => dog is a mammal -for (k,v) in Dict("dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal") +for (k, v) in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal") println("$k is a $v") end -# prints: -# dog is a mammal -# cat is a mammal -# mouse is a mammal +# => mouse is a mammal +# => cat is a mammal +# => dog is a mammal # While loops loop while a condition is true -x = 0 -while x < 4 - println(x) - x += 1 # Shorthand for x = x + 1 +let x = 0 + while x < 4 + println(x) + x += 1 # Shorthand for x = x + 1 + end end -# prints: -# 0 -# 1 -# 2 -# 3 +# => 0 +# => 1 +# => 2 +# => 3 # Handle exceptions with a try/catch block try - error("help") + error("help") catch e - println("caught it $e") + println("caught it $e") end # => caught it ErrorException("help") - #################################################### ## 4. Functions #################################################### # The keyword 'function' creates new functions -#function name(arglist) -# body... -#end +# function name(arglist) +# body... +# end function add(x, y) println("x is $x and y is $y") @@ -407,15 +429,17 @@ function add(x, y) x + y end -add(5, 6) # => 11 after printing out "x is 5 and y is 6" +add(5, 6) +# => x is 5 and y is 6 +# => 11 # Compact assignment of functions -f_add(x, y) = x + y # => "f (generic function with 1 method)" -f_add(3, 4) # => 7 +f_add(x, y) = x + y # => f_add (generic function with 1 method) +f_add(3, 4) # => 7 # Function can also return multiple values as tuple -fn(x, y) = x + y, x - y -fn(3, 4) # => (7, -1) +fn(x, y) = x + y, x - y # => fn (generic function with 1 method) +fn(3, 4) # => (7, -1) # You can define functions that take a variable number of # positional arguments @@ -425,41 +449,43 @@ function varargs(args...) end # => varargs (generic function with 1 method) -varargs(1,2,3) # => (1,2,3) +varargs(1, 2, 3) # => (1,2,3) # The ... is called a splat. # We just used it in a function definition. # It can also be used in a function call, # where it will splat an Array or Tuple's contents into the argument list. -add([5,6]...) # this is equivalent to add(5,6) +add([5,6]...) # this is equivalent to add(5,6) -x = (5,6) # => (5,6) -add(x...) # this is equivalent to add(5,6) +x = (5, 6) # => (5,6) +add(x...) # this is equivalent to add(5,6) # You can define functions with optional positional arguments -function defaults(a,b,x=5,y=6) +function defaults(a, b, x=5, y=6) return "$a $b and $x $y" end +# => defaults (generic function with 3 methods) -defaults('h','g') # => "h g and 5 6" -defaults('h','g','j') # => "h g and j 6" -defaults('h','g','j','k') # => "h g and j k" +defaults('h', 'g') # => "h g and 5 6" +defaults('h', 'g', 'j') # => "h g and j 6" +defaults('h', 'g', 'j', 'k') # => "h g and j k" try - defaults('h') # => ERROR: no method defaults(Char,) - defaults() # => ERROR: no methods defaults() + defaults('h') # => ERROR: MethodError: no method matching defaults(::Char) + defaults() # => ERROR: MethodError: no method matching defaults() catch e println(e) end # You can define functions that take keyword arguments -function keyword_args(;k1=4,name2="hello") # note the ; - return Dict("k1"=>k1,"name2"=>name2) +function keyword_args(;k1=4, name2="hello") # note the ; + return Dict("k1" => k1, "name2" => name2) end +# => keyword_args (generic function with 1 method) -keyword_args(name2="ness") # => ["name2"=>"ness","k1"=>4] -keyword_args(k1="mine") # => ["k1"=>"mine","name2"=>"hello"] -keyword_args() # => ["name2"=>"hello","k1"=>4] +keyword_args(name2="ness") # => ["name2"=>"ness", "k1"=>4] +keyword_args(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"] +keyword_args() # => ["name2"=>"hello", "k1"=>4] # You can combine all kinds of arguments in the same function function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo") @@ -467,12 +493,12 @@ function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo") println("optional arg: $optional_positional_arg") println("keyword arg: $keyword_arg") end +# => all_the_args (generic function with 2 methods) all_the_args(1, 3, keyword_arg=4) -# prints: -# normal arg: 1 -# optional arg: 3 -# keyword arg: 4 +# => normal arg: 1 +# => optional arg: 3 +# => keyword arg: 4 # Julia has first class functions function create_adder(x) @@ -481,14 +507,16 @@ function create_adder(x) end return adder end +# => create_adder (generic function with 1 method) # This is "stabby lambda syntax" for creating anonymous functions -(x -> x > 2)(3) # => true +(x -> x > 2)(3) # => true # This function is identical to create_adder implementation above. function create_adder(x) y -> x + y end +# => create_adder (generic function with 1 method) # You can also name the internal function, if you want function create_adder(x) @@ -497,18 +525,21 @@ function create_adder(x) end adder end +# => create_adder (generic function with 1 method) -add_10 = create_adder(10) +add_10 = create_adder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64}) + # (generic function with 1 method) add_10(3) # => 13 # There are built-in higher order functions -map(add_10, [1,2,3]) # => [11, 12, 13] -filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7] +map(add_10, [1,2,3]) # => [11, 12, 13] +filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7] -# We can use list comprehensions for nicer maps -[add_10(i) for i=[1, 2, 3]] # => [11, 12, 13] -[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13] +# We can use list comprehensions +[add_10(i) for i = [1, 2, 3]] # => [11, 12, 13] +[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13] +[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7] #################################################### ## 5. Types @@ -517,11 +548,11 @@ filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7] # Julia has a type system. # Every value has a type; variables do not have types themselves. # You can use the `typeof` function to get the type of a value. -typeof(5) # => Int64 +typeof(5) # => Int64 # Types are first-class values -typeof(Int64) # => DataType -typeof(DataType) # => DataType +typeof(Int64) # => DataType +typeof(DataType) # => DataType # DataType is the type that represents types, including itself. # Types are used for documentation, optimizations, and dispatch. @@ -529,78 +560,76 @@ typeof(DataType) # => DataType # Users can define types # They are like records or structs in other languages. -# New types are defined using the `type` keyword. +# New types are defined using the `struct` keyword. -# type Name +# struct Name # field::OptionalType # ... # end -type Tiger - taillength::Float64 - coatcolor # not including a type annotation is the same as `::Any` +struct Tiger + taillength::Float64 + coatcolor # not including a type annotation is the same as `::Any` end # The default constructor's arguments are the properties # of the type, in the order they are listed in the definition -tigger = Tiger(3.5,"orange") # => Tiger(3.5,"orange") +tigger = Tiger(3.5, "orange") # => Tiger(3.5,"orange") # The type doubles as the constructor function for values of that type -sherekhan = typeof(tigger)(5.6,"fire") # => Tiger(5.6,"fire") +sherekhan = typeof(tigger)(5.6, "fire") # => Tiger(5.6,"fire") # These struct-style types are called concrete types # They can be instantiated, but cannot have subtypes. # The other kind of types is abstract types. # abstract Name -abstract type Cat end # just a name and point in the type hierarchy +abstract type Cat end # just a name and point in the type hierarchy # Abstract types cannot be instantiated, but can have subtypes. # For example, Number is an abstract type -subtypes(Number) # => 2-element Array{Any,1}: - # Complex{T<:Real} - # Real -subtypes(Cat) # => 0-element Array{Any,1} +subtypes(Number) # => 2-element Array{Any,1}: + # => Complex + # => Real +subtypes(Cat) # => 0-element Array{Any,1} # AbstractString, as the name implies, is also an abstract type -subtypes(AbstractString) # 6-element Array{Union{DataType, UnionAll},1}: - # Base.SubstitutionString - # Base.Test.GenericString - # DirectIndexString - # RevString - # String - # SubString +subtypes(AbstractString) # => 4-element Array{Any,1}: + # => String + # => SubString + # => SubstitutionString + # => Test.GenericString # Every type has a super type; use the `supertype` function to get it. typeof(5) # => Int64 -supertype(Int64) # => Signed -supertype(Signed) # => Integer -supertype(Integer) # => Real -supertype(Real) # => Number -supertype(Number) # => Any -supertype(supertype(Signed)) # => Real -supertype(Any) # => Any +supertype(Int64) # => Signed +supertype(Signed) # => Integer +supertype(Integer) # => Real +supertype(Real) # => Number +supertype(Number) # => Any +supertype(supertype(Signed)) # => Real +supertype(Any) # => Any # All of these type, except for Int64, are abstract. -typeof("fire") # => String -supertype(String) # => AbstractString +typeof("fire") # => String +supertype(String) # => AbstractString # Likewise here with String -supertype(DirectIndexString) # => AbstractString +supertype(SubString) # => AbstractString # <: is the subtyping operator -type Lion <: Cat # Lion is a subtype of Cat - mane_color - roar::AbstractString +struct Lion <: Cat # Lion is a subtype of Cat + mane_color + roar::AbstractString end # You can define more constructors for your type # Just define a function of the same name as the type # and call an existing constructor to get a value of the correct type -Lion(roar::AbstractString) = Lion("green",roar) +Lion(roar::AbstractString) = Lion("green", roar) # This is an outer constructor because it's outside the type definition -type Panther <: Cat # Panther is also a subtype of Cat - eye_color - Panther() = new("green") - # Panthers will only have this constructor, and no default constructor. +struct Panther <: Cat # Panther is also a subtype of Cat + eye_color + Panther() = new("green") + # Panthers will only have this constructor, and no default constructor. end # Using inner constructors, like Panther does, gives you control # over how values of the type can be created. @@ -618,35 +647,36 @@ end # Definitions for Lion, Panther, Tiger function meow(animal::Lion) - animal.roar # access type properties using dot notation + animal.roar # access type properties using dot notation end function meow(animal::Panther) - "grrr" + "grrr" end function meow(animal::Tiger) - "rawwwr" + "rawwwr" end # Testing the meow function -meow(tigger) # => "rawwr" -meow(Lion("brown","ROAAR")) # => "ROAAR" +meow(tigger) # => "rawwwr" +meow(Lion("brown", "ROAAR")) # => "ROAAR" meow(Panther()) # => "grrr" # Review the local type hierarchy -issubtype(Tiger,Cat) # => false -issubtype(Lion,Cat) # => true -issubtype(Panther,Cat) # => true +Tiger <: Cat # => false +Lion <: Cat # => true +Panther <: Cat # => true # Defining a function that takes Cats function pet_cat(cat::Cat) - println("The cat says $(meow(cat))") + println("The cat says $(meow(cat))") end +# => pet_cat (generic function with 1 method) -pet_cat(Lion("42")) # => prints "The cat says 42" +pet_cat(Lion("42")) # => The cat says 42 try - pet_cat(tigger) # => ERROR: no method pet_cat(Tiger,) + pet_cat(tigger) # => ERROR: MethodError: no method matching pet_cat(::Tiger) catch e println(e) end @@ -656,129 +686,179 @@ end # In Julia, all of the argument types contribute to selecting the best method. # Let's define a function with more arguments, so we can see the difference -function fight(t::Tiger,c::Cat) - println("The $(t.coatcolor) tiger wins!") +function fight(t::Tiger, c::Cat) + println("The $(t.coatcolor) tiger wins!") end # => fight (generic function with 1 method) -fight(tigger,Panther()) # => prints The orange tiger wins! -fight(tigger,Lion("ROAR")) # => prints The orange tiger wins! +fight(tigger, Panther()) # => The orange tiger wins! +fight(tigger, Lion("ROAR")) # => The orange tiger wins! # Let's change the behavior when the Cat is specifically a Lion -fight(t::Tiger,l::Lion) = println("The $(l.mane_color)-maned lion wins!") +fight(t::Tiger, l::Lion) = println("The $(l.mane_color)-maned lion wins!") # => fight (generic function with 2 methods) -fight(tigger,Panther()) # => prints The orange tiger wins! -fight(tigger,Lion("ROAR")) # => prints The green-maned lion wins! +fight(tigger, Panther()) # => The orange tiger wins! +fight(tigger, Lion("ROAR")) # => The green-maned lion wins! # We don't need a Tiger in order to fight -fight(l::Lion,c::Cat) = println("The victorious cat says $(meow(c))") +fight(l::Lion, c::Cat) = println("The victorious cat says $(meow(c))") # => fight (generic function with 3 methods) -fight(Lion("balooga!"),Panther()) # => prints The victorious cat says grrr +fight(Lion("balooga!"), Panther()) # => The victorious cat says grrr try - fight(Panther(),Lion("RAWR")) + fight(Panther(), Lion("RAWR")) + # => ERROR: MethodError: no method matching fight(::Panther, ::Lion) + # => Closest candidates are: + # => fight(::Tiger, ::Lion) at ... + # => fight(::Tiger, ::Cat) at ... + # => fight(::Lion, ::Cat) at ... + # => ... catch e - println(e) - # => MethodError(fight, (Panther("green"), Lion("green", "RAWR")), 0x000000000000557b) + println(e) end # Also let the cat go first -fight(c::Cat,l::Lion) = println("The cat beats the Lion") +fight(c::Cat, l::Lion) = println("The cat beats the Lion") +# => fight (generic function with 4 methods) # This warning is because it's unclear which fight will be called in: try - fight(Lion("RAR"),Lion("brown","rarrr")) # => prints The victorious cat says rarrr + fight(Lion("RAR"), Lion("brown", "rarrr")) + # => ERROR: MethodError: fight(::Lion, ::Lion) is ambiguous. Candidates: + # => fight(c::Cat, l::Lion) in Main at ... + # => fight(l::Lion, c::Cat) in Main at ... + # => Possible fix, define + # => fight(::Lion, ::Lion) + # => ... catch e - println(e) - # => MethodError(fight, (Lion("green", "RAR"), Lion("brown", "rarrr")), 0x000000000000557c) + println(e) end # The result may be different in other versions of Julia -fight(l::Lion,l2::Lion) = println("The lions come to a tie") -fight(Lion("RAR"),Lion("brown","rarrr")) # => prints The lions come to a tie +fight(l::Lion, l2::Lion) = println("The lions come to a tie") +# => fight (generic function with 5 methods) +fight(Lion("RAR"), Lion("brown", "rarrr")) # => The lions come to a tie # Under the hood # You can take a look at the llvm and the assembly code generated. -square_area(l) = l * l # square_area (generic function with 1 method) +square_area(l) = l * l # square_area (generic function with 1 method) -square_area(5) #25 +square_area(5) # => 25 # What happens when we feed square_area an integer? -code_native(square_area, (Int32,)) - # .section __TEXT,__text,regular,pure_instructions - # Filename: none - # Source line: 1 # Prologue - # push RBP - # mov RBP, RSP - # Source line: 1 - # movsxd RAX, EDI # Fetch l from memory? - # imul RAX, RAX # Square l and store the result in RAX - # pop RBP # Restore old base pointer - # ret # Result will still be in RAX - -code_native(square_area, (Float32,)) - # .section __TEXT,__text,regular,pure_instructions - # Filename: none - # Source line: 1 - # push RBP - # mov RBP, RSP - # Source line: 1 - # vmulss XMM0, XMM0, XMM0 # Scalar single precision multiply (AVX) - # pop RBP - # ret - -code_native(square_area, (Float64,)) - # .section __TEXT,__text,regular,pure_instructions - # Filename: none - # Source line: 1 - # push RBP - # mov RBP, RSP - # Source line: 1 - # vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX) - # pop RBP - # ret - # +code_native(square_area, (Int32,), syntax = :intel) + # .text + # ; Function square_area { + # ; Location: REPL[116]:1 # Prologue + # push rbp + # mov rbp, rsp + # ; Function *; { + # ; Location: int.jl:54 + # imul ecx, ecx # Square l and store the result in ECX + # ;} + # mov eax, ecx + # pop rbp # Restore old base pointer + # ret # Result will still be in EAX + # nop dword ptr [rax + rax] + # ;} + +code_native(square_area, (Float32,), syntax = :intel) + # .text + # ; Function square_area { + # ; Location: REPL[116]:1 + # push rbp + # mov rbp, rsp + # ; Function *; { + # ; Location: float.jl:398 + # vmulss xmm0, xmm0, xmm0 # Scalar single precision multiply (AVX) + # ;} + # pop rbp + # ret + # nop word ptr [rax + rax] + # ;} + +code_native(square_area, (Float64,), syntax = :intel) + # .text + # ; Function square_area { + # ; Location: REPL[116]:1 + # push rbp + # mov rbp, rsp + # ; Function *; { + # ; Location: float.jl:399 + # vmulsd xmm0, xmm0, xmm0 # Scalar double precision multiply (AVX) + # ;} + # pop rbp + # ret + # nop word ptr [rax + rax] + # ;} + # Note that julia will use floating point instructions if any of the # arguments are floats. # Let's calculate the area of a circle circle_area(r) = pi * r * r # circle_area (generic function with 1 method) -circle_area(5) # 78.53981633974483 - -code_native(circle_area, (Int32,)) - # .section __TEXT,__text,regular,pure_instructions - # Filename: none - # Source line: 1 - # push RBP - # mov RBP, RSP - # Source line: 1 - # vcvtsi2sd XMM0, XMM0, EDI # Load integer (r) from memory - # movabs RAX, 4593140240 # Load pi - # vmulsd XMM1, XMM0, QWORD PTR [RAX] # pi * r - # vmulsd XMM0, XMM0, XMM1 # (pi * r) * r - # pop RBP - # ret - # - -code_native(circle_area, (Float64,)) - # .section __TEXT,__text,regular,pure_instructions - # Filename: none - # Source line: 1 - # push RBP - # mov RBP, RSP - # movabs RAX, 4593140496 - # Source line: 1 - # vmulsd XMM1, XMM0, QWORD PTR [RAX] - # vmulsd XMM0, XMM1, XMM0 - # pop RBP - # ret - # +circle_area(5) # 78.53981633974483 + +code_native(circle_area, (Int32,), syntax = :intel) + # .text + # ; Function circle_area { + # ; Location: REPL[121]:1 + # push rbp + # mov rbp, rsp + # ; Function *; { + # ; Location: operators.jl:502 + # ; Function *; { + # ; Location: promotion.jl:314 + # ; Function promote; { + # ; Location: promotion.jl:284 + # ; Function _promote; { + # ; Location: promotion.jl:261 + # ; Function convert; { + # ; Location: number.jl:7 + # ; Function Type; { + # ; Location: float.jl:60 + # vcvtsi2sd xmm0, xmm0, ecx # Load integer (r) from memory + # movabs rax, 497710928 # Load pi + # ;}}}}} + # ; Function *; { + # ; Location: float.jl:399 + # vmulsd xmm1, xmm0, qword ptr [rax] # pi * r + # vmulsd xmm0, xmm1, xmm0 # (pi * r) * r + # ;}} + # pop rbp + # ret + # nop dword ptr [rax] + # ;} + +code_native(circle_area, (Float64,), syntax = :intel) + # .text + # ; Function circle_area { + # ; Location: REPL[121]:1 + # push rbp + # mov rbp, rsp + # movabs rax, 497711048 + # ; Function *; { + # ; Location: operators.jl:502 + # ; Function *; { + # ; Location: promotion.jl:314 + # ; Function *; { + # ; Location: float.jl:399 + # vmulsd xmm1, xmm0, qword ptr [rax] + # ;}}} + # ; Function *; { + # ; Location: float.jl:399 + # vmulsd xmm0, xmm1, xmm0 + # ;} + # pop rbp + # ret + # nop dword ptr [rax + rax] + # ;} ``` ## Further Reading -You can get a lot more detail from [The Julia Manual](http://docs.julialang.org/en/latest/#Manual-1) +You can get a lot more detail from the [Julia Documentation](https://docs.julialang.org/) The best place to get help with Julia is the (very friendly) [Discourse forum](https://discourse.julialang.org/). |