summaryrefslogtreecommitdiffhomepage
path: root/pt-br
diff options
context:
space:
mode:
Diffstat (limited to 'pt-br')
-rw-r--r--pt-br/common-lisp-pt.html.markdown621
-rw-r--r--pt-br/hy-pt.html.markdown176
-rw-r--r--pt-br/xml-pt.html.markdown133
3 files changed, 930 insertions, 0 deletions
diff --git a/pt-br/common-lisp-pt.html.markdown b/pt-br/common-lisp-pt.html.markdown
new file mode 100644
index 00000000..ce654846
--- /dev/null
+++ b/pt-br/common-lisp-pt.html.markdown
@@ -0,0 +1,621 @@
+---
+language: "Common Lisp"
+filename: commonlisp-pt.lisp
+contributors:
+ - ["Paul Nathan", "https://github.com/pnathan"]
+translators:
+ - ["Édipo Luis Féderle", "https://github.com/edipofederle"]
+---
+
+ANSI Common Lisp é uma linguagem de uso geral, multi-paradigma, designada
+para uma variedade de aplicações na indústria. É frequentemente citada
+como uma linguagem de programação programável.
+
+
+O ponto inicial clássico é [Practical Common Lisp e livremente disponível](http://www.gigamonkeys.com/book/)
+
+Outro livro recente e popular é o
+[Land of Lisp](http://landoflisp.com/).
+
+
+```common_lisp
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;; 0. Sintaxe
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;;; "Form" Geral
+
+
+;; Lisp tem dois pedaços fundamentais de sintaxe: o ATOM e S-expression.
+;; Tipicamente, S-expressions agrupadas são chamadas de `forms`.
+
+
+10 ; um atom; é avaliado para ele mesmo
+
+:THING ;Outro atom; avaliado para o símbolo :thing.
+
+t ; outro atom, denotado true.
+
+(+ 1 2 3 4) ; uma s-expression
+
+'(4 :foo t) ;outra s-expression
+
+
+;;; Comentários
+
+;; Comentários de uma única linha começam com ponto e vírgula; usar dois para
+;; comentários normais, três para comentários de seção, e quadro para comentários
+;; em nível de arquivo.
+
+#| Bloco de comentário
+ pode abranger várias linhas e...
+ #|
+ eles podem ser aninhados
+ |#
+|#
+
+;;; Ambiente
+
+;; Existe uma variedade de implementações; a maioria segue o padrão.
+;; CLISP é um bom ponto de partida.
+
+;; Bibliotecas são gerenciadas através do Quicklisp.org's Quicklisp sistema.
+
+;; Common Lisp é normalmente desenvolvido com um editor de texto e um REPL
+;; (Read Evaluate Print Loop) rodando ao mesmo tempo. O REPL permite exploração
+;; interativa do programa como ele é "ao vivo" no sistema.
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;; 1. Tipos Primitivos e Operadores
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;;; Símbolos
+
+'foo ; => FOO Perceba que um símbolo é automáticamente convertido para maiúscula.
+
+;; Intern manualmente cria um símbolo a partir de uma string.
+
+(intern "AAAA") ; => AAAA
+
+(intern "aaa") ; => |aaa|
+
+;;; Números
+9999999999999999999999 ; inteiro
+#b111 ; binário => 7
+#o111 ; octal => 73
+#x111 ; hexadecimal => 273
+3.14159s0 ; single
+3.14159d0 ; double
+1/2 ; ratios
+#C(1 2) ; números complexos
+
+
+;; Funções são escritas como (f x y z ...)
+;; onde f é uma função e x, y, z, ... são operadores
+;; Se você quiser criar uma lista literal de dados, use ' para evitar
+;; que a lista seja avaliada - literalmente, "quote" os dados.
+'(+ 1 2) ; => (+ 1 2)
+;; Você também pode chamar uma função manualmente:
+(funcall #'+ 1 2 3) ; => 6
+;; O mesmo para operações aritiméticas
+(+ 1 1) ; => 2
+(- 8 1) ; => 7
+(* 10 2) ; => 20
+(expt 2 3) ; => 8
+(mod 5 2) ; => 1
+(/ 35 5) ; => 7
+(/ 1 3) ; => 1/3
+(+ #C(1 2) #C(6 -4)) ; => #C(7 -2)
+
+ ;;; Booleans
+t ; para true (qualquer valor não nil é true)
+nil ; para false - e para lista vazia
+(not nil) ; => t
+(and 0 t) ; => t
+(or 0 nil) ; => 0
+
+ ;;; Caracteres
+#\A ; => #\A
+#\λ ; => #\GREEK_SMALL_LETTER_LAMDA
+#\u03BB ; => #\GREEK_SMALL_LETTER_LAMDA
+
+;;; String são arrays de caracteres com tamanho fixo.
+"Hello, world!"
+"Benjamin \"Bugsy\" Siegel" ; barra é um escape de caracter
+
+;; String podem ser concatenadas também!
+(concatenate 'string "Hello " "world!") ; => "Hello world!"
+
+;; Uma String pode ser tratada como uma sequência de caracteres
+(elt "Apple" 0) ; => #\A
+
+;; format pode ser usado para formatar strings
+(format nil "~a can be ~a" "strings" "formatted")
+
+;; Impimir é bastante fácil; ~% indica nova linha
+(format t "Common Lisp is groovy. Dude.~%")
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; 2. Variáveis
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Você pode criar uma global (escopo dinâmico) usando defparameter
+;; um nome de variável pode conter qualquer caracter, exceto: ()",'`;#|\
+
+;; Variáveis de escopo dinâmico devem ter asteriscos em seus nomes!
+
+(defparameter *some-var* 5)
+*some-var* ; => 5
+
+;; Você pode usar caracteres unicode também.
+(defparameter *AΛB* nil)
+
+
+;; Acessando uma variável anteriormente não ligada é um
+;; comportamento não definido (mas possível). Não faça isso.
+
+;; Ligação local: `me` é vinculado com "dance with you" somente dentro
+;; de (let ... ). Let permite retornar o valor do último `form` no form let.
+
+(let ((me "dance with you"))
+ me)
+;; => "dance with you"
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; 3. Estruturas e Coleções
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; Estruturas
+(defstruct dog name breed age)
+(defparameter *rover*
+ (make-dog :name "rover"
+ :breed "collie"
+ :age 5))
+*rover* ; => #S(DOG :NAME "rover" :BREED "collie" :AGE 5)
+
+(dog-p *rover*) ; => t ;; ewww)
+(dog-name *rover*) ; => "rover"
+
+;; Dog-p, make-dog, e dog-name foram todas criadas por defstruct!
+
+;;; Pares
+;; `cons' constroi pares, `car' and `cdr' extrai o primeiro
+;; e o segundo elemento
+(cons 'SUBJECT 'VERB) ; => '(SUBJECT . VERB)
+(car (cons 'SUBJECT 'VERB)) ; => SUBJECT
+(cdr (cons 'SUBJECT 'VERB)) ; => VERB
+
+;;; Listas
+
+;; Listas são estruturas de dados do tipo listas encadeadas, criadas com `cons'
+;; pares e terminam `nil' (ou '()) para marcar o final da lista
+(cons 1 (cons 2 (cons 3 nil))) ; => '(1 2 3)
+;; `list' é um construtor conveniente para listas
+(list 1 2 3) ; => '(1 2 3)
+;; e a quote (') também pode ser usado para um valor de lista literal
+'(1 2 3) ; => '(1 2 3)
+
+;; Ainda pode-se usar `cons' para adicionar um item no começo da lista.
+(cons 4 '(1 2 3)) ; => '(4 1 2 3)
+
+;; Use `append' para - surpreendentemente - juntar duas listas
+(append '(1 2) '(3 4)) ; => '(1 2 3 4)
+
+;; Ou use concatenate -
+
+(concatenate 'list '(1 2) '(3 4))
+
+;; Listas são um tipo muito central, então existe uma grande variedade de
+;; funcionalidades para eles, alguns exemplos:
+(mapcar #'1+ '(1 2 3)) ; => '(2 3 4)
+(mapcar #'+ '(1 2 3) '(10 20 30)) ; => '(11 22 33)
+(remove-if-not #'evenp '(1 2 3 4)) ; => '(2 4)
+(every #'evenp '(1 2 3 4)) ; => nil
+(some #'oddp '(1 2 3 4)) ; => T
+(butlast '(subject verb object)) ; => (SUBJECT VERB)
+
+
+;;; Vetores
+
+;; Vector's literais são arrays de tamanho fixo.
+#(1 2 3) ; => #(1 2 3)
+
+;; Use concatenate para juntar dois vectors
+(concatenate 'vector #(1 2 3) #(4 5 6)) ; => #(1 2 3 4 5 6)
+
+;;; Arrays
+
+;; Ambos vetores e strings são um caso especial de arrays.
+
+;; 2D arrays
+
+(make-array (list 2 2))
+
+;; (make-array '(2 2)) também funciona.
+
+; => #2A((0 0) (0 0))
+
+(make-array (list 2 2 2))
+
+; => #3A(((0 0) (0 0)) ((0 0) (0 0)))
+
+;; Cuidado - os valores de inicialição padrões são
+;; definidos pela implementção. Aqui vai como defini-lós.
+
+(make-array '(2) :initial-element 'unset)
+
+; => #(UNSET UNSET)
+
+;; E, para acessar o element em 1,1,1 -
+(aref (make-array (list 2 2 2)) 1 1 1)
+
+; => 0
+
+;;; Vetores Ajustáveis
+
+;; Vetores ajustáveis tem a mesma representação impressa que os vectores
+;; de tamanho fixo
+(defparameter *adjvec* (make-array '(3) :initial-contents '(1 2 3)
+ :adjustable t :fill-pointer t))
+
+*adjvec* ; => #(1 2 3)
+
+;; Adicionando novo elemento
+(vector-push-extend 4 *adjvec*) ; => 3
+
+*adjvec* ; => #(1 2 3 4)
+
+
+
+;;; Ingenuamente, conjuntos são apenas listas:
+
+(set-difference '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1)
+(intersection '(1 2 3 4) '(4 5 6 7)) ; => 4
+(union '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1 4 5 6 7)
+(adjoin 4 '(1 2 3 4)) ; => (1 2 3 4)
+
+;; Mas você irá querer usar uma estrutura de dados melhor que uma lista encadeada.
+;; para performance.
+
+;;; Dicionários são implementados como hash tables
+
+;; Cria um hash table
+(defparameter *m* (make-hash-table))
+
+;; seta um valor
+(setf (gethash 'a *m*) 1)
+
+;; Recupera um valor
+(gethash 'a *m*) ; => 1, t
+
+;; Detalhe - Common Lisp tem multiplos valores de retorno possíveis. gethash
+;; retorna t no segundo valor se alguma coisa foi encontrada, e nil se não.
+
+;; Recuperando um valor não presente retorna nil
+ (gethash 'd *m*) ;=> nil, nil
+
+;; Você pode fornecer um valor padrão para uma valores não encontrados
+(gethash 'd *m* :not-found) ; => :NOT-FOUND
+
+;; Vamos tratas múltiplos valores de rotorno aqui.
+
+(multiple-value-bind
+ (a b)
+ (gethash 'd *m*)
+ (list a b))
+; => (NIL NIL)
+
+(multiple-value-bind
+ (a b)
+ (gethash 'a *m*)
+ (list a b))
+; => (1 T)
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; 3. Funções
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; Use `lambda' para criar funções anônimas
+;; Uma função sempre retorna um valor da última expressão avaliada.
+;; A representação exata impressão de uma função varia de acordo ...
+
+(lambda () "Hello World") ; => #<FUNCTION (LAMBDA ()) {1004E7818B}>
+
+;; Use funcall para chamar uma função lambda.
+(funcall (lambda () "Hello World")) ; => "Hello World"
+
+;; Ou Apply
+(apply (lambda () "Hello World") nil) ; => "Hello World"
+
+;; "De-anonymize" a função
+(defun hello-world ()
+ "Hello World")
+(hello-world) ; => "Hello World"
+
+;; O () acima é a lista de argumentos da função.
+(defun hello (name)
+ (format nil "Hello, ~a " name))
+
+(hello "Steve") ; => "Hello, Steve"
+
+;; Funções podem ter argumentos opcionais; eles são nil por padrão
+
+(defun hello (name &optional from)
+ (if from
+ (format t "Hello, ~a, from ~a" name from)
+ (format t "Hello, ~a" name)))
+
+ (hello "Jim" "Alpacas") ;; => Hello, Jim, from Alpacas
+
+;; E os padrões podem ser configurados...
+(defun hello (name &optional (from "The world"))
+ (format t "Hello, ~a, from ~a" name from))
+
+(hello "Steve")
+; => Hello, Steve, from The world
+
+(hello "Steve" "the alpacas")
+; => Hello, Steve, from the alpacas
+
+
+;; E é claro, palavras-chaves são permitidas também... frequentemente mais
+;; flexivel que &optional.
+
+(defun generalized-greeter (name &key (from "the world") (honorific "Mx"))
+ (format t "Hello, ~a ~a, from ~a" honorific name from))
+
+(generalized-greeter "Jim") ; => Hello, Mx Jim, from the world
+
+(generalized-greeter "Jim" :from "the alpacas you met last summer" :honorific "Mr")
+; => Hello, Mr Jim, from the alpacas you met last summer
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; 4. Igualdade
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; Common Lisp tem um sistema sofisticado de igualdade. Alguns são cobertos aqui.
+
+;; Para número use `='
+(= 3 3.0) ; => t
+(= 2 1) ; => nil
+
+;; para identidade de objeto (aproximadamente) use `eql`
+(eql 3 3) ; => t
+(eql 3 3.0) ; => nil
+(eql (list 3) (list 3)) ; => nil
+
+;; para listas, strings, e para pedaços de vetores use `equal'
+(equal (list 'a 'b) (list 'a 'b)) ; => t
+(equal (list 'a 'b) (list 'b 'a)) ; => nil
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; 5. Fluxo de Controle
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;;; Condicionais
+
+(if t ; testa a expressão
+ "this is true" ; então expressão
+ "this is false") ; senão expressão
+; => "this is true"
+
+;; Em condicionais, todos valores não nulos são tratados como true
+(member 'Groucho '(Harpo Groucho Zeppo)) ; => '(GROUCHO ZEPPO)
+(if (member 'Groucho '(Harpo Groucho Zeppo))
+ 'yep
+ 'nope)
+; => 'YEP
+
+;; `cond' encadeia uma série de testes para selecionar um resultado
+(cond ((> 2 2) (error "wrong!"))
+ ((< 2 2) (error "wrong again!"))
+ (t 'ok)) ; => 'OK
+
+;; Typecase é um condicional que escolhe uma de seus cláusulas com base do tipo
+;; do seu valor
+
+(typecase 1
+ (string :string)
+ (integer :int))
+
+; => :int
+
+;;; Interação
+
+;; Claro que recursão é suportada:
+
+(defun walker (n)
+ (if (zerop n)
+ :walked
+ (walker (1- n))))
+
+(walker 5) ; => :walked
+
+;; Na maioria das vezes, nós usamos DOTLISO ou LOOP
+
+(dolist (i '(1 2 3 4))
+ (format t "~a" i))
+
+; => 1234
+
+(loop for i from 0 below 10
+ collect i)
+
+; => (0 1 2 3 4 5 6 7 8 9)
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; 6. Mutação
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; Use `setf' para atribuir um novo valor para uma variável existente. Isso foi
+;; demonstrado anteriormente no exemplo da hash table.
+
+(let ((variable 10))
+ (setf variable 2))
+ ; => 2
+
+
+;; Um bom estilo Lisp é para minimizar funções destrutivas e para evitar
+;; mutação quando razoável.
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; 7. Classes e Objetos
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; Sem clases Animal, vamos usar os veículos de transporte de tração
+;; humana mecânicos.
+
+(defclass human-powered-conveyance ()
+ ((velocity
+ :accessor velocity
+ :initarg :velocity)
+ (average-efficiency
+ :accessor average-efficiency
+ :initarg :average-efficiency))
+ (:documentation "A human powered conveyance"))
+
+;; defcalss, seguido do nome, seguido por uma list de superclass,
+;; seguido por um uma 'slot list', seguido por qualidades opcionais como
+;; :documentation
+
+;; Quando nenhuma lista de superclasse é setada, uma lista padrão para
+;; para o objeto padrão é usada. Isso *pode* ser mudado, mas não até você
+;; saber o que está fazendo. Olhe em Art of the Metaobject Protocol
+;; para maiores informações.
+
+(defclass bicycle (human-powered-conveyance)
+ ((wheel-size
+ :accessor wheel-size
+ :initarg :wheel-size
+ :documentation "Diameter of the wheel.")
+ (height
+ :accessor height
+ :initarg :height)))
+
+(defclass recumbent (bicycle)
+ ((chain-type
+ :accessor chain-type
+ :initarg :chain-type)))
+
+(defclass unicycle (human-powered-conveyance) nil)
+
+(defclass canoe (human-powered-conveyance)
+ ((number-of-rowers
+ :accessor number-of-rowers
+ :initarg :number-of-rowers)))
+
+
+;; Chamando DESCRIBE na classe human-powered-conveyance no REPL dá:
+
+(describe 'human-powered-conveyance)
+
+; COMMON-LISP-USER::HUMAN-POWERED-CONVEYANCE
+; [symbol]
+;
+; HUMAN-POWERED-CONVEYANCE names the standard-class #<STANDARD-CLASS
+; HUMAN-POWERED-CONVEYANCE>:
+; Documentation:
+; A human powered conveyance
+; Direct superclasses: STANDARD-OBJECT
+; Direct subclasses: UNICYCLE, BICYCLE, CANOE
+; Not yet finalized.
+; Direct slots:
+; VELOCITY
+; Readers: VELOCITY
+; Writers: (SETF VELOCITY)
+; AVERAGE-EFFICIENCY
+; Readers: AVERAGE-EFFICIENCY
+; Writers: (SETF AVERAGE-EFFICIENCY)
+
+;; Note o comportamento reflexivo disponível para você! Common Lisp é
+;; projetada para ser um sistema interativo.
+
+;; Para definir um métpdo, vamos encontrar o que nossa cirunferência da
+;; roda da bicicleta usando a equação: C = d * pi
+
+(defmethod circumference ((object bicycle))
+ (* pi (wheel-size object)))
+
+;; pi já é definido para a gente em Lisp!
+
+;; Vamos supor que nós descobrimos que o valor da eficiência do número
+;; de remadores em uma canoa é aproximadamente logarítmica. Isso provavelmente
+;; deve ser definido no construtor / inicializador.
+
+;; Veja como initializar sua instância após Common Lisp ter construído isso:
+
+(defmethod initialize-instance :after ((object canoe) &rest args)
+ (setf (average-efficiency object) (log (1+ (number-of-rowers object)))))
+
+;; Em seguida, para a construção de uma ocorrência e verificar a eficiência média ...
+
+(average-efficiency (make-instance 'canoe :number-of-rowers 15))
+; => 2.7725887
+
+
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; 8. Macros
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; Macros permitem que você estenda a sintaxe da lingaugem
+
+;; Common Lisp não vem com um loop WHILE - vamos adicionar um.
+;; Se obedecermos nossos instintos 'assembler', acabamos com:
+
+(defmacro while (condition &body body)
+ "Enquanto `condition` é verdadeiro, `body` é executado.
+
+`condition` é testado antes de cada execução do `body`"
+ (let ((block-name (gensym)))
+ `(tagbody
+ (unless ,condition
+ (go ,block-name))
+ (progn
+ ,@body)
+ ,block-name)))
+
+;; Vamos dar uma olhada em uma versão alto nível disto:
+
+
+(defmacro while (condition &body body)
+ "Enquanto `condition` for verdadeira, `body` é executado.
+
+`condition` é testado antes de cada execução do `body`"
+ `(loop while ,condition
+ do
+ (progn
+ ,@body)))
+
+;; Entretanto, com um compilador moderno, isso não é preciso; o LOOP
+;; 'form' compila igual e é bem mais fácil de ler.
+
+;; Noteq ue ``` é usado , bem como `,` e `@`. ``` é um operador 'quote-type'
+;; conhecido como 'quasiquote'; isso permite o uso de `,` . `,` permite "unquoting"
+;; e variáveis. @ interpolará listas.
+
+;; Gensym cria um símbolo único garantido que não existe em outras posições
+;; o sistema. Isto é porque macros são expandidas em tempo de compilação e
+;; variáveis declaradas na macro podem colidir com as variáveis usadas na
+;; código regular.
+
+;; Veja Practical Common Lisp para maiores informações sobre macros.
+```
+
+
+## Leitura Adicional
+
+[Continua em frente com Practical Common Lisp book.](http://www.gigamonkeys.com/book/)
+
+
+## Créditos
+
+Muitos agradecimentos ao pessoal de Schema por fornecer um grande ponto de partida
+o que facilitou muito a migração para Common Lisp.
+
+- [Paul Khuong](https://github.com/pkhuong) pelas grandes revisões.
diff --git a/pt-br/hy-pt.html.markdown b/pt-br/hy-pt.html.markdown
new file mode 100644
index 00000000..4230579d
--- /dev/null
+++ b/pt-br/hy-pt.html.markdown
@@ -0,0 +1,176 @@
+---
+language: hy
+filename: learnhy.hy
+contributors:
+ - ["Abhishek L", "http://twitter.com/abhishekl"]
+translators:
+ - ["Miguel Araújo", "https://github.com/miguelarauj1o"]
+lang: pt-br
+---
+
+Hy é um dialeto de Lisp escrito sobre Python. Isto é possível convertendo
+código Hy em árvore sintática abstrata python (ast). Portanto, isto permite
+hy chamar código python nativo e vice-versa.
+
+Este tutorial funciona para hy ≥ 0.9.12
+
+```clojure
+;; Isso dá uma introdução básica em hy, como uma preliminar para o link abaixo
+;; http://try-hy.appspot.com
+;;
+; Comentários em ponto-e-vírgula, como em outros LISPS
+
+;; s-noções básicas de expressão
+; programas Lisp são feitos de expressões simbólicas ou sexps que se assemelham
+(some-function args)
+; agora o essencial "Olá mundo"
+(print "hello world")
+
+;; Tipos de dados simples
+; Todos os tipos de dados simples são exatamente semelhantes aos seus homólogos
+; em python que
+42 ; => 42
+3.14 ; => 3.14
+True ; => True
+4+10j ; => (4+10j) um número complexo
+
+; Vamos começar com um pouco de aritmética muito simples
+(+ 4 1) ;=> 5
+; o operador é aplicado a todos os argumentos, como outros lisps
+(+ 4 1 2 3) ;=> 10
+(- 2 1) ;=> 1
+(* 4 2) ;=> 8
+(/ 4 1) ;=> 4
+(% 4 2) ;=> 0 o operador módulo
+; exponenciação é representado pelo operador ** como python
+(** 3 2) ;=> 9
+; formas aninhadas vão fazer a coisa esperada
+(+ 2 (* 4 2)) ;=> 10
+; também operadores lógicos e ou não e igual etc. faz como esperado
+(= 5 4) ;=> False
+(not (= 5 4)) ;=> True
+
+;; variáveis
+; variáveis são definidas usando SETV, nomes de variáveis podem usar utf-8, exceto
+; for ()[]{}",'`;#|
+(setv a 42)
+(setv π 3.14159)
+(def *foo* 42)
+;; outros tipos de dados de armazenamento
+; strings, lists, tuples & dicts
+; estes são exatamente os mesmos tipos de armazenamento de python
+"hello world" ;=> "hello world"
+; operações de string funcionam semelhante em python
+(+ "hello " "world") ;=> "hello world"
+; Listas são criadas usando [], a indexação começa em 0
+(setv mylist [1 2 3 4])
+; tuplas são estruturas de dados imutáveis
+(setv mytuple (, 1 2))
+; dicionários são pares de valores-chave
+(setv dict1 {"key1" 42 "key2" 21})
+; :nome pode ser utilizado para definir palavras-chave em hy que podem ser utilizados para as chaves
+(setv dict2 {:key1 41 :key2 20})
+; usar 'get' para obter o elemento em um índice/key
+(get mylist 1) ;=> 2
+(get dict1 "key1") ;=> 42
+; Alternativamente, se foram utilizadas palavras-chave que podem ser chamadas diretamente
+(:key1 dict2) ;=> 41
+
+;; funções e outras estruturas de programa
+; funções são definidas usando defn, o último sexp é devolvido por padrão
+(defn greet [name]
+ "A simple greeting" ; uma docstring opcional
+ (print "hello " name))
+
+(greet "bilbo") ;=> "hello bilbo"
+
+; funções podem ter argumentos opcionais, bem como argumentos-chave
+(defn foolists [arg1 &optional [arg2 2]]
+ [arg1 arg2])
+
+(foolists 3) ;=> [3 2]
+(foolists 10 3) ;=> [10 3]
+
+; funções anônimas são criados usando construtores 'fn' ou 'lambda'
+; que são semelhantes para 'defn'
+(map (fn [x] (* x x)) [1 2 3 4]) ;=> [1 4 9 16]
+
+;; operações de sequência
+; hy tem algumas utils embutidas para operações de sequência, etc.
+; recuperar o primeiro elemento usando 'first' ou 'car'
+(setv mylist [1 2 3 4])
+(setv mydict {"a" 1 "b" 2})
+(first mylist) ;=> 1
+
+; corte listas usando 'slice'
+(slice mylist 1 3) ;=> [2 3]
+
+; obter elementos de uma lista ou dict usando 'get'
+(get mylist 1) ;=> 2
+(get mydict "b") ;=> 2
+; lista de indexação começa a partir de 0, igual em python
+; assoc pode definir elementos em chaves/índices
+(assoc mylist 2 10) ; faz mylist [1 2 10 4]
+(assoc mydict "c" 3) ; faz mydict {"a" 1 "b" 2 "c" 3}
+; há toda uma série de outras funções essenciais que torna o trabalho com
+; sequências uma diversão
+
+;; Python interop
+;; importação funciona exatamente como em python
+(import datetime)
+(import [functools [partial reduce]]) ; importa fun1 e fun2 do module1
+(import [matplotlib.pyplot :as plt]) ; fazendo uma importação em foo como em bar
+; todos os métodos de python embutidas etc. são acessíveis a partir hy
+; a.foo(arg) is called as (.foo a arg)
+(.split (.strip "hello world ")) ;=> ["hello" "world"]
+
+;; Condicionais
+; (if condition (body-if-true) (body-if-false)
+(if (= passcode "moria")
+ (print "welcome")
+ (print "Speak friend, and Enter!"))
+
+; aninhe múltiplas cláusulas 'if else if' com cond
+(cond
+ [(= someval 42)
+ (print "Life, universe and everything else!")]
+ [(> someval 42)
+ (print "val too large")]
+ [(< someval 42)
+ (print "val too small")])
+
+; declarações de grupo com 'do', essas são executadas sequencialmente
+; formas como defn tem um 'do' implícito
+(do
+ (setv someval 10)
+ (print "someval is set to " someval)) ;=> 10
+
+; criar ligações lexicais com 'let', todas as variáveis definidas desta forma
+; tem escopo local
+(let [[nemesis {"superman" "lex luther"
+ "sherlock" "moriarty"
+ "seinfeld" "newman"}]]
+ (for [(, h v) (.items nemesis)]
+ (print (.format "{0}'s nemesis was {1}" h v))))
+
+;; classes
+; classes são definidas da seguinte maneira
+(defclass Wizard [object]
+ [[--init-- (fn [self spell]
+ (setv self.spell spell) ; init a mágica attr
+ None)]
+ [get-spell (fn [self]
+ self.spell)]])
+
+;; acesse hylang.org
+```
+
+### Outras Leituras
+
+Este tutorial é apenas uma introdução básica para hy/lisp/python.
+
+Docs Hy: [http://hy.readthedocs.org](http://hy.readthedocs.org)
+
+Repo Hy no Github: [http://github.com/hylang/hy](http://github.com/hylang/hy)
+
+Acesso ao freenode irc com #hy, hashtag no twitter: #hylang
diff --git a/pt-br/xml-pt.html.markdown b/pt-br/xml-pt.html.markdown
new file mode 100644
index 00000000..40ddbc3a
--- /dev/null
+++ b/pt-br/xml-pt.html.markdown
@@ -0,0 +1,133 @@
+---
+language: xml
+filename: learnxml.xml
+contributors:
+ - ["João Farias", "https://github.com/JoaoGFarias"]
+translators:
+ - ["Miguel Araújo", "https://github.com/miguelarauj1o"]
+lang: pt-br
+---
+
+XML é uma linguagem de marcação projetada para armazenar e transportar dados.
+
+Ao contrário de HTML, XML não especifica como exibir ou formatar os dados,
+basta carregá-lo.
+
+* Sintaxe XML
+
+```xml
+<!-- Comentários em XML são feitos desta forma -->
+
+<?xml version="1.0" encoding="UTF-8"?>
+<livraria>
+ <livro category="COZINHA">
+ <titulo lang="en">Everyday Italian</titulo>
+ <autor>Giada De Laurentiis</autor>
+ <year>2005</year>
+ <preco>30.00</preco>
+ </livro>
+ <livro category="CRIANÇAS">
+ <titulo lang="en">Harry Potter</titulo>
+ <autor>J K. Rowling</autor>
+ <year>2005</year>
+ <preco>29.99</preco>
+ </livro>
+ <livro category="WEB">
+ <titulo lang="en">Learning XML</titulo>
+ <autor>Erik T. Ray</autor>
+ <year>2003</year>
+ <preco>39.95</preco>
+ </livro>
+</livraria>
+
+<!-- Um típico arquivo XML é mostrado acima.
+ Ele começa com uma declaração, informando alguns metadados (opcional).
+
+ XML usa uma estrutura de árvore. Acima, o nó raiz é "Livraria", que tem
+ três nós filhos, todos os 'Livros'. Esses nós tem mais nós filhos,
+ e assim por diante...
+
+ Nós são criados usando tags abre/fecha, filhos são justamente os nós que
+ estão entre estes nós. -->
+
+
+<!-- XML traz dois tipos de dados:
+ 1 - Atributos -> Isso é metadados sobre um nó.
+ Normalmente, o parser XML usa esta informação para armazenar os dados
+ corretamente. Caracteriza-se por aparecer em parênteses dentro da tag
+ de abertura.
+ 2 - Elementos -> É dados puros.
+ Isso é o que o analisador irá recuperar a partir do arquivo XML.
+ Elementos aparecem entre as tags de abertura e fechamento,
+ sem parênteses. -->
+
+
+<!-- Abaixo, um elemento com dois atributos -->
+<arquivo type="gif" id="4293">computer.gif</arquivo>
+
+
+```
+
+* Documento bem formatado x Validação
+
+Um documento XML é bem formatado se estiver sintaticamente correto.No entanto,
+é possível injetar mais restrições no documento, utilizando definições de
+documentos, tais como DTD e XML Schema.
+
+Um documento XML que segue uma definição de documento é chamado válido, sobre
+esse documento.
+
+Com esta ferramenta, você pode verificar os dados XML fora da lógica da aplicação.
+
+```xml
+
+<!-- Abaixo, você pode ver uma versão simplificada do documento livraria,
+com a adição de definição DTD.-->
+
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE note SYSTEM "livraria.dtd">
+<livraria>
+ <livro category="COOKING">
+ <titulo >Everyday Italian</titulo>
+ <preco>30.00</preco>
+ </livro>
+</livraria>
+
+<!-- Este DTD poderia ser algo como:-->
+
+<!DOCTYPE note
+[
+<!ELEMENT livraria (livro+)>
+<!ELEMENT livro (titulo,preco)>
+<!ATTLIST livro category CDATA "Literature">
+<!ELEMENT titulo (#PCDATA)>
+<!ELEMENT preco (#PCDATA)>
+]>
+
+
+<!-- O DTD começa com uma declaração.
+ Na sequência, o nó raiz é declarado, o que requer uma ou mais crianças nós
+ 'Livro'. Cada 'Livro' deve conter exatamente um 'titulo' e um 'preco' e um
+ atributo chamado "categoria", com "Literatura", como o valor padrão.
+ Os nós "título" e "preço" contêm um conjunto de dados de caráter analisados.-->
+
+<!-- O DTD poderia ser declarado dentro do próprio arquivo XML .-->
+
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!DOCTYPE note
+[
+<!ELEMENT livraria (livro+)>
+<!ELEMENT livro (titulo,preco)>
+<!ATTLIST livro category CDATA "Literature">
+<!ELEMENT titulo (#PCDATA)>
+<!ELEMENT preco (#PCDATA)>
+]>
+
+<livraria>
+ <livro category="COOKING">
+ <titulo >Everyday Italian</titulo>
+ <preco>30.00</preco>
+ </livro>
+</livraria>
+``` \ No newline at end of file