summaryrefslogtreecommitdiffhomepage
path: root/pt-br
diff options
context:
space:
mode:
Diffstat (limited to 'pt-br')
-rw-r--r--pt-br/bash-pt.html.markdown22
-rw-r--r--pt-br/c-pt.html.markdown3
-rw-r--r--pt-br/clojure-macros-pt.html.markdown16
-rw-r--r--pt-br/clojure-pt.html.markdown602
-rw-r--r--pt-br/csharp-pt.html.markdown45
-rw-r--r--pt-br/css-pt.html.markdown24
-rw-r--r--pt-br/cypher-pt.html.markdown2
-rw-r--r--pt-br/elisp-pt.html.markdown2
-rw-r--r--pt-br/haskell-pt.html.markdown4
-rw-r--r--pt-br/javascript-pt.html.markdown12
-rw-r--r--pt-br/julia-pt.html.markdown2
-rw-r--r--pt-br/latex-pt.html.markdown2
-rw-r--r--pt-br/markdown-pt.html.markdown223
-rw-r--r--pt-br/pascal-pt.html.markdown3
-rw-r--r--pt-br/php-pt.html.markdown2
-rw-r--r--pt-br/python-pt.html.markdown881
-rw-r--r--pt-br/python3-pt.html.markdown746
-rw-r--r--pt-br/pythonlegacy-pt.html.markdown509
-rwxr-xr-xpt-br/stylus-pt.html.markdown8
-rw-r--r--pt-br/typescript-pt.html.markdown6
-rw-r--r--pt-br/vim-pt.html.markdown11
-rw-r--r--pt-br/whip-pt.html.markdown2
-rw-r--r--pt-br/yaml-pt.html.markdown12
23 files changed, 1711 insertions, 1428 deletions
diff --git a/pt-br/bash-pt.html.markdown b/pt-br/bash-pt.html.markdown
index 3a48d994..86d1a8ea 100644
--- a/pt-br/bash-pt.html.markdown
+++ b/pt-br/bash-pt.html.markdown
@@ -33,7 +33,7 @@ diretamente no shell.
# Exemplo simples de hello world:
echo Hello World!
-# Cada comando começa com uma nova linha, ou após um ponto virgula:
+# Cada comando começa com uma nova linha, ou após um ponto e vírgula:
echo 'Essa é a primeira linha'; echo 'Essa é a segunda linha'
# A declaração de variáveis é mais ou menos assim
@@ -41,14 +41,14 @@ Variavel="Alguma string"
# Mas não assim:
Variavel = "Alguma string"
-# Bash interpretará Variavel como um comando e tentará executar e lhe retornar
+# Bash interpretará Variavel como um comando e tentará executar e lhe retornará
# um erro porque o comando não pode ser encontrado.
# Ou assim:
Variavel= 'Alguma string'
-# Bash interpretará 'Alguma string' como um comando e tentará executar e lhe retornar
+# Bash interpretará 'Alguma string' como um comando e tentará executar e lhe retornará
# um erro porque o comando não pode ser encontrado. (Nesse caso a a parte 'Variavel='
-# é vista com uma declaração de variável valida apenas para o escopo do comando 'Uma string').
+# é vista com uma declaração de variável válida apenas para o escopo do comando 'Uma string').
# Usando a variável:
echo $Variavel
@@ -65,12 +65,12 @@ echo ${Variavel/Alguma/Uma}
# Substring de uma variável
Tamanho=7
echo ${Variavel:0:Tamanho}
-# Isso retornará apenas os 7 primeiros caractéres da variável
+# Isso retornará apenas os 7 primeiros caracteres da variável
# Valor padrão de uma variável
echo ${Foo:-"ValorPadraoSeFooNaoExistirOuEstiverVazia"}
# Isso funciona para nulo (Foo=) e (Foo=""); zero (Foo=0) retorna 0.
-# Note que isso apenas retornar o valor padrão e não mudar o valor da variável.
+# Note que isso apenas retornará o valor padrão e não mudará o valor da variável.
# Variáveis internas
# Tem algumas variáveis internas bem uteis, como
@@ -86,7 +86,7 @@ read Nome # Note que nós não precisamos declarar a variável
echo Ola, $Nome
# Nós temos a estrutura if normal:
-# use 'man test' para mais infomações para as condicionais
+# use 'man test' para mais informações para as condicionais
if [ $Nome -ne $USER ]
then
echo "Seu nome não é o seu username"
@@ -109,7 +109,7 @@ then
echo "Isso vai rodar se $Nome é Daniela ou Jose."
fi
-# Expressões são denotadas com o seguinte formato
+# Expressões são escritas com o seguinte formato
echo $(( 10 + 5))
# Diferentemente das outras linguagens de programação, bash é um shell, então ele
@@ -118,9 +118,9 @@ echo $(( 10 + 5))
ls
#Esse comando tem opções que controlam sua execução
-ls -l # Lista todo arquivo e diretorio em linhas separadas
+ls -l # Lista todo arquivo e diretório em linhas separadas
-# Os resultados do comando anterior pode ser passado para outro comando como input.
+# Os resultados do comando anterior podem ser passados para outro comando como input.
# O comando grep filtra o input com o padrão passado. É assim que listamos apenas
# os arquivos .txt no diretório atual:
ls -l | grep "\.txt"
@@ -241,7 +241,7 @@ head -n 10 arquivo.txt
sort arquivo.txt
# reporta ou omite as linhas repetidas, com -d você as reporta
uniq -d arquivo.txt
-# exibe apenas a primeira coluna após o caráctere ','
+# exibe apenas a primeira coluna após o caractere ','
cut -d ',' -f 1 arquivo.txt
# substitui todas as ocorrencias de 'okay' por 'legal' em arquivo.txt (é compativel com regex)
sed -i 's/okay/legal/g' file.txt
diff --git a/pt-br/c-pt.html.markdown b/pt-br/c-pt.html.markdown
index e1c27958..4e55f068 100644
--- a/pt-br/c-pt.html.markdown
+++ b/pt-br/c-pt.html.markdown
@@ -8,6 +8,7 @@ translators:
- ["João Farias", "https://github.com/JoaoGFarias"]
- ["Elton Viana", "https://github.com/eltonvs"]
- ["Cássio Böck", "https://github.com/cassiobsilva"]
+ - ["Heitor P. de Bittencourt", "https://github.com/heitorPB/"]
lang: pt-br
filename: c-pt.el
---
@@ -641,7 +642,7 @@ typedef void (*minha_função_type)(char *);
Este é *o* livro sobre C, escrito pelos criadores da linguagem. Mas cuidado - ele é antigo e contém alguns erros (bem,
ideias que não são mais consideradas boas) ou práticas ultrapassadas.
-Outra boa referência é [Learn C the hard way](http://c.learncodethehardway.org/book/).
+Outra boa referência é [Learn C the hard way](http://learncodethehardway.org/c/).
Se você tem uma pergunta, leia [compl.lang.c Frequently Asked Questions](http://c-faq.com).
diff --git a/pt-br/clojure-macros-pt.html.markdown b/pt-br/clojure-macros-pt.html.markdown
index d56840e0..c686bb80 100644
--- a/pt-br/clojure-macros-pt.html.markdown
+++ b/pt-br/clojure-macros-pt.html.markdown
@@ -13,15 +13,15 @@ do Clojure lhe dá acesso a toda a extensão da linguagem
para escrever rotinas de geração de código chamados "macros". Macros fornecem uma poderosa forma de adequar a linguagem
às suas necessidades.
-Pórem Tenha cuidado. É considerado má pratica escrever uma macro quando uma função vai fazer. Use uma macro apenas
-quando você precisar do controle sobre quando ou se os argumentos para um formulário será avaliado.
+Pórem, tenha cuidado. É considerado má pratica escrever uma macro quando uma função vai fazer. Use uma macro apenas
+quando você precisar de controle sobre quando ou se os argumentos de um formulário serão avaliados.
Você vai querer estar familiarizado com Clojure. Certifique-se de entender tudo em
-[Clojure em Y Minutos](/docs/clojure/).
+[Aprenda Clojure em Y Minutos](/docs/clojure/).
```clojure
-;; Defina uma macro utilizando defmacro. Sua macro deve ter como saida uma lista que possa
-;; ser avaliada como codigo Clojure.
+;; Defina uma macro utilizando defmacro. Sua macro deve ter como saída uma lista que possa
+;; ser avaliada como código Clojure.
;;
;; Essa macro é a mesma coisa que se você escrever (reverse "Hello World")
(defmacro my-first-macro []
@@ -33,14 +33,14 @@ Você vai querer estar familiarizado com Clojure. Certifique-se de entender tudo
(macroexpand '(my-first-macro))
;; -> (#<core$reverse clojure.core$reverse@xxxxxxxx> "Hello World")
-;; Você pode avaliar o resultad de macroexpand diretamente:
+;; Você pode avaliar o resultado de macroexpand diretamente:
(eval (macroexpand '(my-first-macro)))
; -> (\d \l \o \r \W \space \o \l \l \e \H)
-;; mas você deve usar esse mais suscinto, sintax como de função:
+;; mas você deve usar essa sintaxe mais sucinta e familiar a funções:
(my-first-macro) ; -> (\d \l \o \r \W \space \o \l \l \e \H)
-;; Você pode tornar as coisas mais faceis pra você, utilizando a sintaxe de citação mais suscinta
+;; Você pode tornar as coisas mais fáceis pra você, utilizando a sintaxe de citação mais suscinta
;; para criar listas nas suas macros:
(defmacro my-first-quoted-macro []
'(reverse "Hello World"))
diff --git a/pt-br/clojure-pt.html.markdown b/pt-br/clojure-pt.html.markdown
index b88d4eec..e40b8fe7 100644
--- a/pt-br/clojure-pt.html.markdown
+++ b/pt-br/clojure-pt.html.markdown
@@ -5,12 +5,13 @@ contributors:
- ["Adam Bard", "http://adambard.com/"]
translators:
- ["Mariane Siqueira Machado", "https://twitter.com/mariane_sm"]
+ - ["Ygor Sad", "https://github.com/ysads"]
lang: pt-br
---
-Clojure é uma linguagem da família do Lisp desenvolvida para a JVM (máquina virtual Java). Possui uma ênfase muito mais forte em [programação funcional] (https://pt.wikipedia.org/wiki/Programa%C3%A7%C3%A3o_funcional) pura do que Common Lisp, mas inclui diversas utilidades [STM](https://en.wikipedia.org/wiki/Software_transactional_memory) para lidar com estado a medida que isso se torna necessário.
+Clojure é uma linguagem da família do Lisp desenvolvida para a JVM (máquina virtual Java). Possui uma ênfase muito mais forte em [programação funcional] (https://pt.wikipedia.org/wiki/Programa%C3%A7%C3%A3o_funcional) pura do que Common Lisp, mas inclui diversos recursos [STM](https://en.wikipedia.org/wiki/Software_transactional_memory) para lidar com estado e mutabilidade, caso isso seja necessário.
-Essa combinação permite gerenciar processamento concorrente de maneira muito simples, e frequentemente de maneira automática.
+Essa combinação permite gerenciar processamento concorrente de maneira muito simples - frequentemente, de modo automático.
(Sua versão de clojure precisa ser pelo menos 1.2)
@@ -18,367 +19,552 @@ Essa combinação permite gerenciar processamento concorrente de maneira muito s
```clojure
; Comentários começam por ponto e vírgula
-; Clojure é escrito em "forms", os quais são simplesmente
-; listas de coisas dentro de parênteses, separados por espaços em branco.
+; Código Clojure é escrito em formas - 'forms', em inglês. Tais estruturas são
+; simplesmente listas de valores encapsuladas dentro de parênteses, separados por
+; espaços em branco.
-; O "reader" (leitor) de Clojure presume que o primeiro elemento de
-; uma par de parênteses é uma função ou macro, e que os resto são argumentos.
+; Ao interpretar um código em Clojure, o interpretador ou leitor - do inglês 'reader' - assume
+; que o primeiro valor dentro de uma forma é uma função ou macro, de modo que os demais valores
+; são seus argumentos. Isso se deve ao fato de que Clojure, por ser uma derivação de Lisp,
+; usa notação prefixa (ou polonesa).
-: A primeira chamada de um arquivo deve ser ns, para configurar o namespace (espaço de nomes)
+; Num arquivo, a primeira chamada deve ser sempre para a função ns,
+; que é responsável por definir em qual namespace o código em questão
+; deve ser alocado
(ns learnclojure)
; Alguns exemplos básicos:
-; str cria uma string concatenando seus argumentos
-(str "Hello" " " "World") ; => "Hello World"
+; Aqui, str é uma função e "Olá" " " e "Mundo" são seus argumentos. O que ela faz é criar
+; uma string concatenando seus argumentos.
+(str "Olá" " " "Mundo") ; => "Olá Mundo"
-; Cálculos são feitos de forma direta e intuitiva
+; Note que espaços em branco separam os argumentos de uma função. Opcionalmente vírgulas
+; podem ser usadas, se você quiser.
+(str, "Olá", " ", "Mundo") ; => "Olá Mundo"
+
+; As operações matemáticas básicas usam os operadores de sempre
(+ 1 1) ; => 2
(- 2 1) ; => 1
(* 1 2) ; => 2
(/ 2 1) ; => 2
-; Você pode comparar igualdade utilizando =
+; Esses operadores aceitam um número arbitrário de argumentos
+(+ 2 2 2) ; = 2 + 2 + 2 => 6
+(- 5 1 1) ; = 5 - 1 - 1 => 3
+(* 3 3 3 3) ; = 3 * 3 * 3 * 3 => 81
+
+; Para verificar se dois valores são iguais, o operador = pode ser usado
(= 1 1) ; => true
(= 2 1) ; => false
-; Negação para operações lógicas
-(not true) ; => false
+; Para saber se dois valores são diferentes
+(not= 1 2) ; => true
+(not (= 1 2)) ; => true
-; Aninhar "forms" funciona como esperado
+; Conforme vimos acima, é possível aninhar duas formas
(+ 1 (- 3 2)) ; = 1 + (3 - 2) => 2
+(* (- 3 2) (+ 1 2)) ; = (3 - 2) * (1 + 2) => 3
+
+; Se a leitura ficar comprometida, as fórmulas também podem ser escritas em múltiplas linhas
+(* (- 3 2)
+ (+ 1 2)) ; => 3
+(*
+ (- 3 2)
+ (+ 1 2)) ; => 3
+
; Tipos
;;;;;;;;;;;;;
-; Clojure usa os tipos de objetos de Java para booleanos, strings e números.
-; Use `class` para inspecioná-los
-(class 1) ; Literais Integer são java.lang.Long por padrão
-(class 1.); Literais Float são java.lang.Double
-(class ""); Strings são sempre com aspas duplas, e são java.lang.String
+; Por ter interoperabilidade com Java, Clojure usa os tipos de objetos de Java para booleanos,
+; strings e números. Para descobrir qual o tipo de um valor, você pode usar a função `class`:
+(class 1234) ; Literais Integer são java.lang.Long por padrão
+(class 1.50) ; Literais Float são java.lang.Double
+(class "oi") ; Strings sempre usam aspas duplas e são java.lang.String
(class false) ; Booleanos são java.lang.Boolean
-(class nil); O valor "null" é chamado nil
-; Se você quiser criar um lista de literais, use aspa simples para
-; ela não ser avaliada
-'(+ 1 2) ; => (+ 1 2)
-; (que é uma abreviação de (quote (+ 1 2)))
+; Tenha cuidado, ao dividir valores inteiros:
+(= (/ 1 2)
+ (/ 1.0 2.0)) ; => false
+
+(class (/ 1 2)) ; => clojure.lang.Ratio
+(class (/ 1.0 2.0)) ; => java.lang.Double
+
+; Aqui temos uma diferença em relação a Java, pois valores nulos são representados por `nil`
+(class nil) ; nil
-; É possível avaliar uma lista com aspa simples
-(eval '(+ 1 2)) ; => 3
; Coleções e sequências
;;;;;;;;;;;;;;;;;;;
-; Listas são estruturas encadeadas, enquanto vetores são implementados como arrays.
-; Listas e Vetores são classes Java também!
-(class [1 2 3]); => clojure.lang.PersistentVector
-(class '(1 2 3)); => clojure.lang.PersistentList
+; Os dois tipos básicos de coleção são listas - "list" em inglês - e vetores - "vectors"
+; no original. A principal diferença entre eles se
+; dá pela implementação:
+; - Vetores são implementados como arrays
+; - Listas são listas ligadas
+(class [1 2 3]) ; => clojure.lang.PersistentVector
+(class '(1 2 3)) ; => clojure.lang.PersistentList
-; Uma lista é escrita como (1 2 3), mas temos que colocar a aspa
-; simples para impedir o leitor (reader) de pensar que é uma função.
-; Também, (list 1 2 3) é o mesmo que '(1 2 3)
+; Outra forma de declarar listas é usando a função list
+(list 1 2 3) ; => '(1 2 3)
-; "Coleções" são apenas grupos de dados
-; Listas e vetores são ambos coleções:
+; Clojure classifica conjuntos de dados de duas maneiras
+
+; "Coleções" são grupos simples de dados
+; Tanto listas quanto vetores são coleções:
(coll? '(1 2 3)) ; => true
(coll? [1 2 3]) ; => true
; "Sequências" (seqs) são descrições abstratas de listas de dados.
-; Apenas listas são seqs.
+; Sequências - ou seqs - são conjuntos de dados com avaliação "lazy"
+; Apenas listas são seqs:
(seq? '(1 2 3)) ; => true
(seq? [1 2 3]) ; => false
-; Um seq precisa apenas prover uma entrada quando é acessada.
-; Portanto, já que seqs podem ser avaliadas sob demanda (lazy) -- elas podem definir séries infinitas:
-(range 4) ; => (0 1 2 3)
-(range) ; => (0 1 2 3 4 ...) (uma série infinita)
-(take 4 (range)) ; (0 1 2 3)
+; Ter avaliação lazy significa que uma seq somente precisa prover uma informação quando
+; ela for requisitada. Isso permite às seqs representar listas infinitas.
+(range) ; => (0 1 2 3 4 ...)
+(cycle [1 2]) ; => (1 2 1 2 1 2 ...)
+(take 4 (range)) ; => (0 1 2 3)
-; Use cons para adicionar um item no início de uma lista ou vetor
+; A função cons é usada para adicionar um item ao início de uma lista ou vetor:
(cons 4 [1 2 3]) ; => (4 1 2 3)
(cons 4 '(1 2 3)) ; => (4 1 2 3)
-; Conj adiciona um item em uma coleção sempre do jeito mais eficiente.
-; Para listas, elas inserem no início. Para vetores, é inserido no final.
+; Já conj adiciona um item em uma coleção sempre do jeito mais eficiente.
+; Em listas, isso significa inserir no início. Já em vetores, ao final.
(conj [1 2 3] 4) ; => [1 2 3 4]
(conj '(1 2 3) 4) ; => (4 1 2 3)
-; Use concat para concatenar listas e vetores
+; Concatenação de coleções pode ser feita usando concat. Note que ela sempre gera uma
+; seq como resultado e está sujeita a problemas de perfomance em coleções grandes, por
+; conta da natureza lazy das seqs.
+(concat '(1 2) [3 4]) ; => (1 2 3 4)
(concat [1 2] '(3 4)) ; => (1 2 3 4)
-; Use filter, map para interagir com coleções
+; Outra forma de concatenar coleções é usando into. Ela não está sujeita a problemas
+; com a avaliação lazy, mas o resultado final da ordem e do tipo dos argumentos passados
+(into [1 2] '(3 4)) ; => [1 2 3 4]
+(into '(1 2) [3 4]) ; => (4 3 1 2)
+
+; Note que em into a ordem dos parâmetros influencia a coleção final.
+(into [1 2] '(3 4)) ; => (1 2 3 4)
+(into '(1 2) [3 4]) ; => (4 3 1 2)
+
+; As funções filter e map podem ser usadas para interagir com as coleções. Repare que
+; elas sempre retornam seqs, independentemente do tipo do seu argumento.
(map inc [1 2 3]) ; => (2 3 4)
-(filter even? [1 2 3]) ; => (2)
+(filter even? [1 2 3 4]) ; => (2 4)
+
+; Use reduce reduzir coleções a um único valor. Também é possível passar um argumento
+; para o valor inicial das operações
+(reduce + [1 2 3]) ; = (+ (+ (+ 1 2) 3) 4) => 10
+(reduce + 10 [1 2 3 4]) ; = (+ (+ (+ (+ 10 1) 2) 3) 4) => 20
+(reduce conj [] '(3 2 1)) ; = (conj (conj (conj [] 3) 2) 1) => [3 2 1]
+
+; Reparou na semelhança entre listas e as chamadas de código Clojure? Isso se deve ao
+; fato de que todo código clojure é escrito usando listas. É por isso que elas sempre
+; são declaradas com o caracter ' na frente. Dessa forma o interpretador não tenta
+; avaliá-las.
+'(+ 2 3) ; cria uma lista com os elementos +, 2 e 3
+(+ 2 3) ; o interpretador chama a função + passando como argumentos 2 e 3
-; Use reduce para reduzi-los
-(reduce + [1 2 3 4])
-; = (+ (+ (+ 1 2) 3) 4)
-; => 10
+; Note que ' é apenas uma abreviação para a função quote.
+(quote (1 2 3)) ; => '(1 2 3)
+
+; É possível passar uma lista para que o interpretador a avalie. Note que isso está
+; sujeito ao primeiro elemento da lista ser um literal com um nome de uma função válida.
+(eval '(+ 2 3)) ; => 5
+(eval '(1 2 3)) ; dá erro pois o interpretador tenta chamar a função 1, que não existe
-; Reduce pode receber um argumento para o valor inicial
-(reduce conj [] '(3 2 1))
-; = (conj (conj (conj [] 3) 2) 1)
-; => [3 2 1]
; Funções
;;;;;;;;;;;;;;;;;;;;;
-; Use fn para criar novas funções. Uma função sempre retorna
-; sua última expressão.
-(fn [] "Hello World") ; => fn
+; Use fn para criar novas funções. Uma função sempre retorna sua última expressão.
+(fn [] "Olá Mundo") ; => fn
+
+; Para executar suas funções, é preciso chamá-las, envolvendo-as em parênteses.
+((fn [] "Olá Mundo")) ; => "Olá Mundo"
+
+; Como isso não é muito prático, você pode nomear funções atribuindo elas a literais.
+; Isso torna muito mais fácil chamá-las:
+(def ola-mundo (fn [] "Olá Mundo")) ; => fn
+(ola-mundo) ; => "Olá Mundo"
-; (É necessário colocar parênteses para chamá-los)
-((fn [] "Hello World")) ; => "Hello World"
+; Você pode abreviar esse processo usando defn:
+(defn ola-mundo [] "Olá Mundo")
-; Você pode atribuir valores a variáveis utilizando def
-(def x 1)
-x ; => 1
+; Uma função pode receber uma lista de argumentos:
+(defn ola
+ [nome]
+ (str "Olá " nome))
+(ola "Jonas") ; => "Olá Jonas"
-; Atribua uma função para uma var
-(def hello-world (fn [] "Hello World"))
-(hello-world) ; => "Hello World"
+; É possível criar funções que recebam multivariadas, isto é, que aceitam números
+; diferentes de argumentos:
+(defn soma
+ ([] 0)
+ ([a] a)
+ ([a b] (+ a b)))
-; Você pode abreviar esse processo usando defn
-(defn hello-world [] "Hello World")
+(soma) ; => 0
+(soma 1) ; => 1
+(soma 1 2) ; => 3
-; O [] é uma lista de argumentos para um função.
-(defn hello [name]
- (str "Hello " name))
-(hello "Steve") ; => "Hello Steve"
+; Funções podem agrupar argumentos extras em uma seq:
+(defn conta-args
+ [& args]
+ (str "Você passou " (count args) " argumentos: " args))
+(conta-args 1 2 3 4) ; => "Você passou 4 argumentos: (1 2 3 4)"
-; Você pode ainda usar essa abreviação para criar funcões:
-(def hello2 #(str "Hello " %1))
-(hello2 "Fanny") ; => "Hello Fanny"
+; Você pode misturar argumentos regulares e argumentos em seq:
+(defn ola-e-conta
+ [nome & args]
+ (str "Olá " nome ", você passou " (count args) " argumentos extras"))
+(ola-e-conta "Maria" 1 2 3 4) ; => "Olá Maria, você passou 4 argumentos extras"
-; Vocé pode ter funções multi-variadic, isto é, com um número variável de argumentos
-(defn hello3
- ([] "Hello World")
- ([name] (str "Hello " name)))
-(hello3 "Jake") ; => "Hello Jake"
-(hello3) ; => "Hello World"
-; Funções podem agrupar argumentos extras em uma seq
-(defn count-args [& args]
- (str "You passed " (count args) " args: " args))
-(count-args 1 2 3) ; => "You passed 3 args: (1 2 3)"
+; Nos exemplos acima usamos def para associar nomes a funções, mas poderíamos usá-lo
+; para associar nomes a quaisquer valores:
+(def xis :x)
+xis ; => :x
-; Você pode misturar argumentos regulares e argumentos em seq
-(defn hello-count [name & args]
- (str "Hello " name ", you passed " (count args) " extra args"))
-(hello-count "Finn" 1 2 3)
-; => "Hello Finn, you passed 3 extra args"
+; Inclusive, tais literais podem possuir alguns caracteres não usuais em outras linguagens:
+(def *num-resposta* 42)
+(def conexao-ativa? true)
+(def grito-de-medo! "AAAAAAA")
+(def ->vector-vazio [])
+
+; É possível, inclusive, criar apelidos a nomes que já existem:
+(def somar! soma)
+(somar! 41 1) ; => 42
+
+; Uma forma rápida de criar funções é por meio de funções anônimas. Elas são ótimas
+; para manipulação de coleções e seqs, já que podem ser passadas para map, filter
+; e reduce. Nessas funções, % é substituído por cada um dos items na seq ou na coleção:
+(filter #(not= % nil) ["Joaquim" nil "Maria" nil "Antônio"]) ; => ("Joaquim" "Maria" "Antônio")
+(map #(* % (+ % 2)) [1 2]) ; => (3 8)
; Mapas
;;;;;;;;;;
-; Hash maps e array maps compartilham uma mesma interface. Hash maps são mais
-; rápidos para pesquisa mas não mantém a ordem da chave.
+; Existem dois tipos de mapas: hash maps e array maps. Ambos compartilham uma mesma
+; interface e funções. Hash maps são mais rápidos para retornar dados, mas não mantém
+; as chaves ordenadas.
(class {:a 1 :b 2 :c 3}) ; => clojure.lang.PersistentArrayMap
(class (hash-map :a 1 :b 2 :c 3)) ; => clojure.lang.PersistentHashMap
-; Arraymaps pode automaticamente se tornar hashmaps através da maioria das
-; operações se eles ficarem grandes o suficiente, portanto não há necessida de
-; se preocupar com isso.
-
-;Mapas podem usar qualquer valor que se pode derivar um hash como chave
+; Clojure converte automaticamente array maps em hash maps, por meio da maioria das
+; funções de manipulação de mapas, caso eles fiquem grandes o suficiente. Não é
+; preciso se preocupar com isso.
-
-; Mapas podem usar qualquer valor em que se pode derivar um hash como chave,
-; mas normalmente palavras-chave (keywords) são melhores.
-; Keywords são como strings mas com algumas vantagens.
+; Chaves podem ser qualquer valor do qual possa ser obtido um hash, mas normalmente
+; usam-se keywords como chave, por possuírem algumas vantagens.
(class :a) ; => clojure.lang.Keyword
-(def stringmap {"a" 1, "b" 2, "c" 3})
-stringmap ; => {"a" 1, "b" 2, "c" 3}
+; Keywords são como strings, porém, duas keywords de mesmo valor são sempre armazenadas
+; na mesma posição de memória, o que as torna mais eficientes.
+(identical? :a :a) ; => true
+(identical? (String. "a") (String. "a")) ; => false
-(def keymap {:a 1, :b 2, :c 3})
-keymap ; => {:a 1, :c 3, :b 2}
+(def mapa-strings {"a" 1 "b" 2 "c" 3})
+mapa-strings ; => {"a" 1, "b" 2, "c" 3}
-; A propósito, vírgulas são sempre tratadas como espaçoes em branco e não fazem nada.
+(def mapa-keywords {:a 1 :b 2 :c 3})
+mapa-keywords ; => {:a 1, :c 3, :b 2}
-; Recupere o valor de um mapa chamando ele como uma função
-(stringmap "a") ; => 1
-(keymap :a) ; => 1
+; Você pode usar um mapa como função para recuperar um valor dele:
+(mapa-strings "a") ; => 1
+(mapa-keywords :a) ; => 1
-; Uma palavra-chave pode ser usada pra recuperar os valores de um mapa
-(:b keymap) ; => 2
+; Se a chave buscada for uma keyword, ela também pode ser usada como função para recuperar
+; valores. Note que isso não funciona com strings.
+(:b mapa-keywords) ; => 2
+("b" mapa-strings) ; => java.lang.String cannot be cast to clojure.lang.IFn
-; Não tente isso com strings
-;("a" stringmap)
-; => Exception: java.lang.String cannot be cast to clojure.lang.IFn
+; Se você buscar uma chave que não existe, Clojure retorna nil:
+(mapa-strings "d") ; => nil
-; Buscar uma chave não presente retorna nil
-(stringmap "d") ; => nil
+; Use assoc para adicionar novas chaves em um mapa.
+(def mapa-keywords-estendido (assoc mapa-keywords :d 4))
+mapa-keywords-estendido ; => {:a 1, :b 2, :c 3, :d 4}
-; Use assoc para adicionar novas chaves para hash-maps
-(def newkeymap (assoc keymap :d 4))
-newkeymap ; => {:a 1, :b 2, :c 3, :d 4}
+; Mas lembre-se que tipos em Clojure são sempre imutáveis! Isso significa que o mapa
+; inicial continua com as mesmas informações e um novo mapa, com mais dados, é criado
+; a partir dele
+mapa-keywords ; => {:a 1, :b 2, :c 3}
-; Mas lembre-se, tipos em Clojure são sempre imutáveis!
-keymap ; => {:a 1, :b 2, :c 3}
+; assoc também pode ser usado para atualizar chaves:
+(def outro-mapa-keywords (assoc mapa-keywords :a 0))
+outro-mapa-keywords ; => {:a 0, :b 2, :c 3}
; Use dissoc para remover chaves
-(dissoc keymap :a :b) ; => {:c 3}
+(dissoc mapa-keywords :a :b) ; => {:c 3}
+
+; Mapas também são coleções - mas não seqs!
+(coll? mapa-keywords) ; => true
+(seq? mapa-keywords) ; => false
+
+; É possível usar filter, map e qualquer outra função de coleções em mapas.
+; Porém a cada iteração um vetor no formato [chave valor] vai ser passado como
+; argumento. Por isso é conveniente usar funções anônimas.
+(filter #(odd? (second %)) mapa-keywords) ; => ([:a 1] [:c 3])
+(map #(inc (second %)) mapa-keywords) ; => (2 3 4)
; Conjuntos
;;;;;;
-(class #{1 2 3}) ; => clojure.lang.PersistentHashSet
+; Conjuntos são um tipo especial de coleções que não permitem elementos repetidos.
+; Eles podem ser criados com #{} ou com a função set.
(set [1 2 3 1 2 3 3 2 1 3 2 1]) ; => #{1 2 3}
+(class #{1 2 3}) ; => clojure.lang.PersistentHashSet
-; Adicione um membro com conj
-(conj #{1 2 3} 4) ; => #{1 2 3 4}
+; Note que nem sempre um set vai armazenar seus elementos na ordem esperada.
+(def meu-conjunto #{1 2 3})
+meu-conjunto ; => #{1 3 2}
-; Remova um membro com disj
-(disj #{1 2 3} 1) ; => #{2 3}
+; Adição funciona normalmente com conj.
+(conj meu-conjunto 4) ; => #{1 4 3 2}
-; Test por existência usando set como função:
-(#{1 2 3} 1) ; => 1
-(#{1 2 3} 4) ; => nil
+; Remoção, no entanto, precisa ser feita com disj:
+(disj meu-conjunto 1) ; => #{3 2}
-; Existem muitas outras funções no namespace clojure.sets
+; Para saber se um elemento está em um conjunto, use-o como função. Nesse aspecto
+; conjuntos funcionam de maneira semelhante a mapas.
+(meu-conjunto 1) ; => 1
+(meu-conjunto 4) ; => nil
-; Forms úteis
-;;;;;;;;;;;;;;;;;
-; Construções lógicas em Clojure são como macros, e
-; se parecem com as demais
-(if false "a" "b") ; => "b"
-(if false "a") ; => nil
+; Condicionais e blocos
+;;;;;;;;;;;;;;;;;
-; Use let para criar um novo escopo associando sîmbolos a valores (bindings)
+; Você pode usar um bloco let para criar um escopo local, no qual estarão disponíveis
+; os nomes que você definir:
(let [a 1 b 2]
- (> a b)) ; => false
+ (+ a b)) ; => 3
-; Agrupe comandos juntos com "do"
-(do
- (print "Hello")
- "World") ; => "World" (prints "Hello")
+(let [cores {:yellow "Amarelo" :blue "Azul"}
+ nova-cor :red
+ nome-cor "Vermelho"]
+ (assoc cores nova-cor nome-cor)) ; => {:yellow "Amarelo", :blue "Azul", :red "Vermelho"}
-; Funções tem um do implícito
-(defn print-and-say-hello [name]
- (print "Saying hello to " name)
- (str "Hello " name))
-(print-and-say-hello "Jeff") ;=> "Hello Jeff" (prints "Saying hello to Jeff")
+; Formas do tipo if aceitam três argumentos: a condição de teste, o comando a ser
+; executado caso a condição seja positiva; e o comando para o caso de ela ser falsa.
+(if true "a" "b") ; => "a"
+(if false "a" "b") ; => "b"
+
+; Opcionalmente você pode não passar o último argumento, mas se a condição for falsa
+; o if vai retornar nil.
+(if false "a") ; => nil
+
+; A forma if somente aceita um comando para ser executado em cada caso. Se você
+; precisar executar mais comandos, você pode usar a função do:
+(if true
+ (do
+ (print "Olá ")
+ (print "Mundo"))) ; => escreve "Olá Mundo" na saída
+
+; Se você só deseja tratar o caso de sua condição ser verdadeira, o comando when é
+; uma alternativa melhor. Seu comportamento é idêntico a um if sem condição negativa.
+; Uma de suas vantagens é permitir a execução de vários comandos sem exigir do:
+(when true "a") ; => "a"
+(when true
+ (print "Olá ")
+ (print "Mundo")) ; => também escreve "Olá Mundo" na saída
+
+; Isso ocorre porque when possui um bloco do implícito. O mesmo se aplica a funções e
+; comandos let:
+(defn escreve-e-diz-xis
+ [nome]
+ (print "Diga xis, " nome)
+ (str "Olá " nome))
+(escreve-e-diz-xis "João") ;=> "Olá João", além de escrever "Diga xis, João" na saída.
+
+(let [nome "Nara"]
+ (print "Diga xis, " nome)
+ (str "Olá " nome)) ;=> "Olá João", além de escrever "Diga xis, João" na saída.
-; Assim como let
-(let [name "Urkel"]
- (print "Saying hello to " name)
- (str "Hello " name)) ; => "Hello Urkel" (prints "Saying hello to Urkel")
; Módulos
;;;;;;;;;;;;;;;
-; Use "use" para poder usar todas as funções de um modulo
+; Você pode usar a função use para carregar todas as funções de um módulo.
(use 'clojure.set)
-; Agora nós podemos usar operações com conjuntos
+; Agora nós podemos usar operações de conjuntos definidas nesse módulo:
(intersection #{1 2 3} #{2 3 4}) ; => #{2 3}
(difference #{1 2 3} #{2 3 4}) ; => #{1}
-; Você pode escolher um subconjunto de funções para importar
-(use '[clojure.set :only [intersection]])
-
-; Use require para importar um módulo
+; Isso porém não é uma boa prática pois dificulta saber de qual módulo cada função
+; veio, além de expor o código a conflitos de nomes, caso dois módulos diferentes
+; definam funções com o mesmo nome. A melhor forma de referenciar módulos é por meio
+; de require:
(require 'clojure.string)
-; Use / para chamar funções de um módulo
+; Com isso podemos chamar as funções de clojure.string usando o operador /
; Aqui, o módulo é clojure.string e a função é blank?
(clojure.string/blank? "") ; => true
-; Você pode dar para um módulo um nome mais curto no import
+; Porém isso não é muito prático, por isso é possível dar para um nome mais curto para
+; o módulo ao carregá-lo:
(require '[clojure.string :as str])
-(str/replace "This is a test." #"[a-o]" str/upper-case) ; => "THIs Is A tEst."
-; (#"" denota uma expressão regular literal)
+(str/replace "alguém quer teste?" #"[aeiou]" str/upper-case) ; => "AlgUém qUEr tEstE?"
-; Você pode usar require (e até "use", mas escolha require) de um namespace utilizando :require.
-; Não é necessário usar aspa simples nos seus módulos se você usar desse jeito.
+; Nesse exemplo usamos também a construção #"", que delimita uma expressão regular.
+
+; É possível carregar outros módulos direto na definição do namespace. Note que nesse
+; contexto não é preciso usar ' antes do vetor que define a importação do módulo.
(ns test
(:require
[clojure.string :as str]
[clojure.set :as set]))
+
+; Operadores thread
+;;;;;;;;;;;;;;;;;
+
+; Uma das funções mais interessantes de clojure são os operadores -> e ->> - respectivamente
+; thread-first e thread-last macros. Elas permitem o encadeamento de chamadas de funções,
+; sendo perfeitas para melhorar a legibilidade em transformações de dados.
+
+; -> usa o resultado de uma chamada como o primeiro argumento da chamada à função seguinte:
+(-> " uMa StRIng com! aLG_uNs ##problemas. "
+ (str/replace #"[!#_]" "")
+ (str/replace #"\s+" " ")
+ str/trim ; se a função só aceitar um argumento, não é preciso usar parênteses
+ (str/lower-case)) ; => "uma string com alguns problemas."
+
+; Na thread uma string com vários problemas foi passada como primeiro argumento à função
+; str/replace, que criou uma nova string, a partir da original, porém somente com caracteres
+; alfabéticos. Essa nova string foi passada como primeiro argumento para a chamada str/replace
+; seguinte, que criou uma nova string sem espaços duplos. Essa nova string foi então passada
+; como primeiro argumento para str/trim, que removeu espaços de seu início e fim, passando essa
+; última string para str/lower-case, que a converteu para caracteres em caixa baixa.
+
+; ->> é equivalente a ->, porém o retorno de cada função é passado como último argumento da
+; função seguinte. Isso é particularmente útil para lidar com seqs, já que as funções que
+; as manipulam sempre as tomam como último argumento.
+(->> '(1 2 3 4)
+ (filter even?) ; => '(2 4)
+ (map inc) ; => '(3 5)
+ (reduce *)) ; => 15
+
+
; Java
;;;;;;;;;;;;;;;;;
-; Java tem uma biblioteca padrão enorme e muito útil,
-; portanto é importante aprender como utiliza-la.
+; A biblioteca padrão de Java é enorme e possui inúmeros algoritmos e estruturas de
+; dados já implementados. Por isso é bastante conveniente saber como usá-la dentro
+; de Clojure.
-; Use import para carregar um modulo java
+; Use import para carregar um módulo Java.
(import java.util.Date)
-; Você pode importar usando ns também.
+; Você pode importar classes Java dentro de ns também:
(ns test
(:import java.util.Date
- java.util.Calendar))
+ java.util.Calendar
+ java.util.ArrayList))
; Use o nome da clase com um "." no final para criar uma nova instância
-(Date.) ; <a date object>
+(def instante (Date.))
+(class instante) => ; java.util.Date
+
+; Para chamar um método, use o operador . com o nome do método. Outra forma é
+; usar simplesmente .<nome do método>
+(. instante getTime) ; => retorna um inteiro representando o instante
+(.getTime instante) ; => exatamente o mesmo que acima
+
+; Para chamar métodos estáticos dentro de classes Java, use /
+(System/currentTimeMillis) ; => retorna um timestamp
-; Use . para chamar métodos. Ou, use o atalho ".method"
-(. (Date.) getTime) ; <a timestamp>
-(.getTime (Date.)) ; exatamente a mesma coisa.
+; Note que não é preciso importar o módulo System, pois ele está sempre presente
-; Use / para chamar métodos estáticos
-(System/currentTimeMillis) ; <a timestamp> (o módulo System está sempre presente)
+; Caso queira submeter uma instância de uma classe mutável a uma sequência de operações,
+; você pode usar a função doto. Ela é funciona de maneira semelhante à função -> - ou
+; thread-first -, exceto pelo fato de que ele opera com valores mutáveis.
+(doto (java.util.ArrayList.)
+ (.add 11)
+ (.add 3)
+ (.add 7)
+ (java.util.Collections/sort)) ; => #<ArrayList [3, 7, 11]>
-; Use doto para pode lidar com classe (mutáveis) de forma mais tolerável
-(import java.util.Calendar)
-(doto (Calendar/getInstance)
- (.set 2000 1 1 0 0 0)
- .getTime) ; => A Date. set to 2000-01-01 00:00:00
; STM
;;;;;;;;;;;;;;;;;
-; Software Transactional Memory é o mecanismo que Clojure usa para gerenciar
-; estado persistente. Tem algumas construções em Clojure que o utilizam.
+; Até aqui usamos def para associar nomes a valores. Isso, no entanto, possui algumas
+; limitações, já que, uma vez definido essa associação, não podemos alterar o valor
+; para o qual um nome aponta. Isso significa que nomes definidos com def não se
+; comportam como as variáveis de outras linguagens.
-; O atom é o mais simples. Passe pra ele um valor inicial
-(def my-atom (atom {}))
+; Para lidar com estado persistente e mutação de valores, Clojure usa o mecanismo Software
+; Transactional Memory. O atom é o mais simples de todos. Passe pra ele um valor inicial e
+; e ele criará um objeto que é seguro de atualizar:
+(def atom-mapa (atom {}))
-; Atualize o atom com um swap!.
-; swap! pega uma função e chama ela com o valor atual do atom
-; como primeiro argumento, e qualquer argumento restante como o segundo
-(swap! my-atom assoc :a 1) ; Coloca o valor do átomo my-atom como o resultado de (assoc {} :a 1)
-(swap! my-atom assoc :b 2) ; Coloca o valor do átomo my-atom como o resultado de (assoc {:a 1} :b 2)
+; Para acessar o valor de um atom, você pode usar a função deref ou o operador @:
+@atom-mapa ; => {}
+(deref atom-mapa) ; => {}
-; Use '@' para desreferenciar um atom e acessar seu valor
-my-atom ;=> Atom<#...> (Retorna o objeto do Atom)
-@my-atom ; => {:a 1 :b 2}
+; Para mudar o valor de um atom, você deve usar a função swap!
+; O que ela faz é chamar a função passada usando o atom como seu primeiro argumento. Com
+; isso, ela altera o valor do atom de maneira segura.
+(swap! atom-mapa assoc :a 1) ; Atribui a atom-mapa o resultado de (assoc {} :a 1)
+(swap! atom-mapa assoc :b 2) ; Atribui a atom-mapa o resultado de (assoc {:a 1} :b 2)
-; Abaixo um contador simples usando um atom
-(def counter (atom 0))
-(defn inc-counter []
- (swap! counter inc))
+; Observe que essas chamadas alteraram de fato o valor de atom-mapa. Seu novo valor é:
+@atom-mapa ; => {:a 1 :b 2}
-(inc-counter)
-(inc-counter)
-(inc-counter)
-(inc-counter)
-(inc-counter)
+; Isso é diferente de fazer:
+(def atom-mapa-2 (atom {}))
+(def atom-mapa-3 (assoc @atom-mapa-2 :a 1))
-@counter ; => 5
+; Nesse exemplo, atom-mapa-2 permanece com o seu valor original e é gerado um novo mapa,
+; atom-mapa-3, que contém o valor de atom-mapa-2 atualizado. Note que atom-mapa-3 é um
+; simples mapa, e não uma instância de um atom
+@atom-mapa-2 ; => {}
+atom-mapa-3 ; => {:a 1}
-; Outras construção STM são refs e agents.
+(class atom-mapa-2) ; => clojure.lang.Atom
+(class atom-mapa-3) ; => clojure.lang.PersistentArrayMap
+
+; A ideia é que o valor do atom só será atualizado se, após ser executada a função passada
+; para swap!, o atom ainda estiver com o mesmo valor de antes. Isto é, se durante a execução
+; da função alguém alterar o valor do atom, swap! reexecutará a função recebida usando o valor
+; atual do átoma como argumento.
+
+; Isso é ótimo em situações nas quais é preciso garantir a consistência de algum valor - tais
+; como sistemas bancários e sites de compra. Para mais exemplos e informações sobre outras
+; construções STM:
+
+; Exemplos e aplicações: https://www.braveclojure.com/zombie-metaphysics/
; Refs: http://clojure.org/refs
; Agents: http://clojure.org/agents
```
### Leitura adicional
-Esse tutorial está longe de ser exaustivo, mas deve ser suficiente para que você possa começar.
+Esse tutorial está longe de ser completo, mas deve ser suficiente para que você possa dar seus primeiros passos em Clojure.
+Caso queira aprender mais:
-Clojure.org tem vários artigos:
+* clojure.org tem vários artigos:
[http://clojure.org/](http://clojure.org/)
-Clojuredocs.org tem documentação com exemplos para quase todas as funções principais (pertecentes ao core):
+* Brave Clojure possui um e-book que explora em profundidade diversos recursos de clojure, incluindo ótimos exemplos:
+[https://www.braveclojure.com/](https://www.braveclojure.com/)
+
+* clojuredocs.org tem documentação com exemplos para quase todas as funções principais (pertecentes ao core):
[http://clojuredocs.org/quickref/Clojure%20Core](http://clojuredocs.org/quickref/Clojure%20Core)
-4Clojure é um grande jeito de aperfeiçoar suas habilidades em Clojure/Programação Funcional:
+* 4clojure possui alguns problemas e desafios interessantes para quem quiser treinar clojure ou programação funcional:
[http://www.4clojure.com/](http://www.4clojure.com/)
-Clojure-doc.org tem um bom número de artigos para iniciantes:
+* clojure-doc.org tem um bom número de artigos para iniciantes:
[http://clojure-doc.org/](http://clojure-doc.org/)
+
+Clojure for the Brave and True é um livro de introdução ao Clojure e possui uma versão gratuita online:
+[https://www.braveclojure.com/clojure-for-the-brave-and-true/](https://www.braveclojure.com/clojure-for-the-brave-and-true/)
diff --git a/pt-br/csharp-pt.html.markdown b/pt-br/csharp-pt.html.markdown
index 2ff59296..384ca325 100644
--- a/pt-br/csharp-pt.html.markdown
+++ b/pt-br/csharp-pt.html.markdown
@@ -78,15 +78,17 @@ namespace Learning.CSharp
short fooShort = 10000;
ushort fooUshort = 10000;
- // Integer - 32-bit integer
+ // Integer - inteiro de 32 bits
int fooInt = 1; // (-2,147,483,648 <= int <= 2,147,483,647)
uint fooUint = 1; // (0 <= uint <= 4,294,967,295)
-
+ //Números por padrão são int ou uint, dependendo do tamanho.
+
// Long - 64-bit integer
long fooLong = 100000L; // (-9,223,372,036,854,775,808 <= long <= 9,223,372,036,854,775,807)
ulong fooUlong = 100000L; // (0 <= ulong <= 18,446,744,073,709,551,615)
- // Numbers default to being int or uint depending on size.
- // L is used to denote that this variable value is of type long or ulong
+
+ // Números por padrão são int ou uint dependendo do tamanho.
+ // L é usado para denotar que o valor da variável é do tipo long ou ulong.
// Double - Double-precision 64-bit IEEE 754 Floating Point
double fooDouble = 123.4; // Precision: 15-16 digits
@@ -308,25 +310,26 @@ on a new line! ""Wow!"", the masses cried";
}
///////////////////////////////////////
- // Converting Data Types And Typecasting
+ // Convertendo Data Types e Typecasting
///////////////////////////////////////
- // Converting data
+ // Convertendo dados
+
+ // Converter String para Integer
- // Convert String To Integer
- // this will throw a FormatException on failure
- int.Parse("123");//returns an integer version of "123"
+ // isso vai jogar um erro FormatException quando houver falha
+ int.Parse("123");//retorna uma verão em Integer da String "123"
- // try parse will default to type default on failure
- // in this case: 0
+ // try parse vai ir por padrão para o typo default quando houver uma falha
+ // nesse caso: 0
int tryInt;
- if (int.TryParse("123", out tryInt)) // Function is boolean
+ if (int.TryParse("123", out tryInt)) // Função booleana
Console.WriteLine(tryInt); // 123
- // Convert Integer To String
- // Convert class has a number of methods to facilitate conversions
+ // Converter Integer para String
+ // A classe Convert possuí métodos para facilitar as conversões
Convert.ToString(123);
- // or
+ // ou
tryInt.ToString();
// Casting
@@ -407,12 +410,12 @@ on a new line! ""Wow!"", the masses cried";
return result;
}
- // You can narrow down the objects that are passed in
+ // Você pode pode restringir os objetos que são passados
public static void IterateAndPrint<T>(T toPrint) where T: IEnumerable<int>
{
- // We can iterate, since T is a IEnumerable
+ // Nos podemos iterar, desde que T seja um "IEnumerable"
foreach (var item in toPrint)
- // Item is an int
+ // Item é um inteiro
Console.WriteLine(item.ToString());
}
@@ -720,9 +723,9 @@ on a new line! ""Wow!"", the masses cried";
_speed -= decrement;
}
- // properties get/set values
- // when only data needs to be accessed, consider using properties.
- // properties may have either get or set, or both
+ // propriedade recupera e/ou atribui valores (get/set).
+ // quando os dados precisam apenas ser acessados, considere o uso de propriedades.
+ // uma propriedade pode ter "get" ou "set", ou ambos.
private bool _hasTassles; // private variable
public bool HasTassles // public accessor
{
diff --git a/pt-br/css-pt.html.markdown b/pt-br/css-pt.html.markdown
index c73669d0..38937894 100644
--- a/pt-br/css-pt.html.markdown
+++ b/pt-br/css-pt.html.markdown
@@ -14,15 +14,15 @@ translators:
lang: pt-br
---
-Nos primeiros dias da web não havia elementos visuais, apenas texto puro. Mas com maior desenvolvimento de navegadores da web, páginas web totalmente visuais também se tornou comum.
+No início da web não havia elementos visuais, apenas texto puro. Mas com maior desenvolvimento de navegadores da web, páginas web totalmente visuais também se tornara comum.
-CSS ajuda a manter a separação entre o conteúdo (HTML) e o look-and-feel de uma página web.
+CSS ajuda a manter a separação entre o conteúdo (HTML) e o visual de uma página web.
CSS permite atingir diferentes elementos em uma página HTML e atribuir diferentes propriedades visuais para eles.
-Este guia foi escrito para CSS2, embora CSS3 está rapidamente se tornando popular.
+Este guia foi escrito para CSS2, embora CSS3 esteja rapidamente se tornando popular.
-**NOTA:** Porque CSS produz resultados visuais, a fim de aprender, você precisa tentar de tudo em um playground CSS como [dabblet](http://dabblet.com/).
+**NOTA:** Porque CSS produz resultados visuais, a fim de aprender, você precisa treinar em um playground CSS como [dabblet](http://dabblet.com/).
O foco principal deste artigo é sobre a sintaxe e algumas dicas gerais.
```css
@@ -42,7 +42,7 @@ Abaixo um elemento de exemplo:
<div class='class1 class2' id='anID' attr='value' otherAttr='pt-br foo bar' />
*/
-/* Você pode direciona-lo usando uma das suas classes CSS */
+/* Você pode direcioná-lo usando uma das suas classes CSS */
.class1 { }
/* ou ambas as classes! */
@@ -82,9 +82,9 @@ classe div.some [attr $ = 'ue'] {}
/* Você pode selecionar um elemento que é filho de outro elemento */
div.some-parent> .class-name {}
-/* Ou um descendente de um outro elemento. As crianças são os descendentes diretos de
-   seu elemento pai, apenas um nível abaixo da árvore. Pode ser qualquer descendentes
-   nivelar por baixo da árvore. */
+/* Ou um descendente de um outro elemento. Os filhos são os descendentes diretos de
+   seu elemento pai, apenas um nível abaixo da árvore. Pode ser quaisquer descendentes
+   nivelados por baixo da árvore. */
div.some-parent class-name {}
/* Atenção: o mesmo seletor sem espaço tem um outro significado.
@@ -97,7 +97,7 @@ div.some-parent.class-name {}
/* Ou qualquer irmão que o precede */
.i am-qualquer-elemento antes ~ .Este elemento {}
-/* Existem alguns selectores chamado pseudo classes que podem ser usados para selecionar um
+/* Existem alguns seletores chamados pseudo classes que podem ser usados para selecionar um
   elemento quando ele está em um determinado estado */
/* Por exemplo, quando o cursor passa sobre um elemento */
@@ -118,7 +118,7 @@ seletor:first-child {}
/* Qualquer elemento que é o último filho de seu pai */
seletor:last-child {}
-/* Assim como pseudo classes, pseudo elementos permitem que você estilo certas partes de um documento */
+/* Assim como pseudo classes, pseudo elementos permitem que você estilize certas partes de um documento */
/* Corresponde a um primeiro filho virtual do elemento selecionado */
seletor::before {}
@@ -127,7 +127,7 @@ seletor::before {}
seletor::after {}
/* Nos locais apropriados, um asterisco pode ser utilizado como um curinga para selecionar todos
-   elemento */
+   os elementos */
* {} /* */ Todos os elementos
.parent * {} /* */ todos os descendentes
.parent> * {} /* */ todas as crianças
@@ -181,7 +181,7 @@ seletor {
## Uso
-Guardar uma folha de estilo CSS com a extensão `.css`.
+Salvar uma folha de estilo CSS com a extensão `.css`.
```xml
<!-- Você precisa incluir o arquivo css no da sua página <head>. Isto é o
diff --git a/pt-br/cypher-pt.html.markdown b/pt-br/cypher-pt.html.markdown
index 9b60f771..d4400148 100644
--- a/pt-br/cypher-pt.html.markdown
+++ b/pt-br/cypher-pt.html.markdown
@@ -101,7 +101,7 @@ path = shortestPath( (user)-[:KNOWS*..5]-(other) )
Crie consultas
---
-Create a new node
+Crie um novo nó
```
CREATE (a:Person {name:"Théo Gauchoux"})
RETURN a
diff --git a/pt-br/elisp-pt.html.markdown b/pt-br/elisp-pt.html.markdown
index fc2d1e40..aa611097 100644
--- a/pt-br/elisp-pt.html.markdown
+++ b/pt-br/elisp-pt.html.markdown
@@ -111,7 +111,7 @@ filename: learn-emacs-lisp-pt.el
(hello)
;; `C-xC-e' => Hello, I am Bastien
-;; Os parêntesis vazios na definição da função significam que ela
+;; Os parênteses vazios na definição da função significam que ela
;; não aceita argumentos. Mas sempre utilizar `my-name' é um tédio!
;; Vamos dizer à função para aceitar um argumento (o argumento é
;; chamado "name"):
diff --git a/pt-br/haskell-pt.html.markdown b/pt-br/haskell-pt.html.markdown
index 181aa471..c55a4c03 100644
--- a/pt-br/haskell-pt.html.markdown
+++ b/pt-br/haskell-pt.html.markdown
@@ -41,7 +41,7 @@ o desenvolvimento deste paradigma de programação.
7 * 7 -- 7 vezes 7
7 / 7 -- 7 dividido por 7
--- Divisões não são inteiras, são fracionádas por padrão da linguagem
+-- Divisões não são inteiras, são fracionadas por padrão da linguagem
28736 / 82374 -- 0.3488479374559934
@@ -67,7 +67,7 @@ not False -- Nega uma falácia
7 > 7 -- 7 é maior que 7 ?
-{- Haskell é uma linguagem que tem uma sintáxe bastante familiar na
+{- Haskell é uma linguagem que tem uma sintaxe bastante familiar na
matemática, por exemplo em chamadas de funções você tem:
NomeFunção ArgumentoA ArgumentoB ArgumentoC ...
diff --git a/pt-br/javascript-pt.html.markdown b/pt-br/javascript-pt.html.markdown
index ed4a6ff3..e38804f3 100644
--- a/pt-br/javascript-pt.html.markdown
+++ b/pt-br/javascript-pt.html.markdown
@@ -2,7 +2,7 @@
language: javascript
filename: javascript-pt.js
contributors:
- - ["Adam Brenecki", "http://adam.brenecki.id.au"]
+ - ["Leigh Brenecki", "https://leigh.net.au"]
- ["Ariel Krakowski", "http://www.learneroo.com"]
translators:
- ["Willian Justen", "http://willianjusten.com.br"]
@@ -20,8 +20,8 @@ que é um projeto que fornece um interpretador baseado no motor V8 do Google
Chrome e está se tornando cada vez mais famoso.
Feedback são muito apreciados! Você me encontrar em
-[@adambrenecki](https://twitter.com/adambrenecki), ou
-[adam@brenecki.id.au](mailto:adam@brenecki.id.au).
+[@ExcitedLeigh](https://twitter.com/ExcitedLeigh), ou
+[l@leigh.net.au](mailto:l@leigh.net.au).
```js
// Comentários são como em C. Comentários de uma linha começam com duas barras,
@@ -361,7 +361,7 @@ myObj.myFunc(); // = "Olá mundo!"
var myFunc = myObj.myFunc;
myFunc(); // = undefined
-// Inversamente, uma função pode ser atribuída a um objeto e ganhar a acesso
+// Inversamente, uma função pode ser atribuída à um objeto e ganhar a acesso
// através do `this`, até mesmo se ela não for chamada quando foi definida.
var myOtherFunc = function(){
return this.myString.toUpperCase();
@@ -416,7 +416,7 @@ myNewObj.myNumber; // = 5
// vai olhar imediatamente para o seu prototype.
// Algumas implementações em JS deixam você acessar o objeto prototype com a
-// propriedade mágica `__proto__`. Enquanto isso é util para explicar
+// propriedade mágica `__proto__`. Enquanto isso é útil para explicar
// prototypes, não é parte de um padrão; nós vamos falar de algumas formas de
// usar prototypes depois.
@@ -489,7 +489,7 @@ if (0){
}
// Entretanto, esses objetos encapsulados e as funções originais compartilham
-// um mesmo prototype, portanto você pode adicionar funcionalidades a uma string,
+// um mesmo prototype, portanto você pode adicionar funcionalidades à uma string,
// por exemplo.
String.prototype.firstCharacter = function(){
return this.charAt(0);
diff --git a/pt-br/julia-pt.html.markdown b/pt-br/julia-pt.html.markdown
index 48d97e58..11771d96 100644
--- a/pt-br/julia-pt.html.markdown
+++ b/pt-br/julia-pt.html.markdown
@@ -8,7 +8,7 @@ translators:
lang: pt-br
---
-Julia é uma linguagem homoiconic funcional focada na computação tecnica. Ao mesmo tempo que ela tem todo o poder dos homoiconic macros, funções de primeira classe, e controle de baixo nivel, Julia é tão facil para aprender e usar quanto Python.
+Julia é uma linguagem homoicônica funcional focada na computação técnica. Ao mesmo tempo que ela tem todo o poder dos macros homoicônicos, funções de primeira classe, e controle de baixo nível, Julia é tão fácil para aprender e usar quanto Python.
Este tutorial é baseado no Julia 0.3.
diff --git a/pt-br/latex-pt.html.markdown b/pt-br/latex-pt.html.markdown
index 103af28e..58586522 100644
--- a/pt-br/latex-pt.html.markdown
+++ b/pt-br/latex-pt.html.markdown
@@ -62,7 +62,7 @@ Svetlana Golubeva}
\newpage
-% Muitos artigos de pesquisa possuem um resumo, e pode-se isar comandos
+% Muitos artigos de pesquisa possuem um resumo, e pode-se usar comandos
% predefinidos para isso.
% Isso deve aparecer em sua ordem lógica, portanto, após o topo,
% mas antes das seções principais do corpo.
diff --git a/pt-br/markdown-pt.html.markdown b/pt-br/markdown-pt.html.markdown
index c2aa515d..dc50cac1 100644
--- a/pt-br/markdown-pt.html.markdown
+++ b/pt-br/markdown-pt.html.markdown
@@ -4,6 +4,9 @@ contributors:
- ["Dan Turkel", "http://danturkel.com/"]
translators:
- ["Miguel Araújo", "https://github.com/miguelarauj1o"]
+ - ["Gabriele Luz", "https://github.com/gabrieleluz"]
+ - ["Monique Baptista", "https://github.com/bfmonique"]
+
lang: pt-br
filename: learnmarkdown-pt.md
---
@@ -11,40 +14,50 @@ filename: learnmarkdown-pt.md
Markdown foi criado por John Gruber in 2004. Originado para ser fácil de ler e
escrever sintaxe que converte facilmente em HTML (hoje, suporta outros formatos também).
-Dê-me feedback tanto quanto você quiser! / Sinta-se livre para a garfar (fork) e
+Dê-me feedback tanto quanto você quiser! / Sinta-se livre para fazer uma bifurcação (fork) e
puxar o projeto (pull request)
+## Elementos HTML
+Markdown é um superconjunto do HTML, de modo que qualquer arvquivo HTML é
+um arquivo Markdown válido.
```md
-<!-- Markdown é um superconjunto do HTML, de modo que qualquer arvquivo HTML é
-um arquivo Markdown válido, isso significa que nós podemos usar elementos HTML
+<!-- Markdown é um superconjunto do HTML, de modo que qualquer arquivo HTML é
+um arquivo Markdown válido. Isso significa que nós podemos usar elementos HTML
em Markdown, como o elemento de comentário, e eles não serão afetados pelo analisador
de remarcação. No entanto, se você criar um elemento HTML em seu arquivo Markdown, você
-não pode usar sintaxe remarcação dentro desse conteúdo do elemento.-->
+não pode usar sintaxe de remarcação dentro desse conteúdo do elemento.-->
+
+<!--A maneira como o Markdown é analisado varia de software para software.
+Este guia vai tentar esclarecer quando as características são universais, ou quando eles são específicos para um determinado interpretador -->
+
-<!--Markdown também varia de implementação de um analisador para uma próxima.
-Este guia vai tentar esclarecer quando as características são universais, ou quando eles são
-específico para um determinado parser -->
+## Cabeçalhos
+
+Você pode criar elementos HTML `<h1>` até `<h6>` facilmente antecedendo o texto
+que deseja estar nesse elemento por um número de hashes (#)
-<!-- Cabeçalhos -->
-<!-- Você pode criar elementos HTML <h1> até <h6> facilmente antecedendo o texto
-que deseja estar nesse elemento por um número de hashes (#) -->
# Isto é um cabeçalho <h1>
## Isto é um cabeçalho <h2>
### Isto é um cabeçalho <h3>
#### Isto é um cabeçalho <h4>
##### Isto é um cabeçalho <h5>
###### Isto é um cabeçalho <h6>
+```
-<!-- Markdown também nos fornece duas maneiras alternativas de indicar h1 e h2 -->
+Markdown também nos fornece duas maneiras alternativas de indicar h1 e h2
+
+```md
Isto é um cabeçalho h1
======================
Isto é um cabeçalho h2
----------------------
+```
-<!-- Estilos de texto simples -->
-<!-- O texto pode ser facilmente denominado como remarcação itálico, negrito ou tachado usando -->
+## Estilos de texto simples
+O texto pode ser facilmente denominado como marcação itálico, negrito ou tachado usando:
+```md
*Este texto está em itálico*
_E este também está._
@@ -54,43 +67,55 @@ __E este também está._
***Este texto está em negrito e itálico.***
**_E este também está_**
*--Danouse! Este também__*
+```
-<!-- Em GitHub Flavored Markdown, que é usado para processar arquivos Markdown
-GitHub, nós também temos: -->
+Em GitHub Flavored Markdown, que é usado para processar arquivos Markdown
+GitHub, nós também temos:
+```md
~~Este texto é processado com tachado.~~
+```
-<!-- Os parágrafos estão uma ou várias linhas adjacentes de texto separadas por
-uma ou múltiplas linhas em branco. -->
+## Parágrafos
+Os parágrafos estão uma ou várias linhas adjacentes de texto separadas por
+uma ou múltiplas linhas em branco.
+```md
Este é um parágrafo. Eu estou digitando em um parágrafo, não é legal?
-Agora, eu estou no parágrado 2.
+Agora, eu estou no parágrafo 2.
... Ainda continuo no parágrafo 2! :)
Eu estou no parágrafo três.
+```
-<!-- Se você quiser inserir uma tag HTML <br />, você pode acabar com um parágrafo
-com dois ou mais espaços e, em seguida, começar um novo parágrafo -->
+Se você quiser inserir uma tag HTML `<br />`, você pode acabar com um parágrafo
+com dois ou mais espaços e, em seguida, começar um novo parágrafo
+```md
Termino com dois espaços (destacar-me para vê-los).
Há um <br /> acima de mim!
+```
+
-<!-- Bloco de citações são fáceis e feito com o caractere >. -->
+Bloco de citações são fáceis e feito com o caractere >.
+```md
> Este é um bloco de citação. Você pode
-> Enrolar manualmente suas linhas e colocar um `>` antes de cada linha ou você pode
-> deixar suas linhas ficarem muito longas e enrolar por conta própria. Não faz diferença,
+> Quebrar manualmente suas linhas e colocar um `>` antes de cada linha ou você pode
+> deixar suas linhas ficarem muito longas e quebrarem por conta própria. Não faz diferença,
> desde que eles começam com um `>`.
+
> Você também pode usar mais de um nível
->> De recuo?
-> Como pura é isso?
+>> De recuo?
+```
-<!-- Listas -->
-<!-- As listas não ordenadas podem ser feitas usando asteriscos, positivos ou hífens -->
+## Listas
+As listas não ordenadas podem ser feitas usando asteriscos, positivos ou hífens
+```md
* Item
* Item
* Outro item
@@ -106,146 +131,202 @@ ou
- Item
- Item
- Um último item
+```
-<!-- Listas ordenadas são feitas com um número seguido por um ponto -->
+Listas ordenadas são feitas com um número seguido por um ponto.
+```md
1. Item um
2. Item dois
-3. Tem três
+3. Item três
+```
-<!-- Você não tem poder para rotular os itens corretamente e a remarcação será ainda
-tornar os números em ordem, mas isso pode não ser uma boa idéia -->
+<!-- Você não tem poder para rotular os itens corretamente e a remarcação ainda deixará os
+itens em ordem, mas isso pode não ser uma boa idéia -->
+
+```md
1. Item um
1. Item dois
1. Item três
-<!-- (Isto é processado da mesma forma que o exemplo acima) -->
+```
+(Isto é processado da mesma forma que o exemplo acima)
-<!-- Você também pode usar subtítulos -->
+Você também pode usar sublistas
+```md
1. Item um
2. Item dois
3. Item três
* Sub-item
* Sub-item
4. Item quatro
+```
+
+Existem também listas de tarefas. Isso cria checkboxes (caixas de seleção) de HTML
+
+```md
+As caixas abaixo sem o 'x' são checkboxes HTML desmarcadas
+- [ ] Primeira tarefa a completar
+- [ ] Segunda tarefa a completar
+A caixa de seleção abaixo será exibida como uma checkbox HTML marcada
+- [x] Essa tarefa foi completa
+
+```
-<!-- blocos de código -->
-<!-- Você pode indicar um bloco de código (que utiliza o elemento <code>) pelo recuo
-uma linha com quatro espaços ou uma guia -->
+## Blocos de código
+Você pode indicar um bloco de código (que utiliza o elemento `<code>`) pelo recuo
+uma linha com quatro espaços ou uma guia
+```md
Isto é código
É assim, sacou?
+
+```
-<!-- Você pode também re-guia (ou adicionar mais quatro espaços adicionais) para o recuo
-dentro do seu código -->
+Você pode também re-guia (ou adicionar mais quatro espaços adicionais) para o recuo
+dentro do seu código
+```md
my_array.each do |item|
puts item
end
+ ```
-<!-- Código embutido pode ser criada usando o caractere de crase ` -->
+Código embutido pode ser criada usando o caractere de crase `` ` ``
-John não sabia nem o que o função 'goto()' fazia!
-
-<!-- Em GitHub Flavored Markdown, você pode usar uma sintaxe especial para o código -->
+```md
+John não sabia nem o que o função `goto()` fazia!
+```
+Em GitHub Flavored Markdown, você pode usar uma sintaxe especial para o código
+```md
+ ``` ruby
+ def foobar
+ puts "Hello world!"
+ end
+ ```
+```
+=======
\`\`\`ruby <!-- exceto remover essas barras invertidas quando você faz isso, apenas ```
ruby! -->
def foobar
puts "Hello world!"
end
-\`\`\` <!-- Aqui também, não barras invertidas, apenas ``` -->
+\`\`\` <!-- Aqui também, não use barras invertidas, apenas ``` -->
-<-- O texto acima não requer recuo, mas o GitHub vai usar a sintaxe
-destacando do idioma que você especificar após a ``` -->
+O texto acima não requer recuo, além disso o GitHub vai usar a sintaxe highlight da linguagem que você especificar após a \`\`\`.
-<!-- Regra Horizontal (<hr />) -->
-<!-- Regras horizontais são facilmente adicionados com três ou mais asteriscos ou hífens,
-com ou sem espaços. -->
+## Linha Horizontal
+Linhas horizontais são facilmente adicionados com três ou mais asteriscos ou hífens,
+com ou sem espaços.
+```md
***
---
- - -
****************
+```
-<!-- Links -->
-<!-- Uma das melhores coisas sobre a remarcação é o quão fácil é fazer ligações. Colocar
-o texto a ser exibido entre parênteses rígidos [] seguido pela url em parênteses () -->
+## Links
+Uma das melhores coisas sobre a marcação é o quão fácil é fazer ligações. Colocar
+o texto a ser exibido entre parênteses rígidos [] seguido pela url em parênteses ()
+```md
[Click aqui!](http://test.com/)
+```
-<!-- Você também pode adicionar um título link usando aspas dentro dos parênteses -->
+Você também pode adicionar um título link usando aspas dentro dos parênteses
+```md
[Click aqui!](http://test.com/ "Link para Test.com")
+```
-<!-- Caminhos relativos funcionam também. -->
+Caminhos relativos funcionam também.
+```md
[Ir para música](/música/).
+```
-<!-- Markdown também suporta ligações de estilo de referência -->
+Markdown também suporta ligações de estilo de referência
+```md
[Clique neste link] [link1] para mais informações sobre isso!
[Além disso, verifique este link] [foobar] se você quiser.
[link1]: http://test.com/ "Legal!"
[foobar]: http://foobar.biz/ "OK!"
+```
-<!-- O título também pode estar entre aspas simples ou entre parênteses, ou omitido
+O título também pode estar entre aspas simples ou entre parênteses, ou omitido
inteiramente. As referências podem estar em qualquer lugar no documento e os IDs de referência
-pode ser qualquer um, desde que eles são únicos. -->
+pode ser qualquer um, desde que eles são únicos.
-<!-- Existe também o "nomear implícita", que permite que você use o texto do link como o id -->
+Existe também a "nomeação implicita", que permite que você use o texto do link como o id
+```md
[Este] [] é um link.
[este]: http://thisisalink.com/
+```
-<!-- Mas não são usados normalmente-->
+Mas não são usados normalmente
-<!-- Imagens -->
-<!-- As imagens são feitas da mesma forma que as ligações, mas com um ponto de exclamação na frente! -->
+## Imagens
+As imagens são feitas da mesma forma que as ligações, mas com um ponto de exclamação na frente!
+```md
![Este é pairar-texto (texto alternativo) para minha imagem](http://imgur.com/myimage.jpg "Um título opcional")
+```
-<!-- E estilo de referência funciona como esperado -->
+E estilo de referência funciona como esperado
+```md
![Este é o pairar-texto.][Myimage]
[myimage]: relative/urls/legal/image.jpg "se você precisa de um título, é aqui"
+```
-<!-- Miscelânea -->
-<!-- Auto-links -->
+## Miscelânea
+### Auto-links
+```md
<http://testwebsite.com/> é equivalente a
[http://testwebsite.com/](http://testwebsite.com/)
+```
-<!-- Auto-links para e-mails -->
+### Auto-links para e-mails
+```md
<foo@bar.com>
+```
-<!-- Escapando caracteres -->
+### Escapando caracteres
Quero digitar * Este texto entre asteriscos *, mas eu não quero que ele seja
em itálico, então eu faço o seguinte: \*Este texto entre asteriscos \*.
-<!-- Tabelas -->
-<!-- Tabelas estão disponíveis apenas no GitHub Flavored Markdown e são ligeiramente
-complicadas, mas se você realmente quer: -->
+### Tabelas
+Tabelas estão disponíveis apenas no GitHub Flavored Markdown e são ligeiramente
+complicadas, mas se você realmente quer:
+```md
| Col1 | Col2 | Col3 |
| :----------- | :------: | ------------: |
| esquerda-alin| Centrado | direita-alinh |
| blah | blah | blah |
+```
-<!-- Ou, para os mesmos resultados -->
+Ou, para os mesmos resultados
+```md
Col 1 | Col2 | Col3
:-- | :-: | --:
Ugh isso é tão feio | faça isto | parar
+```
-<!-- O fim! -->
+Fim!
-```
+---
Para mais informações, confira o post oficial de John Gruber de sintaxe [aqui](http://daringfireball.net/projects/markdown/syntax)
e de Adam Pritchard grande cheatsheet [aqui](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet).
diff --git a/pt-br/pascal-pt.html.markdown b/pt-br/pascal-pt.html.markdown
index 3a37271a..72302695 100644
--- a/pt-br/pascal-pt.html.markdown
+++ b/pt-br/pascal-pt.html.markdown
@@ -4,6 +4,7 @@ filename: learnpascal-pt.pas
contributors:
- ["Ganesha Danu", "https://github.com/blinfoldking"]
- ["Keith Miyake", "https//github.com/kaymmm"]
+ - ["Raul Almeida", "https://github.com/almeidaraul"]
translators:
- ["Raul Almeida", "https://github.com/almeidaraul"]
lang: pt-br
@@ -157,7 +158,7 @@ BEGIN
r := int; // um real pode receber um valor inteiro (mas não o contrário)
c := str[1]; //acessando elementos de um vetor: vetor[índice do elemento]
- str := 'hello' + 'world'; //concatenção de strings
+ str := 'hello' + 'world'; //concatenação de strings
my_str[0] := 'a'; { só se pode atribuir valores a vetores elemento
por elemento (não o vetor inteiro de uma vez) }
diff --git a/pt-br/php-pt.html.markdown b/pt-br/php-pt.html.markdown
index 8a1c956e..e55f1100 100644
--- a/pt-br/php-pt.html.markdown
+++ b/pt-br/php-pt.html.markdown
@@ -20,7 +20,7 @@ Este documento descreve PHP 5+.
// Duas barras iniciam o comentário de uma linha.
-# O hash (aka pound symbol) também inicia, mas // é mais comum.
+# O hash (conhecido como "pound symbol") também inicia, mas // é mais comum.
/*
O texto envolto por barra-asterisco e asterisco-barra
diff --git a/pt-br/python-pt.html.markdown b/pt-br/python-pt.html.markdown
index 82b70117..3f9c54c1 100644
--- a/pt-br/python-pt.html.markdown
+++ b/pt-br/python-pt.html.markdown
@@ -1,29 +1,36 @@
---
-language: python
+language: Python
contributors:
- - ["Louie Dinh", "http://ldinh.ca"]
+ - ["Louie Dinh", "http://pythonpracticeprojects.com"]
+ - ["Steven Basart", "http://github.com/xksteven"]
+ - ["Andre Polykanine", "https://github.com/Oire"]
+ - ["Zachary Ferguson", "http://github.com/zfergus2"]
translators:
- - ["Vilson Vieira", "http://automata.cc"]
+ - ["Paulo Henrique Rodrigues Pinheiro", "http://www.sysincloud.it"]
+ - ["Monique Baptista", "https://github.com/bfmonique"]
lang: pt-br
filename: learnpython-pt.py
---
-Python foi criado por Guido Van Rossum no começo dos anos 90. Atualmente é uma
-das linguagens de programação mais populares. Eu me apaixonei por Python, por
-sua clareza de sintaxe. É basicamente pseudocódigo executável.
+Python foi criada por Guido Van Rossum nos anos 1990. Ela é atualmente uma
+das linguagens mais populares existentes. Eu me apaixonei por
+Python por sua clareza sintática. É praticamente pseudocódigo executável.
-Comentários serão muito apreciados! Você pode me contactar em
-[@louiedinh](http://twitter.com/louiedinh) ou louiedinh [arroba]
-[serviço de email do google]
+Opniões são muito bem vindas. Você pode encontrar-me em
+[@louiedinh](http://twitter.com/louiedinh) ou louiedinh [em]
+[serviço de e-mail do google].
-Nota: Este artigo usa Python 2.7 especificamente, mas deveria ser aplicável a
-qualquer Python 2.x. Logo haverá uma versão abordando Python 3!
+Observação: Este artigo trata de Python 3 especificamente. Verifique
+[aqui](http://learnxinyminutes.com/docs/pt-br/python-pt/) se você pretende
+aprender o velho Python 2.7.
```python
-# Comentários de uma linha começam com cerquilha (ou sustenido)
+
+# Comentários em uma única linha começam com uma cerquilha (também conhecido por sustenido).
+
""" Strings de várias linhas podem ser escritas
usando três ", e são comumente usadas
- como comentários
+ como comentários.
"""
####################################################
@@ -31,287 +38,385 @@ qualquer Python 2.x. Logo haverá uma versão abordando Python 3!
####################################################
# Você usa números normalmente
-3 #=> 3
-
-# Operadores matemáticos são aqueles que você já está acostumado
-1 + 1 #=> 2
-8 - 1 #=> 7
-10 * 2 #=> 20
-35 / 5 #=> 7
-
-# A divisão é um pouco estranha. A divisão de números inteiros arredonda
-# para baixo o resultado, automaticamente
-5 / 2 #=> 2
+3 # => 3
-# Para concertar a divisão, precisamos aprender sobre números de ponto
-# flutuante (conhecidos como 'float').
-2.0 # Isso é um 'float'
-11.0 / 4.0 #=> 2.75 ahhh... muito melhor
+# Matemática é como você espera que seja
+1 + 1 # => 2
+8 - 1 # => 7
+10 * 2 # => 20
-# Forçamos a precedência de operadores usando parênteses
-(1 + 3) * 2 #=> 8
+# Números são inteiros por padrão, exceto na divisão, que retorna número
+# de ponto flutuante (float).
+35 / 5 # => 7.0
-# Valores booleanos (ou 'boolean') são também tipos primitivos
-True
-False
+# O resultado da divisão inteira arredonda para baixo tanto para números
+# positivos como para negativos.
+5 // 3 # => 1
+5.0 // 3.0 # => 1.0 # funciona em float também
+-5 // 3 # => -2
+-5.0 // 3.0 # => -2.0
-# Negamos usando 'not'
-not True #=> False
-not False #=> True
+# Quando você usa um float, o resultado é float.
+3 * 2.0 # => 6.0
-# Testamos igualdade usando '=='
-1 == 1 #=> True
-2 == 1 #=> False
+# operador módulo
+7 % 3 # => 1
-# E desigualdade com '!='
-1 != 1 #=> False
-2 != 1 #=> True
-
-# Mais comparações
-1 < 10 #=> True
-1 > 10 #=> False
-2 <= 2 #=> True
-2 >= 2 #=> True
+# Exponenciação (x**y, x elevado à potência y)
+2**4 # => 16
-# As comparações podem ser encadeadas!
-1 < 2 < 3 #=> True
-2 < 3 < 2 #=> False
+# Determine a precedência usando parênteses
+(1 + 3) * 2 # => 8
-# Strings são criadas com " ou '
-"Isso é uma string."
-'Isso também é uma string.'
+# Valores lógicos são primitivos (Atenção à primeira letra maiúscula)
+True
+False
-# Strings podem ser somadas (ou melhor, concatenadas)!
-"Olá " + "mundo!" #=> "Olá mundo!"
+# negação lógica com not
+not True # => False
+not False # => True
-# Uma string pode ser tratada como uma lista de caracteres
-"Esta é uma string"[0] #=> 'E'
+# Operadores lógicos
+# Observe que "and" e "or" são sensíveis a maiúsculas e minúsculas
+True and False # => False
+False or True # => True
-# O caractere % pode ser usado para formatar strings, desta forma:
-"%s podem ser %s" % ("strings", "interpoladas")
+# Observe a utilização de operadores lógicos com números inteiros
+0 and 2 # => 0
+-5 or 0 # => -5
+0 == False # => True
+2 == True # => False
+1 == True # => True
-# Um jeito novo de formatar strings é usando o método 'format'.
-# Esse método é o jeito mais usado
-"{0} podem ser {1}".format("strings", "formatadas")
-# Você pode usar palavras-chave (ou 'keywords') se você não quiser contar.
-"{nome} quer comer {comida}".format(nome="João", comida="lasanha")
+# Igualdade é ==
+1 == 1 # => True
+2 == 1 # => False
-# 'None' é um objeto
-None #=> None
+# Diferença é !=
+1 != 1 # => False
+2 != 1 # => True
-# Não use o operador de igualdade `==` para comparar objetos com 'None'
-# Ao invés disso, use `is`
-"etc" is None #=> False
-None is None #=> True
+# Mais comparações
+1 < 10 # => True
+1 > 10 # => False
+2 <= 2 # => True
+2 >= 2 # => True
+
+# Comparações podem ser agrupadas
+1 < 2 < 3 # => True
+2 < 3 < 2 # => False
+
+# 'is' verifica se duas variáveis representam o mesmo endereço
+# na memória; '==' verifica se duas variáveis têm o mesmo valor
+a = [1, 2, 3, 4] # Referência a uma nova lista, [1, 2, 3, 4]
+b = a # b referencia o que está referenciado por a
+b is a # => True, a e b referenciam o mesmo objeto
+b == a # => True, objetos a e b tem o mesmo conteúdo
+b = [1, 2, 3, 4] # Referência a uma nova lista, [1, 2, 3, 4]
+b is a # => False, a e b não referenciam o mesmo objeto
+b == a # => True, objetos a e b tem o mesmo conteúdo
-# O operador 'is' teste a identidade de um objeto. Isso não é
-# muito útil quando estamos lidando com valores primitivos, mas é
-# muito útil quando lidamos com objetos.
+# Strings são criadas com " ou '
+"Isto é uma string."
+'Isto também é uma string.'
-# None, 0, e strings/listas vazias são todas interpretadas como 'False'.
-# Todos os outros valores são 'True'
-0 == False #=> True
-"" == False #=> True
+# Strings também podem ser somadas! Mas tente não fazer isso.
+"Olá " + "mundo!" # => "Olá mundo!"
+# Strings podem ser somadas sem usar o '+'
+"Olá " "mundo!" # => "Olá mundo!"
+# Uma string pode ser manipulada como se fosse uma lista de caracteres
+"Isso é uma string"[0] # => 'I'
-####################################################
-## 2. Variáveis e Coleções
-####################################################
+# .format pode ser usado para formatar strings, dessa forma:
+"{} podem ser {}".format("Strings", "interpoladas") # => "Strings podem ser interpoladas"
-# Imprimir na tela é muito fácil
-print "Eu sou o Python. Prazer em te conhecer!"
+# Você pode repetir os argumentos para digitar menos.
+"Seja ágil {0}, seja rápido {0}, salte sobre o {1} {0}".format("Jack", "castiçal")
+# => "Seja ágil Jack, seja rápido Jack, salte sobre o castiçal Jack."
+# Você pode usar palavras-chave se quiser contar.
+"{nome} quer comer {comida}".format(nome="Beto", comida="lasanha") # => "Beto quer comer lasanha"
-# Nós não precisamos declarar variáveis antes de usá-las, basta usar!
-alguma_variavel = 5 # A convenção é usar caixa_baixa_com_sobrescritos
-alguma_variavel #=> 5
+# Se você precisa executar seu código Python3 com um interpretador Python 2.5 ou acima, você pode usar a velha forma para formatação de texto:
+"%s podem ser %s da forma %s" % ("Strings", "interpoladas", "antiga") # => "Strings podem ser interpoladas da forma antiga"
-# Acessar uma variável que não teve nenhum valor atribuído anteriormente é
-# uma exceção.
-# Veja a seção 'Controle' para aprender mais sobre tratamento de exceção.
-outra_variavel # Gera uma exceção de erro de nome
-# 'if' pode ser usado como uma expressão
-"uepa!" if 3 > 2 else 2 #=> "uepa!"
+# None é um objeto
+None # => None
-# Listas armazenam sequências de elementos
-lista = []
-# Você pode inicializar uma lista com valores
-outra_lista = [4, 5, 6]
+# Não use o operador de igualdade "==" para comparar objetos com None
+# Use "is" para isso. Ele checará pela identidade dos objetos.
+"etc" is None # => False
+None is None # => True
-# Adicione elementos no final da lista usando 'append'
-lista.append(1) # lista é agora [1]
-lista.append(2) # lista é agora [1, 2]
-lista.append(4) # lista é agora [1, 2, 4]
-lista.append(3) # lista é agora [1, 2, 4, 3]
-# Remova elementos do fim da lista usando 'pop'
-lista.pop() #=> 3 e lista é agora [1, 2, 4]
-# Vamos adicionar o elemento novamente
-lista.append(3) # lista agora é [1, 2, 4, 3] novamente.
+# None, 0, e strings/listas/dicionários vazios todos retornam False.
+# Qualquer outra coisa retorna True
+bool(0) # => False
+bool("") # => False
+bool([]) # => False
+bool({}) # => False
-# Acesse elementos de uma lista através de seu índices
-lista[0] #=> 1
-# Acesse o último elemento com índice negativo!
-lista[-1] #=> 3
-# Tentar acessar um elemento fora dos limites da lista gera uma exceção
-# do tipo 'IndexError'
-lista[4] # Gera uma exceção 'IndexError'
-
-# Você pode acessar vários elementos ao mesmo tempo usando a sintaxe de
-# limites
-# (Para quem gosta de matemática, isso é um limite fechado/aberto)
-lista[1:3] #=> [2, 4]
-# Você pode omitir o fim se quiser os elementos até o final da lista
-lista[2:] #=> [4, 3]
-# O mesmo para o início
-lista[:3] #=> [1, 2, 4]
+####################################################
+## 2. Variáveis e coleções
+####################################################
-# Remova um elemento qualquer de uma lista usando 'del'
-del lista[2] # lista agora é [1, 2, 3]
+# Python tem uma função print
+print("Eu sou o Python. Prazer em conhecer!") # => Eu sou o Python. Prazer em conhecer!
+
+# Por padrão a função print também imprime o caractere de nova linha ao final.
+# Use o argumento opcional end para mudar o caractere final.
+print("Olá, Mundo", end="!") # => Olá, Mundo!
+
+# Forma simples para capturar dados de entrada via console
+input_string_var = input("Digite alguma coisa: ") # Retorna o que foi digitado em uma string
+# Observação: Em versões antigas do Python, o método input() era chamado raw_input()
+
+# Não é necessário declarar variáveis antes de iniciá-las
+# É uma convenção usar letras_minúsculas_com_sublinhados
+alguma_variavel = 5
+alguma_variavel # => 5
+
+# Acessar uma variável que não tenha sido inicializada gera uma exceção.
+# Veja Controle de Fluxo para aprender mais sobre tratamento de exceções.
+alguma_variavel_nao_inicializada # Gera a exceção NameError
+
+# Listas armazenam sequências
+li = []
+# Você pode iniciar uma lista com valores
+outra_li = [4, 5, 6]
+
+# Adicione conteúdo ao fim da lista com append
+li.append(1) # li agora é [1]
+li.append(2) # li agora é [1, 2]
+li.append(4) # li agora é [1, 2, 4]
+li.append(3) # li agora é [1, 2, 4, 3]
+# Remova do final da lista com pop
+li.pop() # => 3 e agora li é [1, 2, 4]
+# Vamos colocá-lo lá novamente!
+li.append(3) # li agora é [1, 2, 4, 3] novamente.
+
+# Acesse uma lista da mesma forma que você faz com um array
+li[0] # => 1
+# Acessando o último elemento
+li[-1] # => 3
+
+# Acessar além dos limites gera um IndexError
+li[4] # Gera o IndexError
+
+# Você pode acessar vários elementos com a sintaxe de limites
+# Inclusivo para o primeiro termo, exclusivo para o segundo
+li[1:3] # => [2, 4]
+# Omitindo o final
+li[2:] # => [4, 3]
+# Omitindo o início
+li[:3] # => [1, 2, 4]
+# Selecione cada segunda entrada
+li[::2] # => [1, 4]
+# Tenha uma cópia em ordem invertida da lista
+li[::-1] # => [3, 4, 2, 1]
+# Use qualquer combinação dessas para indicar limites complexos
+# li[inicio:fim:passo]
+
+# Faça uma cópia profunda de um nível usando limites
+li2 = li[:] # => li2 = [1, 2, 4, 3] mas (li2 is li) resultará em False.
+
+# Apague elementos específicos da lista com "del"
+del li[2] # li agora é [1, 2, 3]
+
+# Você pode somar listas
+# Observação: valores em li e other_li não são modificados.
+li + other_li # => [1, 2, 3, 4, 5, 6]
+
+# Concatene listas com "extend()"
+li.extend(other_li) # Agora li é [1, 2, 3, 4, 5, 6]
+
+# Verifique se algo existe na lista com "in"
+1 in li # => True
+
+# Examine tamanho com "len()"
+len(li) # => 6
+
+
+# Tuplas são como l istas, mas imutáveis.
+tup = (1, 2, 3)
+tup[0] # => 1
+tup[0] = 3 # Gera um TypeError
+
+# Observe que uma tupla de tamanho um precisa ter uma vírgula depois do
+# último elemento mas tuplas de outros tamanhos, mesmo vazias, não precisa,.
+type((1)) # => <class 'int'>
+type((1,)) # => <class 'tuple'>
+type(()) # => <class 'tuple'>
+
+# Você pode realizar com tuplas a maior parte das operações que faz com listas
+len(tup) # => 3
+tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)
+tup[:2] # => (1, 2)
+2 in tup # => True
+
+# Você pode desmembrar tuplas (ou listas) em variáveis.
+a, b, c = (1, 2, 3) # a é 1, b é 2 e c é 3
+# Por padrão, tuplas são criadas se você não coloca parêntesis.
+d, e, f = 4, 5, 6
+# Veja como é fácil permutar dois valores
+e, d = d, e # d é 5, e é 4
-# Você pode somar listas (obs: as listas originais não são modificadas)
-lista + outra_lista #=> [1, 2, 3, 4, 5, 6]
+# Dicionários armazenam mapeamentos
+empty_dict = {}
+# Aqui está um dicionário preenchido na definição da referência
+filled_dict = {"um": 1, "dois": 2, "três": 3}
-# Você também pode concatenar usando o método 'extend' (lista será modificada!)
-lista.extend(outra_lista) # Agora lista é [1, 2, 3, 4, 5, 6]
+# Observe que chaves para dicionários devem ser tipos imutáveis. Isto é para
+# assegurar que a chave pode ser convertida para uma valor hash constante para
+# buscas rápidas.
+# Tipos imutáveis incluem inteiros, flotas, strings e tuplas.
+invalid_dict = {[1,2,3]: "123"} # => Gera um TypeError: unhashable type: 'list'
+valid_dict = {(1,2,3):[1,2,3]} # Já os valores, podem ser de qualquer tipo.
-# Para checar se um elemento pertence a uma lista, use 'in'
-1 in lista #=> True
+# Acesse valores com []
+filled_dict["um"] # => 1
-# Saiba quantos elementos uma lista possui com 'len'
-len(lista) #=> 6
+# Acesse todas as chaves como um iterável com "keys()". É necessário encapsular
+# a chamada com um list() para transformá-las em uma lista. Falaremos sobre isso
+# mais adiante. Observe que a ordem de uma chave de dicionário não é garantida.
+# Por isso, os resultados aqui apresentados podem não ser exatamente como os
+# aqui apresentados.
+list(filled_dict.keys()) # => ["três", "dois", "um"]
-# Tuplas são iguais a listas, mas são imutáveis
-tup = (1, 2, 3)
-tup[0] #=> 1
-tup[0] = 3 # Isso gera uma exceção do tipo TypeError
-
-# Você pode fazer nas tuplas todas aquelas coisas fez com a lista
-len(tup) #=> 3
-tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
-tup[:2] #=> (1, 2)
-2 in tup #=> True
-
-# Você pode 'desempacotar' tuplas (ou listas) em variáveis, associando cada
-# elemento da tupla/lista a uma variável correspondente
-a, b, c = (1, 2, 3) # a agora é 1, b agora é 2, c agora é 3
-# Tuplas são criadas por padrão, mesmo se você não usar parênteses
-d, e, f = 4, 5, 6
-# Sabendo disso, veja só como é fácil trocar os valores de duas variáveis!
-e, d = d, e # d agora é 5, e agora é 4
+# Acesse todos os valores de um iterável com "values()". Novamente, é
+# necessário encapsular ele com list() para não termos um iterável, e sim os
+# valores. Observe que, como foi dito acima, a ordem dos elementos não é
+# garantida.
+list(filled_dict.values()) # => [3, 2, 1]
-# Dicionários armazenam 'mapeamentos' (do tipo chave-valor)
-dicionario_vazio = {}
-# Aqui criamos um dicionário já contendo valores
-dicionario = {"um": 1, "dois": 2, "três": 3}
+# Verifique a existência de chaves em um dicionário com "in"
+"um" in filled_dict # => True
+1 in filled_dict # => False
-# Acesse valores usando []
-dicionario["um"] #=> 1
+# Acessar uma chave inexistente gera um KeyError
+filled_dict["quatro"] # KeyError
-# Retorna uma lista com todas as chaves do dicionário
-dicionario.keys() #=> ["três", "dois", "um"]
-# Nota: A ordem das chaves não é garantida.
-# O resultado no seu interpretador não necessariamente será igual a esse.
+# Use o método "get()" para evitar um KeyError
+filled_dict.get("um") # => 1
+filled_dict.get("quatro") # => None
+# O método get permite um parâmetro padrão para quando não existir a chave
+filled_dict.get("um", 4) # => 1
+filled_dict.get("quatro", 4) # => 4
-# Retorna uma lista com todos os valores do dicionário
-dicionario.values() #=> [3, 2, 1]
-# Nota: A mesma nota acima sobre a ordenação é válida aqui.
+# "setdefault()" insere em dicionário apenas se a dada chave não existir
+filled_dict.setdefault("cinco", 5) # filled_dict["cinco"] tem valor 5
+filled_dict.setdefault("cinco", 6) # filled_dict["cinco"] continua 5
-# Veja se uma chave qualquer está em um dicionário usando 'in'
-"um" in dicionario #=> True
-1 in dicionario #=> False
+# Inserindo em um dicionário
+filled_dict.update({"quatro":4}) # => {"um": 1, "dois": 2, "três": 3, "quatro": 4}
+#filled_dict["quatro"] = 4 #outra forma de inserir em um dicionário
-# Tentar acessar uma chave que não existe gera uma exceção do tipo 'KeyError'
-dicionario["quatro"] # Gera uma exceção KeyError
+# Remova chaves de um dicionário com del
+del filled_dict["um"] # Remove a chave "um" de filled_dict
-# Você pode usar o método 'get' para evitar gerar a exceção 'KeyError'.
-# Ao invés de gerar essa exceção, irá retornar 'None' se a chave não existir.
-dicionario.get("um") #=> 1
-dicionario.get("quatro") #=> None
-# O método 'get' suporta um argumento que diz qual valor deverá ser
-# retornado se a chave não existir (ao invés de 'None').
-dicionario.get("um", 4) #=> 1
-dicionario.get("quatro", 4) #=> 4
-# O método 'setdefault' é um jeito seguro de adicionar um novo par
-# chave-valor a um dicionário, associando um valor padrão imutável à uma chave
-dicionario.setdefault("cinco", 5) # dicionario["cinco"] é definido como 5
-dicionario.setdefault("cinco", 6) # dicionario["cinco"] ainda é igual a 5
+# Armazenamento em sets... bem, são conjuntos
+empty_set = set()
+# Inicializa um set com alguns valores. Sim, ele parece um dicionário. Desculpe.
+some_set = {1, 1, 2, 2, 3, 4} # some_set agora é {1, 2, 3, 4}
+# Da mesma forma que chaves em um dicionário, elementos de um set devem ser
+# imutáveis.
+invalid_set = {[1], 1} # => Gera um TypeError: unhashable type: 'list'
+valid_set = {(1,), 1}
-# Conjuntos (ou sets) armazenam ... bem, conjuntos
-# Nota: lembre-se que conjuntos não admitem elementos repetidos!
-conjunto_vazio = set()
-# Podemos inicializar um conjunto com valores
-conjunto = set([1, 2, 2, 3, 4]) # conjunto é set([1, 2, 3, 4]), sem repetição!
+# Pode definir novas variáveis para um conjunto
+filled_set = some_set
-# Desde o Python 2.7, {} pode ser usado para declarar um conjunto
-conjunto = {1, 2, 2, 3, 4} # => {1 2 3 4}
+# Inclua mais um item no set
+filled_set.add(5) # filled_set agora é {1, 2, 3, 4, 5}
-# Adicione mais ítens a um conjunto com 'add'
-conjunto.add(5) # conjunto agora é {1, 2, 3, 4, 5}
+# Faça interseção de conjuntos com &
+other_set = {3, 4, 5, 6}
+filled_set & other_set # => {3, 4, 5}
-# Calcule a intersecção de dois conjuntos com &
-outro_conj = {3, 4, 5, 6}
-conjunto & outro_conj #=> {3, 4, 5}
+# Faça união de conjuntos com |
+filled_set | other_set # => {1, 2, 3, 4, 5, 6}
-# Calcule a união de dois conjuntos com |
-conjunto | outro_conj #=> {1, 2, 3, 4, 5, 6}
+# Faça a diferença entre conjuntos com -
+{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}
-# E a diferença entre dois conjuntos com -
-{1,2,3,4} - {2,3,5} #=> {1, 4}
+# Verifique a existência em um conjunto com in
+2 in filled_set # => True
+10 in filled_set # => False
-# Veja se um elemento existe em um conjunto usando 'in'
-2 in conjunto #=> True
-10 in conjunto #=> False
####################################################
-## 3. Controle
+## 3. Controle de fluxo e iteráveis
####################################################
-# Para começar, vamos apenas criar uma variável
-alguma_var = 5
+# Iniciemos um variável
+some_var = 5
-# Aqui está uma expressão 'if'. Veja como a identação é importante em Python!
-# Esses comandos irão imprimir "alguma_var é menor que 10"
-if alguma_var > 10:
- print "some_var é maior que 10."
-elif some_var < 10: # Esse 'elif' é opcional
- print "some_var é menor que 10."
-else: # Esse 'else' também é opcional
- print "some_var é igual a 10."
+# Aqui está uma expressão if. Indentação é significante em python!
+# imprime "somevar é menor que10"
+if some_var > 10:
+ print("some_var é absolutamente maior que 10.")
+elif some_var < 10: # Esta cláusula elif é opcional.
+ print("some_var é menor que 10.")
+else: # Isto também é opcional.
+ print("some_var é, de fato, 10.")
"""
-Laços (ou loops) 'for' iteram em listas.
-Irá imprimir:
+Laços for iteram sobre listas
+imprime:
cachorro é um mamífero
gato é um mamífero
rato é um mamífero
"""
for animal in ["cachorro", "gato", "rato"]:
- # Você pode usar % para interpolar strings formatadas
- print "%s é um mamífero" % animal
-
+ # Você pode usar format() para interpolar strings formatadas
+ print("{} é um mamífero".format(animal))
+
"""
-A função `range(um número)` retorna uma lista de números
-do zero até o número dado.
-Irá imprimir:
+"range(número)" retorna um iterável de números
+de zero até o número escolhido
+imprime:
0
1
2
3
"""
for i in range(4):
- print i
+ print(i)
+
+"""
+"range(menor, maior)" gera um iterável de números
+começando pelo menor até o maior
+imprime:
+ 4
+ 5
+ 6
+ 7
+"""
+for i in range(4, 8):
+ print(i)
"""
-Laços 'while' executam enquanto uma condição dada for verdadeira.
-Irá imprimir:
+"range(menor, maior, passo)" retorna um iterável de números
+começando pelo menor número até o maior númeno, pulando de
+passo em passo. Se o passo não for indicado, o valor padrão é um.
+imprime:
+ 4
+ 6
+"""
+for i in range(4, 8, 2):
+ print(i)
+"""
+
+Laços while executam até que a condição não seja mais válida.
+imprime:
0
1
2
@@ -319,143 +424,221 @@ Irá imprimir:
"""
x = 0
while x < 4:
- print x
- x += 1 # Isso é um atalho para a expressão x = x + 1
-
-# Tratamos excessões usando o bloco try/except
-# Funciona em Python 2.6 e versões superiores:
+ print(x)
+ x += 1 # Maneira mais curta para for x = x + 1
+# Lide com exceções com um bloco try/except
try:
- # Use 'raise' para gerar um erro
- raise IndexError("Isso é um erro de índice")
+ # Use "raise" para gerar um erro
+ raise IndexError("Isto é um erro de índice")
except IndexError as e:
- pass # Pass é um operador que não faz nada, deixa passar.
- # Usualmente você iria tratar a exceção aqui...
+ pass # Pass é um não-operador. Normalmente você usa algum código de recuperação aqui.
+except (TypeError, NameError):
+ pass # Varias exceções podem ser gerenciadas, se necessário.
+else: # Cláusula opcional para o bloco try/except. Deve estar após todos os blocos de exceção.
+ print("Tudo certo!") # Executa apenas se o código em try não gera exceção
+finally: # Sempre é executado
+ print("Nós podemos fazer o código de limpeza aqui.")
+
+# Ao invés de try/finally para limpeza você pode usar a cláusula with
+with open("myfile.txt") as f:
+ for line in f:
+ print(line)
+
+# Python provê uma abstração fundamental chamada Iterável.
+# Um iterável é um objeto que pode ser tratado como uma sequência.
+# O objeto retornou a função range, um iterável.
+
+filled_dict = {"um": 1, "dois": 2, "três": 3}
+our_iterable = filled_dict.keys()
+print(our_iterable) # => range(1,10). Esse é um objeto que implementa nossa interface iterável.
+
+# Nós podemos percorrê-la.
+for i in our_iterable:
+ print(i) # Imprime um, dois, três
+
+# Mas não podemos acessar os elementos pelo seu índice.
+our_iterable[1] # Gera um TypeError
+
+# Um iterável é um objeto que sabe como criar um iterador.
+our_iterator = iter(our_iterable)
+
+# Nosso iterador é um objeto que pode lembrar o estado enquanto nós o percorremos.
+# Nós acessamos o próximo objeto com "next()".
+next(our_iterator) # => "um"
+
+# Ele mantém o estado enquanto nós o percorremos.
+next(our_iterator) # => "dois"
+next(our_iterator) # => "três"
+
+# Após o iterador retornar todos os seus dados, ele gera a exceção StopIterator
+next(our_iterator) # Gera StopIteration
+
+# Você pode capturar todos os elementos de um iterador aplicando list() nele.
+list(filled_dict.keys()) # => Retorna ["um", "dois", "três"]
####################################################
## 4. Funções
####################################################
-# Use 'def' para definir novas funções
-def soma(x, y):
- print "x é %s e y é %s" % (x, y)
- return x + y # Retorne valores usando 'return'
+# Use "def" para criar novas funções.
+def add(x, y):
+ print("x é {} e y é {}".format(x, y))
+ return x + y # Retorne valores com a cláusula return
# Chamando funções com parâmetros
-soma(5, 6) #=> imprime "x é 5 e y é 6" e retorna o valor 11
+add(5, 6) # => imprime "x é 5 e y é 6" e retorna 11
-# Um outro jeito de chamar funções é especificando explicitamente os valores
-# de cada parâmetro com chaves
-soma(y=6, x=5) # Argumentos com chaves podem vir em qualquer ordem.
+# Outro meio de chamar funções é com argumentos nomeados
+add(y=6, x=5) # Argumentos nomeados podem aparecer em qualquer ordem.
-# Você pode definir funções que recebem um número qualquer de argumentos
-# (respeitando a sua ordem)
+# Você pode definir funções que pegam um número variável de argumentos
+# posicionais
def varargs(*args):
return args
-varargs(1, 2, 3) #=> (1,2,3)
+varargs(1, 2, 3) # => (1, 2, 3)
+# Você pode definir funções que pegam um número variável de argumentos nomeados
+# também
+def keyword_args(**kwargs):
+ return kwargs
-# Você também pode definir funções que recebem um número qualquer de argumentos
-# com chaves
-def args_com_chaves(**ch_args):
- return ch_args
+# Vamos chamá-lo para ver o que acontece
+keyword_args(peh="grande", lago="ness") # => {"peh": "grande", "lago": "ness"}
-# Vamos chamar essa função para ver o que acontece
-args_com_chaves(pe="grande", lago="Ness") #=> {"pe": "grande", "lago": "Ness"}
-# Você pode fazer as duas coisas ao mesmo tempo, se desejar
-def todos_args(*args, **ch_wargs):
- print args
- print ch_args
+# Você pode fazer ambos simultaneamente, se você quiser
+def all_the_args(*args, **kwargs):
+ print(args)
+ print(kwargs)
"""
-todos_args(1, 2, a=3, b=4) imprime:
+all_the_args(1, 2, a=3, b=4) imprime:
(1, 2)
{"a": 3, "b": 4}
"""
-# Quando você chamar funções, pode fazer o oposto do que fizemos até agora!
-# Podemos usar * para expandir tuplas de argumentos e ** para expandir
-# dicionários de argumentos com chave.
+# Quando chamar funções, você pode fazer o oposto de args/kwargs!
+# Use * para expandir tuplas e use ** para expandir dicionários!
args = (1, 2, 3, 4)
-ch_args = {"a": 3, "b": 4}
-todos_args(*args) # equivalente a todos_args(1, 2, 3, 4)
-todos_args(**ch_args) # equivalente a todos_args(a=3, b=4)
-todos_args(*args, **ch_args) # equivalente a todos_args(1, 2, 3, 4, a=3, b=4)
-
-# Em Python, funções são elementos de primeira ordem (são como objetos,
-# strings ou números)
-def cria_somador(x):
- def somador(y):
+kwargs = {"a": 3, "b": 4}
+all_the_args(*args) # equivalente a foo(1, 2, 3, 4)
+all_the_args(**kwargs) # equivalente a foo(a=3, b=4)
+all_the_args(*args, **kwargs) # equivalente a foo(1, 2, 3, 4, a=3, b=4)
+
+# Retornando múltiplos valores (com atribuição de tuplas)
+def swap(x, y):
+ return y, x # Retorna múltiplos valores como uma tupla sem os parêntesis.
+ # (Observação: os parêntesis foram excluídos mas podem estar
+ # presentes)
+
+x = 1
+y = 2
+x, y = swap(x, y) # => x = 2, y = 1
+# (x, y) = swap(x,y) # Novamente, os parêntesis foram excluídos mas podem estar presentes.
+
+# Escopo de função
+x = 5
+
+def setX(num):
+ # A variável local x não é a mesma variável global x
+ x = num # => 43
+ print (x) # => 43
+
+def setGlobalX(num):
+ global x
+ print (x) # => 5
+ x = num # variável global x agora é 6
+ print (x) # => 6
+
+setX(43)
+setGlobalX(6)
+
+
+# Python tem funções de primeira classe
+def create_adder(x):
+ def adder(y):
return x + y
- return somador
+ return adder
+
+add_10 = create_adder(10)
+add_10(3) # => 13
-soma_10 = cria_somador(10)
-soma_10(3) #=> 13
+# Também existem as funções anônimas
+(lambda x: x > 2)(3) # => True
+(lambda x, y: x ** 2 + y ** 2)(2, 1) # => 5
-# Desta forma, existem também funções anônimas
-(lambda x: x > 2)(3) #=> True
+# TODO - Fix for iterables
+# Existem funções internas de alta ordem
+map(add_10, [1, 2, 3]) # => [11, 12, 13]
+map(max, [1, 2, 3], [4, 2, 1]) # => [4, 2, 3]
-# E existem funções de alta ordem por padrão
-map(soma_10, [1,2,3]) #=> [11, 12, 13]
-filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
-reduce(lambda x, y: x + y, [3, 4, 5, 6, 7]) #=> 25
+filter(lambda x: x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
-# Nós podemos usar compreensão de listas para mapear e filtrar também
-[soma_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
-[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]
+# Nós podemos usar compreensão de lista para interessantes mapas e filtros
+# Compreensão de lista armazena a saída como uma lista que pode ser uma lista
+# aninhada
+[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
+[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
####################################################
## 5. Classes
####################################################
-# Para criar uma nova classe, devemos herdar de 'object'
-class Humano(object):
- # Um atributo de classe. Ele é compartilhado por todas as instâncias dessa
- # classe
- especie = "H. sapiens"
-
- # Definimos um inicializador básico
- def __init__(self, nome):
- # Atribui o valor de argumento dado a um atributo da instância
- self.nome = nome
+# Nós usamos o operador "class" para ter uma classe
+class Human:
- # Um método de instância. Todos os métodos levam 'self' como primeiro
+ # Um atributo de classe. Ele é compartilhado por todas as instâncias dessa
+ # classe.
+ species = "H. sapiens"
+
+ # Construtor básico, é chamado quando esta classe é instanciada.
+ # Note que dois sublinhados no início e no final de uma identificados
+ # significa objetos ou atributos que são usados pelo python mas vivem em
+ # um namespace controlado pelo usuário. Métodos (ou objetos ou atributos)
+ # como: __init__, __str__, __repr__, etc. são chamados métodos mágicos (ou
+ # algumas vezes chamados métodos dunder - "double underscore")
+ # Você não deve usar nomes assim por sua vontade.
+ def __init__(self, name):
+ @ Atribui o argumento ao atributo da instância
+ self.name = name
+
+ # Um método de instância. Todos os métodos tem "self" como primeiro
# argumento
- def diga(self, msg):
- return "%s: %s" % (self.nome, msg)
+ def say(self, msg):
+ return "{name}: {message}".format(name=self.name, message=msg)
# Um método de classe é compartilhado por todas as instâncias
- # Eles são chamados passando o nome da classe como primeiro argumento
+ # Eles são chamados com a classe requisitante como primeiro argumento
@classmethod
- def get_especie(cls):
- return cls.especie
+ def get_species(cls):
+ return cls.species
# Um método estático é chamado sem uma referência a classe ou instância
@staticmethod
- def ronca():
- return "*arrrrrrr*"
+ def grunt():
+ return "*grunt*"
# Instancie uma classe
-i = Humano(nome="Ivone")
-print i.diga("oi") # imprime "Ivone: oi"
+i = Human(name="Ian")
+print(i.say("oi")) # imprime "Ian: oi"
j = Human("Joel")
-print j.say("olá") #prints out "Joel: olá"
+print(j.say("olá")) # imprime "Joel: olá"
-# Chame nosso método de classe
-i.get_especie() #=> "H. sapiens"
+# Chama nosso método de classe
+i.get_species() # => "H. sapiens"
-# Modifique um atributo compartilhado
-Humano.especie = "H. neanderthalensis"
-i.get_especie() #=> "H. neanderthalensis"
-j.get_especie() #=> "H. neanderthalensis"
+# Altera um atributo compartilhado
+Human.species = "H. neanderthalensis"
+i.get_species() # => "H. neanderthalensis"
+j.get_species() # => "H. neanderthalensis"
-# Chame o método estático
-Humano.ronca() #=> "*arrrrrrr*"
+# Chama o método estático
+Human.grunt() # => "*grunt*"
####################################################
@@ -464,46 +647,100 @@ Humano.ronca() #=> "*arrrrrrr*"
# Você pode importar módulos
import math
-print math.sqrt(16) #=> 4.0
+print(math.sqrt(16)) # => 4.0
-# Você pode importar funções específicas de um módulo
+# Você pode importar apenas funções específicas de um módulo
from math import ceil, floor
-print ceil(3.7) #=> 4.0
-print floor(3.7) #=> 3.0
+print(ceil(3.7)) # => 4.0
+print(floor(3.7)) # => 3.0
-# Você também pode importar todas as funções de um módulo
-# Atenção: isso não é recomendado!
+# Você pode importar todas as funções de um módulo para o namespace atual
+# Atenção: isso não é recomendado
from math import *
-# Você pode usar apelidos para os módulos, encurtando seus nomes
+# Você pode encurtar o nome dos módulos
import math as m
-math.sqrt(16) == m.sqrt(16) #=> True
+math.sqrt(16) == m.sqrt(16) # => True
-# Módulos em Python são apenas arquivos Python. Você
-# pode escrever o seu próprio módulo e importá-lo. O nome do
-# módulo será o mesmo que o nome do arquivo.
+# Módulos python são apenas arquivos python comuns. Você
+# pode escrever os seus, e importá-los. O nome do
+# módulo é o mesmo nome do arquivo.
-# Você pode descobrir quais funções e atributos
-# estão definidos em um módulo qualquer.
+# Você pode procurar que atributos e funções definem um módulo.
import math
dir(math)
+####################################################
+## 7. Avançado
+####################################################
+
+# Geradores podem ajudar você a escrever código "preguiçoso"
+def double_numbers(iterable):
+ for i in iterable:
+ yield i + i
+
+# Um gerador cria valores conforme necessário.
+# Ao invés de gerar e retornar todos os valores de uma só vez ele cria um em
+# cada interação. Isto significa que valores maiores que 15 não serão
+# processados em double_numbers.
+# Nós usamos um sublinhado ao final do nome das variáveis quando queremos usar
+# um nome que normalmente colide com uma palavra reservada do python.
+range_ = range(1, 900000000)
+# Multiplica por 2 todos os números até encontrar um resultado >= 30
+for i in double_numbers(range_):
+ print(i)
+ if i >= 30:
+ break
+
+
+# Decoradores
+# Neste exemplo beg encapsula say
+# beg irá chamar say. Se say_please é verdade então ele irá mudar a mensagem
+# retornada
+from functools import wraps
+
+
+def beg(target_function):
+ @wraps(target_function)
+ def wrapper(*args, **kwargs):
+ msg, say_please = target_function(*args, **kwargs)
+ if say_please:
+ return "{} {}".format(msg, "Por favor! Eu sou pobre :(")
+ return msg
+
+ return wrapper
+
+
+@beg
+def say(say_please=False):
+ msg = "Você me paga uma cerveja?"
+ return msg, say_please
+
+
+print(say()) # Você me paga uma cerveja?
+print(say(say_please=True)) # Você me paga uma cerveja? Por favor! Eu sou pobre :(
```
## Pronto para mais?
-### Online e gratuito
+### Free Online
+* [Automate the Boring Stuff with Python](https://automatetheboringstuff.com)
* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
* [Dive Into Python](http://www.diveintopython.net/)
-* [The Official Docs](http://docs.python.org/2.6/)
+* [Ideas for Python Projects](http://pythonpracticeprojects.com)
+* [The Official Docs](http://docs.python.org/3/)
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
-* [Python Module of the Week](http://pymotw.com/2/)
+* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182)
+* [Python Course](http://www.python-course.eu/index.php)
+* [First Steps With Python](https://realpython.com/learn/python-first-steps/)
+* [A curated list of awesome Python frameworks, libraries and software](https://github.com/vinta/awesome-python)
+* [30 Python Language Features and Tricks You May Not Know About](http://sahandsaba.com/thirty-python-language-features-and-tricks-you-may-not-know.html)
+* [Official Style Guide for Python](https://www.python.org/dev/peps/pep-0008/)
-### Livros impressos
+### Dead Tree
* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)
-
diff --git a/pt-br/python3-pt.html.markdown b/pt-br/python3-pt.html.markdown
deleted file mode 100644
index b72c732a..00000000
--- a/pt-br/python3-pt.html.markdown
+++ /dev/null
@@ -1,746 +0,0 @@
----
-language: python3
-contributors:
- - ["Louie Dinh", "http://pythonpracticeprojects.com"]
- - ["Steven Basart", "http://github.com/xksteven"]
- - ["Andre Polykanine", "https://github.com/Oire"]
- - ["Zachary Ferguson", "http://github.com/zfergus2"]
-translators:
- - ["Paulo Henrique Rodrigues Pinheiro", "http://www.sysincloud.it"]
-lang: pt-br
-filename: learnpython3-pt.py
----
-
-Python foi criado por Guido Van Rossum nos anos 1990. Ele é atualmente uma
-das mais populares linguagens em existência. Eu fiquei morrendo de amor
-pelo Python por sua clareza sintática. É praticamente pseudocódigo executável.
-
-Suas opiniões são grandemente apreciadas. Você pode encontrar-me em
-[@louiedinh](http://twitter.com/louiedinh) ou louiedinh [em]
-[serviço de e-mail do google].
-
-Observação: Este artigo trata de Python 3 especificamente. Verifique
-[aqui](http://learnxinyminutes.com/docs/pt-br/python-pt/) se você pretende
-aprender o velho Python 2.7.
-
-```python
-
-# Comentários em uma única linha começam com uma cerquilha (também conhecido por sustenido).
-
-""" Strings de várias linhas podem ser escritas
- usando três ", e são comumente usadas
- como comentários.
-"""
-
-####################################################
-## 1. Tipos de dados primitivos e operadores
-####################################################
-
-# Você usa números normalmente
-3 # => 3
-
-# Matemática é como você espera que seja
-1 + 1 # => 2
-8 - 1 # => 7
-10 * 2 # => 20
-
-# Números inteiros por padrão, exceto na divisão, que retorna número
-# de ponto flutuante (float).
-35 / 5 # => 7.0
-
-# O resultado da divisão inteira arredonda para baixo tanto para números
-# positivos como para negativos.
-5 // 3 # => 1
-5.0 // 3.0 # => 1.0 # funciona em float também
--5 // 3 # => -2
--5.0 // 3.0 # => -2.0
-
-# Quando você usa um float, o resultado é float.
-3 * 2.0 # => 6.0
-
-# operador módulo
-7 % 3 # => 1
-
-# Exponenciação (x**y, x elevado à potência y)
-2**4 # => 16
-
-# Determine a precedência usando parêntesis
-(1 + 3) * 2 # => 8
-
-# Valores lógicos são primitivos (Atenção à primeira letra maiúscula)
-True
-False
-
-# negação lógica com not
-not True # => False
-not False # => True
-
-# Operadores lógicos
-# Observe que "and" e "or" são sensíveis a maiúsculas e minúsculas
-True and False # => False
-False or True # => True
-
-# Observe a utilização de operadores lógicos com números inteiros
-0 and 2 # => 0
--5 or 0 # => -5
-0 == False # => True
-2 == True # => False
-1 == True # => True
-
-# Igualdade é ==
-1 == 1 # => True
-2 == 1 # => False
-
-# Diferença é !=
-1 != 1 # => False
-2 != 1 # => True
-
-# Mais comparações
-1 < 10 # => True
-1 > 10 # => False
-2 <= 2 # => True
-2 >= 2 # => True
-
-# Comparações podem ser agrupadas
-1 < 2 < 3 # => True
-2 < 3 < 2 # => False
-
-# (operador 'is' e operador '==') is verifica se duas variáveis
-# referenciam um mesmo objeto, mas == verifica se as variáveis
-# apontam para o mesmo valor.
-a = [1, 2, 3, 4] # Referência a uma nova lista, [1, 2, 3, 4]
-b = a # b referencia o que está referenciado por a
-b is a # => True, a e b referenciam o mesmo objeto
-b == a # => True, objetos a e b tem o mesmo conteúdo
-b = [1, 2, 3, 4] # Referência a uma nova lista, [1, 2, 3, 4]
-b is a # => False, a e b não referenciam o mesmo objeto
-b == a # => True, objetos a e b tem o mesmo conteúdo
-
-# Strings são criadas com " ou '
-"Isto é uma string."
-'Isto também é uma string.'
-
-# Strings também podem ser somadas! Mas tente não fazer isso.
-"Olá " + "mundo!" # => "Olá mundo!"
-# Strings podem ser somadas sem usar o '+'
-"Olá " "mundo!" # => "Olá mundo!"
-
-# Uma string pode ser manipulada como se fosse uma lista de caracteres
-"Isso é uma string"[0] # => 'I'
-
-# .format pode ser usado para formatar strings, dessa forma:
-"{} podem ser {}".format("Strings", "interpoladas") # => "Strings podem ser interpoladas"
-
-# Você pode repetir os argumentos para digitar menos.
-"Seja ágil {0}, seja rápido {0}, salte sobre o {1} {0}".format("Jack", "castiçal")
-# => "Seja ágil Jack, seja rápido Jack, salte sobre o castiçal Jack."
-
-# Você pode usar palavras-chave se quiser contar.
-"{nome} quer comer {comida}".format(nome="Beto", comida="lasanha") # => "Beto quer comer lasanha"
-
-# Se você precisa executar seu código Python3 com um interpretador Python 2.5 ou acima, você pode usar a velha forma para formatação de texto:
-"%s podem ser %s da forma %s" % ("Strings", "interpoladas", "antiga") # => "Strings podem ser interpoladas da forma antiga"
-
-
-# None é um objeto
-None # => None
-
-# Não use o operador de igualdade "==" para comparar objetos com None
-# Use "is" para isso. Ele checará pela identidade dos objetos.
-"etc" is None # => False
-None is None # => True
-
-# None, 0, e strings/listas/dicionários vazios todos retornam False.
-# Qualquer outra coisa retorna True
-bool(0) # => False
-bool("") # => False
-bool([]) # => False
-bool({}) # => False
-
-
-####################################################
-## 2. Variáveis e coleções
-####################################################
-
-# Python tem uma função print
-print("Eu sou o Python. Prazer em conhecer!") # => Eu sou o Python. Prazer em conhecer!
-
-# Por padrão a função print também imprime o caractere de nova linha ao final.
-# Use o argumento opcional end para mudar o caractere final.
-print("Olá, Mundo", end="!") # => Olá, Mundo!
-
-# Forma simples para capturar dados de entrada via console
-input_string_var = input("Digite alguma coisa: ") # Retorna o que foi digitado em uma string
-# Observação: Em versões antigas do Python, o método input() era chamado raw_input()
-
-# Não é necessário declarar variáveis antes de iniciá-las
-# È uma convenção usar letras_minúsculas_com_sublinhados
-alguma_variavel = 5
-alguma_variavel # => 5
-
-# Acessar uma variável que não tenha sido inicializada gera uma exceção.
-# Veja Controle de Fluxo para aprender mais sobre tratamento de exceções.
-alguma_variavel_nao_inicializada # Gera a exceção NameError
-
-# Listas armazenam sequencias
-li = []
-# Você pode iniciar com uma lista com alguns valores
-outra_li = [4, 5, 6]
-
-# Adicionar conteúdo ao fim da lista com append
-li.append(1) # li agora é [1]
-li.append(2) # li agora é [1, 2]
-li.append(4) # li agora é [1, 2, 4]
-li.append(3) # li agora é [1, 2, 4, 3]
-# Remover do final da lista com pop
-li.pop() # => 3 e agora li é [1, 2, 4]
-# Vamos colocá-lo lá novamente!
-li.append(3) # li agora é [1, 2, 4, 3] novamente.
-
-# Acessar uma lista da mesma forma que você faz com um array
-li[0] # => 1
-# Acessa o último elemento
-li[-1] # => 3
-
-# Acessando além dos limites gera um IndexError
-li[4] # Gera o IndexError
-
-# Você pode acessar vários elementos com a sintaxe de limites
-# (É um limite fechado, aberto pra você que gosta de matemática.)
-li[1:3] # => [2, 4]
-# Omitindo o final
-li[2:] # => [4, 3]
-# Omitindo o início
-li[:3] # => [1, 2, 4]
-# Selecione cada segunda entrada
-li[::2] # => [1, 4]
-# Tenha uma cópia em ordem invertida da lista
-li[::-1] # => [3, 4, 2, 1]
-# Use qualquer combinação dessas para indicar limites complexos
-# li[inicio:fim:passo]
-
-# Faça uma cópia profunda de um nível usando limites
-li2 = li[:] # => li2 = [1, 2, 4, 3] mas (li2 is li) resultará em False.
-
-# Apague elementos específicos da lista com "del"
-del li[2] # li agora é [1, 2, 3]
-
-# Você pode somar listas
-# Observação: valores em li e other_li não são modificados.
-li + other_li # => [1, 2, 3, 4, 5, 6]
-
-# Concatene listas com "extend()"
-li.extend(other_li) # Agora li é [1, 2, 3, 4, 5, 6]
-
-# Verifique se algo existe na lista com "in"
-1 in li # => True
-
-# Examine tamanho com "len()"
-len(li) # => 6
-
-
-# Tuplas são como l istas, mas imutáveis.
-tup = (1, 2, 3)
-tup[0] # => 1
-tup[0] = 3 # Gera um TypeError
-
-# Observe que uma tupla de tamanho um precisa ter uma vírgula depois do
-# último elemento mas tuplas de outros tamanhos, mesmo vazias, não precisa,.
-type((1)) # => <class 'int'>
-type((1,)) # => <class 'tuple'>
-type(()) # => <class 'tuple'>
-
-# Você pode realizar com tuplas a maior parte das operações que faz com listas
-len(tup) # => 3
-tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)
-tup[:2] # => (1, 2)
-2 in tup # => True
-
-# Você pode desmembrar tuplas (ou listas) em variáveis.
-a, b, c = (1, 2, 3) # a é 1, b é 2 e c é 3
-# Por padrão, tuplas são criadas se você não coloca parêntesis.
-d, e, f = 4, 5, 6
-# Veja como é fácil permutar dois valores
-e, d = d, e # d é 5, e é 4
-
-# Dicionários armazenam mapeamentos
-empty_dict = {}
-# Aqui está um dicionário preenchido na definição da referência
-filled_dict = {"um": 1, "dois": 2, "três": 3}
-
-# Observe que chaves para dicionários devem ser tipos imutáveis. Isto é para
-# assegurar que a chave pode ser convertida para uma valor hash constante para
-# buscas rápidas.
-# Tipos imutáveis incluem inteiros, flotas, strings e tuplas.
-invalid_dict = {[1,2,3]: "123"} # => Gera um TypeError: unhashable type: 'list'
-valid_dict = {(1,2,3):[1,2,3]} # Já os valores, podem ser de qualquer tipo.
-
-# Acesse valores com []
-filled_dict["um"] # => 1
-
-# Acesse todas as chaves como um iterável com "keys()". É necessário encapsular
-# a chamada com um list() para transformá-las em uma lista. Falaremos sobre isso
-# mais adiante. Observe que a ordem de uma chave de dicionário não é garantida.
-# Por isso, os resultados aqui apresentados podem não ser exatamente como os
-# aqui apresentados.
-list(filled_dict.keys()) # => ["três", "dois", "um"]
-
-
-# Acesse todos os valores de um iterável com "values()". Novamente, é
-# necessário encapsular ele com list() para não termos um iterável, e sim os
-# valores. Observe que, como foi dito acima, a ordem dos elementos não é
-# garantida.
-list(filled_dict.values()) # => [3, 2, 1]
-
-
-# Verifique a existência de chaves em um dicionário com "in"
-"um" in filled_dict # => True
-1 in filled_dict # => False
-
-# Acessar uma chave inexistente gera um KeyError
-filled_dict["quatro"] # KeyError
-
-# Use o método "get()" para evitar um KeyError
-filled_dict.get("um") # => 1
-filled_dict.get("quatro") # => None
-# O método get permite um parâmetro padrão para quando não existir a chave
-filled_dict.get("um", 4) # => 1
-filled_dict.get("quatro", 4) # => 4
-
-# "setdefault()" insere em dicionário apenas se a dada chave não existir
-filled_dict.setdefault("cinco", 5) # filled_dict["cinco"] tem valor 5
-filled_dict.setdefault("cinco", 6) # filled_dict["cinco"] continua 5
-
-# Inserindo em um dicionário
-filled_dict.update({"quatro":4}) # => {"um": 1, "dois": 2, "três": 3, "quatro": 4}
-#filled_dict["quatro"] = 4 #outra forma de inserir em um dicionário
-
-# Remova chaves de um dicionário com del
-del filled_dict["um"] # Remove a chave "um" de filled_dict
-
-
-# Armazenamento em sets... bem, são conjuntos
-empty_set = set()
-# Inicializa um set com alguns valores. Sim, ele parece um dicionário. Desculpe.
-some_set = {1, 1, 2, 2, 3, 4} # some_set agora é {1, 2, 3, 4}
-
-# Da mesma forma que chaves em um dicionário, elementos de um set devem ser
-# imutáveis.
-invalid_set = {[1], 1} # => Gera um TypeError: unhashable type: 'list'
-valid_set = {(1,), 1}
-
-# Pode definir novas variáveis para um conjunto
-filled_set = some_set
-
-# Inclua mais um item no set
-filled_set.add(5) # filled_set agora é {1, 2, 3, 4, 5}
-
-# Faça interseção de conjuntos com &
-other_set = {3, 4, 5, 6}
-filled_set & other_set # => {3, 4, 5}
-
-# Faça união de conjuntos com |
-filled_set | other_set # => {1, 2, 3, 4, 5, 6}
-
-# Faça a diferença entre conjuntos com -
-{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}
-
-# Verifique a existência em um conjunto com in
-2 in filled_set # => True
-10 in filled_set # => False
-
-
-
-####################################################
-## 3. Controle de fluxo e iteráveis
-####################################################
-
-# Iniciemos um variável
-some_var = 5
-
-# Aqui está uma expressão if. Indentação é significante em python!
-# imprime "somevar é menor que10"
-if some_var > 10:
- print("some_var é absolutamente maior que 10.")
-elif some_var < 10: # Esta cláusula elif é opcional.
- print("some_var é menor que 10.")
-else: # Isto também é opcional.
- print("some_var é, de fato, 10.")
-
-
-"""
-Laços for iteram sobre listas
-imprime:
- cachorro é um mamífero
- gato é um mamífero
- rato é um mamífero
-"""
-for animal in ["cachorro", "gato", "rato"]:
- # Você pode usar format() para interpolar strings formatadas
- print("{} é um mamífero".format(animal))
-
-"""
-"range(número)" retorna um iterável de números
-de zero até o número escolhido
-imprime:
- 0
- 1
- 2
- 3
-"""
-for i in range(4):
- print(i)
-
-"""
-"range(menor, maior)" gera um iterável de números
-começando pelo menor até o maior
-imprime:
- 4
- 5
- 6
- 7
-"""
-for i in range(4, 8):
- print(i)
-
-"""
-"range(menor, maior, passo)" retorna um iterável de números
-começando pelo menor número até o maior númeno, pulando de
-passo em passo. Se o passo não for indicado, o valor padrão é um.
-imprime:
- 4
- 6
-"""
-for i in range(4, 8, 2):
- print(i)
-"""
-
-Laços while executam até que a condição não seja mais válida.
-imprime:
- 0
- 1
- 2
- 3
-"""
-x = 0
-while x < 4:
- print(x)
- x += 1 # Maneira mais curta para for x = x + 1
-
-# Lide com exceções com um bloco try/except
-try:
- # Use "raise" para gerar um erro
- raise IndexError("Isto é um erro de índice")
-except IndexError as e:
- pass # Pass é um não-operador. Normalmente você usa algum código de recuperação aqui.
-except (TypeError, NameError):
- pass # Varias exceções podem ser gerenciadas, se necessário.
-else: # Cláusula opcional para o bloco try/except. Deve estar após todos os blocos de exceção.
- print("Tudo certo!") # Executa apenas se o código em try não gera exceção
-finally: # Sempre é executado
- print("Nós podemos fazer o código de limpeza aqui.")
-
-# Ao invés de try/finally para limpeza você pode usar a cláusula with
-with open("myfile.txt") as f:
- for line in f:
- print(line)
-
-# Python provê uma abstração fundamental chamada Iterável.
-# Um iterável é um objeto que pode ser tratado como uma sequência.
-# O objeto retornou a função range, um iterável.
-
-filled_dict = {"um": 1, "dois": 2, "três": 3}
-our_iterable = filled_dict.keys()
-print(our_iterable) # => range(1,10). Esse é um objeto que implementa nossa interface iterável.
-
-# Nós podemos percorrê-la.
-for i in our_iterable:
- print(i) # Imprime um, dois, três
-
-# Mas não podemos acessar os elementos pelo seu índice.
-our_iterable[1] # Gera um TypeError
-
-# Um iterável é um objeto que sabe como criar um iterador.
-our_iterator = iter(our_iterable)
-
-# Nosso iterador é um objeto que pode lembrar o estado enquanto nós o percorremos.
-# Nós acessamos o próximo objeto com "next()".
-next(our_iterator) # => "um"
-
-# Ele mantém o estado enquanto nós o percorremos.
-next(our_iterator) # => "dois"
-next(our_iterator) # => "três"
-
-# Após o iterador retornar todos os seus dados, ele gera a exceção StopIterator
-next(our_iterator) # Gera StopIteration
-
-# Você pode capturar todos os elementos de um iterador aplicando list() nele.
-list(filled_dict.keys()) # => Retorna ["um", "dois", "três"]
-
-
-####################################################
-## 4. Funções
-####################################################
-
-# Use "def" para criar novas funções.
-def add(x, y):
- print("x é {} e y é {}".format(x, y))
- return x + y # Retorne valores com a cláusula return
-
-# Chamando funções com parâmetros
-add(5, 6) # => imprime "x é 5 e y é 6" e retorna 11
-
-# Outro meio de chamar funções é com argumentos nomeados
-add(y=6, x=5) # Argumentos nomeados podem aparecer em qualquer ordem.
-
-# Você pode definir funções que pegam um número variável de argumentos
-# posicionais
-def varargs(*args):
- return args
-
-varargs(1, 2, 3) # => (1, 2, 3)
-
-# Você pode definir funções que pegam um número variável de argumentos nomeados
-# também
-def keyword_args(**kwargs):
- return kwargs
-
-# Vamos chamá-lo para ver o que acontece
-keyword_args(peh="grande", lago="ness") # => {"peh": "grande", "lago": "ness"}
-
-
-# Você pode fazer ambos simultaneamente, se você quiser
-def all_the_args(*args, **kwargs):
- print(args)
- print(kwargs)
-"""
-all_the_args(1, 2, a=3, b=4) imprime:
- (1, 2)
- {"a": 3, "b": 4}
-"""
-
-# Quando chamar funções, você pode fazer o oposto de args/kwargs!
-# Use * para expandir tuplas e use ** para expandir dicionários!
-args = (1, 2, 3, 4)
-kwargs = {"a": 3, "b": 4}
-all_the_args(*args) # equivalente a foo(1, 2, 3, 4)
-all_the_args(**kwargs) # equivalente a foo(a=3, b=4)
-all_the_args(*args, **kwargs) # equivalente a foo(1, 2, 3, 4, a=3, b=4)
-
-# Retornando múltiplos valores (com atribuição de tuplas)
-def swap(x, y):
- return y, x # Retorna múltiplos valores como uma tupla sem os parêntesis.
- # (Observação: os parêntesis foram excluídos mas podem estar
- # presentes)
-
-x = 1
-y = 2
-x, y = swap(x, y) # => x = 2, y = 1
-# (x, y) = swap(x,y) # Novamente, os parêntesis foram excluídos mas podem estar presentes.
-
-# Escopo de função
-x = 5
-
-def setX(num):
- # A variável local x não é a mesma variável global x
- x = num # => 43
- print (x) # => 43
-
-def setGlobalX(num):
- global x
- print (x) # => 5
- x = num # variável global x agora é 6
- print (x) # => 6
-
-setX(43)
-setGlobalX(6)
-
-
-# Python tem funções de primeira classe
-def create_adder(x):
- def adder(y):
- return x + y
- return adder
-
-add_10 = create_adder(10)
-add_10(3) # => 13
-
-# Também existem as funções anônimas
-(lambda x: x > 2)(3) # => True
-(lambda x, y: x ** 2 + y ** 2)(2, 1) # => 5
-
-# TODO - Fix for iterables
-# Existem funções internas de alta ordem
-map(add_10, [1, 2, 3]) # => [11, 12, 13]
-map(max, [1, 2, 3], [4, 2, 1]) # => [4, 2, 3]
-
-filter(lambda x: x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
-
-# Nós podemos usar compreensão de lista para interessantes mapas e filtros
-# Compreensão de lista armazena a saída como uma lista que pode ser uma lista
-# aninhada
-[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
-[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
-
-####################################################
-## 5. Classes
-####################################################
-
-
-# Nós usamos o operador "class" para ter uma classe
-class Human:
-
- # Um atributo de classe. Ele é compartilhado por todas as instâncias dessa
- # classe.
- species = "H. sapiens"
-
- # Construtor básico, é chamado quando esta classe é instanciada.
- # Note que dois sublinhados no início e no final de uma identificados
- # significa objetos ou atributos que são usados pelo python mas vivem em
- # um namespace controlado pelo usuário. Métodos (ou objetos ou atributos)
- # como: __init__, __str__, __repr__, etc. são chamados métodos mágicos (ou
- # algumas vezes chamados métodos dunder - "double underscore")
- # Você não deve usar nomes assim por sua vontade.
- def __init__(self, name):
- @ Atribui o argumento ao atributo da instância
- self.name = name
-
- # Um método de instância. Todos os métodos tem "self" como primeiro
- # argumento
- def say(self, msg):
- return "{name}: {message}".format(name=self.name, message=msg)
-
- # Um método de classe é compartilhado por todas as instâncias
- # Eles são chamados com a classe requisitante como primeiro argumento
- @classmethod
- def get_species(cls):
- return cls.species
-
- # Um método estático é chamado sem uma referência a classe ou instância
- @staticmethod
- def grunt():
- return "*grunt*"
-
-
-# Instancie uma classe
-i = Human(name="Ian")
-print(i.say("oi")) # imprime "Ian: oi"
-
-j = Human("Joel")
-print(j.say("olá")) # imprime "Joel: olá"
-
-# Chama nosso método de classe
-i.get_species() # => "H. sapiens"
-
-# Altera um atributo compartilhado
-Human.species = "H. neanderthalensis"
-i.get_species() # => "H. neanderthalensis"
-j.get_species() # => "H. neanderthalensis"
-
-# Chama o método estático
-Human.grunt() # => "*grunt*"
-
-
-####################################################
-## 6. Módulos
-####################################################
-
-# Você pode importar módulos
-import math
-print(math.sqrt(16)) # => 4.0
-
-# Você pode importar apenas funções específicas de um módulo
-from math import ceil, floor
-print(ceil(3.7)) # => 4.0
-print(floor(3.7)) # => 3.0
-
-# Você pode importar todas as funções de um módulo para o namespace atual
-# Atenção: isso não é recomendado
-from math import *
-
-# Você pode encurtar o nome dos módulos
-import math as m
-math.sqrt(16) == m.sqrt(16) # => True
-
-# Módulos python são apenas arquivos python comuns. Você
-# pode escrever os seus, e importá-los. O nome do
-# módulo é o mesmo nome do arquivo.
-
-# Você pode procurar que atributos e funções definem um módulo.
-import math
-dir(math)
-
-
-####################################################
-## 7. Avançado
-####################################################
-
-# Geradores podem ajudar você a escrever código "preguiçoso"
-def double_numbers(iterable):
- for i in iterable:
- yield i + i
-
-# Um gerador cria valores conforme necessário.
-# Ao invés de gerar e retornar todos os valores de uma só vez ele cria um em
-# cada interação. Isto significa que valores maiores que 15 não serão
-# processados em double_numbers.
-# Nós usamos um sublinhado ao final do nome das variáveis quando queremos usar
-# um nome que normalmente colide com uma palavra reservada do python.
-range_ = range(1, 900000000)
-# Multiplica por 2 todos os números até encontrar um resultado >= 30
-for i in double_numbers(range_):
- print(i)
- if i >= 30:
- break
-
-
-# Decoradores
-# Neste exemplo beg encapsula say
-# beg irá chamar say. Se say_please é verdade então ele irá mudar a mensagem
-# retornada
-from functools import wraps
-
-
-def beg(target_function):
- @wraps(target_function)
- def wrapper(*args, **kwargs):
- msg, say_please = target_function(*args, **kwargs)
- if say_please:
- return "{} {}".format(msg, "Por favor! Eu sou pobre :(")
- return msg
-
- return wrapper
-
-
-@beg
-def say(say_please=False):
- msg = "Você me paga uma cerveja?"
- return msg, say_please
-
-
-print(say()) # Você me paga uma cerveja?
-print(say(say_please=True)) # Você me paga uma cerveja? Por favor! Eu sou pobre :(
-```
-
-## Pronto para mais?
-
-### Free Online
-
-* [Automate the Boring Stuff with Python](https://automatetheboringstuff.com)
-* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
-* [Dive Into Python](http://www.diveintopython.net/)
-* [Ideas for Python Projects](http://pythonpracticeprojects.com)
-* [The Official Docs](http://docs.python.org/3/)
-* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
-* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182)
-* [Python Course](http://www.python-course.eu/index.php)
-* [First Steps With Python](https://realpython.com/learn/python-first-steps/)
-* [A curated list of awesome Python frameworks, libraries and software](https://github.com/vinta/awesome-python)
-* [30 Python Language Features and Tricks You May Not Know About](http://sahandsaba.com/thirty-python-language-features-and-tricks-you-may-not-know.html)
-* [Official Style Guide for Python](https://www.python.org/dev/peps/pep-0008/)
-
-### Dead Tree
-
-* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
-* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
-* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)
diff --git a/pt-br/pythonlegacy-pt.html.markdown b/pt-br/pythonlegacy-pt.html.markdown
new file mode 100644
index 00000000..572bb787
--- /dev/null
+++ b/pt-br/pythonlegacy-pt.html.markdown
@@ -0,0 +1,509 @@
+---
+language: Python 2 (legacy)
+contributors:
+ - ["Louie Dinh", "http://ldinh.ca"]
+translators:
+ - ["Vilson Vieira", "http://automata.cc"]
+lang: pt-br
+filename: learnpythonlegacy-pt.py
+---
+
+Python foi criado por Guido Van Rossum no começo dos anos 90. Atualmente é uma
+das linguagens de programação mais populares. Eu me apaixonei por Python, por
+sua clareza de sintaxe. É basicamente pseudocódigo executável.
+
+Comentários serão muito apreciados! Você pode me contactar em
+[@louiedinh](http://twitter.com/louiedinh) ou louiedinh [arroba]
+[serviço de email do google]
+
+Nota: Este artigo usa Python 2.7 especificamente, mas deveria ser aplicável a
+qualquer Python 2.x. Logo haverá uma versão abordando Python 3!
+
+```python
+# Comentários de uma linha começam com cerquilha (ou sustenido)
+""" Strings de várias linhas podem ser escritas
+ usando três ", e são comumente usadas
+ como comentários
+"""
+
+####################################################
+## 1. Tipos de dados primitivos e operadores
+####################################################
+
+# Você usa números normalmente
+3 #=> 3
+
+# Operadores matemáticos são aqueles que você já está acostumado
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+35 / 5 #=> 7
+
+# A divisão é um pouco estranha. A divisão de números inteiros arredonda
+# para baixo o resultado, automaticamente
+5 / 2 #=> 2
+
+# Para concertar a divisão, precisamos aprender sobre números de ponto
+# flutuante (conhecidos como 'float').
+2.0 # Isso é um 'float'
+11.0 / 4.0 #=> 2.75 ahhh... muito melhor
+
+# Forçamos a precedência de operadores usando parênteses
+(1 + 3) * 2 #=> 8
+
+# Valores booleanos (ou 'boolean') são também tipos primitivos
+True
+False
+
+# Negamos usando 'not'
+not True #=> False
+not False #=> True
+
+# Testamos igualdade usando '=='
+1 == 1 #=> True
+2 == 1 #=> False
+
+# E desigualdade com '!='
+1 != 1 #=> False
+2 != 1 #=> True
+
+# Mais comparações
+1 < 10 #=> True
+1 > 10 #=> False
+2 <= 2 #=> True
+2 >= 2 #=> True
+
+# As comparações podem ser encadeadas!
+1 < 2 < 3 #=> True
+2 < 3 < 2 #=> False
+
+# Strings são criadas com " ou '
+"Isso é uma string."
+'Isso também é uma string.'
+
+# Strings podem ser somadas (ou melhor, concatenadas)!
+"Olá " + "mundo!" #=> "Olá mundo!"
+
+# Uma string pode ser tratada como uma lista de caracteres
+"Esta é uma string"[0] #=> 'E'
+
+# O caractere % pode ser usado para formatar strings, desta forma:
+"%s podem ser %s" % ("strings", "interpoladas")
+
+# Um jeito novo de formatar strings é usando o método 'format'.
+# Esse método é o jeito mais usado
+"{0} podem ser {1}".format("strings", "formatadas")
+# Você pode usar palavras-chave (ou 'keywords') se você não quiser contar.
+"{nome} quer comer {comida}".format(nome="João", comida="lasanha")
+
+# 'None' é um objeto
+None #=> None
+
+# Não use o operador de igualdade `==` para comparar objetos com 'None'
+# Ao invés disso, use `is`
+"etc" is None #=> False
+None is None #=> True
+
+# O operador 'is' teste a identidade de um objeto. Isso não é
+# muito útil quando estamos lidando com valores primitivos, mas é
+# muito útil quando lidamos com objetos.
+
+# None, 0, e strings/listas vazias são todas interpretadas como 'False'.
+# Todos os outros valores são 'True'
+0 == False #=> True
+"" == False #=> True
+
+
+####################################################
+## 2. Variáveis e Coleções
+####################################################
+
+# Imprimir na tela é muito fácil
+print "Eu sou o Python. Prazer em te conhecer!"
+
+
+# Nós não precisamos declarar variáveis antes de usá-las, basta usar!
+alguma_variavel = 5 # A convenção é usar caixa_baixa_com_sobrescritos
+alguma_variavel #=> 5
+
+# Acessar uma variável que não teve nenhum valor atribuído anteriormente é
+# uma exceção.
+# Veja a seção 'Controle' para aprender mais sobre tratamento de exceção.
+outra_variavel # Gera uma exceção de erro de nome
+
+# 'if' pode ser usado como uma expressão
+"uepa!" if 3 > 2 else 2 #=> "uepa!"
+
+# Listas armazenam sequências de elementos
+lista = []
+# Você pode inicializar uma lista com valores
+outra_lista = [4, 5, 6]
+
+# Adicione elementos no final da lista usando 'append'
+lista.append(1) # lista é agora [1]
+lista.append(2) # lista é agora [1, 2]
+lista.append(4) # lista é agora [1, 2, 4]
+lista.append(3) # lista é agora [1, 2, 4, 3]
+# Remova elementos do fim da lista usando 'pop'
+lista.pop() #=> 3 e lista é agora [1, 2, 4]
+# Vamos adicionar o elemento novamente
+lista.append(3) # lista agora é [1, 2, 4, 3] novamente.
+
+# Acesse elementos de uma lista através de seu índices
+lista[0] #=> 1
+# Acesse o último elemento com índice negativo!
+lista[-1] #=> 3
+
+# Tentar acessar um elemento fora dos limites da lista gera uma exceção
+# do tipo 'IndexError'
+lista[4] # Gera uma exceção 'IndexError'
+
+# Você pode acessar vários elementos ao mesmo tempo usando a sintaxe de
+# limites
+# (Para quem gosta de matemática, isso é um limite fechado/aberto)
+lista[1:3] #=> [2, 4]
+# Você pode omitir o fim se quiser os elementos até o final da lista
+lista[2:] #=> [4, 3]
+# O mesmo para o início
+lista[:3] #=> [1, 2, 4]
+
+# Remova um elemento qualquer de uma lista usando 'del'
+del lista[2] # lista agora é [1, 2, 3]
+
+# Você pode somar listas (obs: as listas originais não são modificadas)
+lista + outra_lista #=> [1, 2, 3, 4, 5, 6]
+
+# Você também pode concatenar usando o método 'extend' (lista será modificada!)
+lista.extend(outra_lista) # Agora lista é [1, 2, 3, 4, 5, 6]
+
+# Para checar se um elemento pertence a uma lista, use 'in'
+1 in lista #=> True
+
+# Saiba quantos elementos uma lista possui com 'len'
+len(lista) #=> 6
+
+
+# Tuplas são iguais a listas, mas são imutáveis
+tup = (1, 2, 3)
+tup[0] #=> 1
+tup[0] = 3 # Isso gera uma exceção do tipo TypeError
+
+# Você pode fazer nas tuplas todas aquelas coisas fez com a lista
+len(tup) #=> 3
+tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
+tup[:2] #=> (1, 2)
+2 in tup #=> True
+
+# Você pode 'desempacotar' tuplas (ou listas) em variáveis, associando cada
+# elemento da tupla/lista a uma variável correspondente
+a, b, c = (1, 2, 3) # a agora é 1, b agora é 2, c agora é 3
+# Tuplas são criadas por padrão, mesmo se você não usar parênteses
+d, e, f = 4, 5, 6
+# Sabendo disso, veja só como é fácil trocar os valores de duas variáveis!
+e, d = d, e # d agora é 5, e agora é 4
+
+
+# Dicionários armazenam 'mapeamentos' (do tipo chave-valor)
+dicionario_vazio = {}
+# Aqui criamos um dicionário já contendo valores
+dicionario = {"um": 1, "dois": 2, "três": 3}
+
+# Acesse valores usando []
+dicionario["um"] #=> 1
+
+# Retorna uma lista com todas as chaves do dicionário
+dicionario.keys() #=> ["três", "dois", "um"]
+# Nota: A ordem das chaves não é garantida.
+# O resultado no seu interpretador não necessariamente será igual a esse.
+
+# Retorna uma lista com todos os valores do dicionário
+dicionario.values() #=> [3, 2, 1]
+# Nota: A mesma nota acima sobre a ordenação é válida aqui.
+
+# Veja se uma chave qualquer está em um dicionário usando 'in'
+"um" in dicionario #=> True
+1 in dicionario #=> False
+
+# Tentar acessar uma chave que não existe gera uma exceção do tipo 'KeyError'
+dicionario["quatro"] # Gera uma exceção KeyError
+
+# Você pode usar o método 'get' para evitar gerar a exceção 'KeyError'.
+# Ao invés de gerar essa exceção, irá retornar 'None' se a chave não existir.
+dicionario.get("um") #=> 1
+dicionario.get("quatro") #=> None
+# O método 'get' suporta um argumento que diz qual valor deverá ser
+# retornado se a chave não existir (ao invés de 'None').
+dicionario.get("um", 4) #=> 1
+dicionario.get("quatro", 4) #=> 4
+
+# O método 'setdefault' é um jeito seguro de adicionar um novo par
+# chave-valor a um dicionário, associando um valor padrão imutável à uma chave
+dicionario.setdefault("cinco", 5) # dicionario["cinco"] é definido como 5
+dicionario.setdefault("cinco", 6) # dicionario["cinco"] ainda é igual a 5
+
+
+# Conjuntos (ou sets) armazenam ... bem, conjuntos
+# Nota: lembre-se que conjuntos não admitem elementos repetidos!
+conjunto_vazio = set()
+# Podemos inicializar um conjunto com valores
+conjunto = set([1, 2, 2, 3, 4]) # conjunto é set([1, 2, 3, 4]), sem repetição!
+
+# Desde o Python 2.7, {} pode ser usado para declarar um conjunto
+conjunto = {1, 2, 2, 3, 4} # => {1 2 3 4}
+
+# Adicione mais ítens a um conjunto com 'add'
+conjunto.add(5) # conjunto agora é {1, 2, 3, 4, 5}
+
+# Calcule a intersecção de dois conjuntos com &
+outro_conj = {3, 4, 5, 6}
+conjunto & outro_conj #=> {3, 4, 5}
+
+# Calcule a união de dois conjuntos com |
+conjunto | outro_conj #=> {1, 2, 3, 4, 5, 6}
+
+# E a diferença entre dois conjuntos com -
+{1,2,3,4} - {2,3,5} #=> {1, 4}
+
+# Veja se um elemento existe em um conjunto usando 'in'
+2 in conjunto #=> True
+10 in conjunto #=> False
+
+
+####################################################
+## 3. Controle
+####################################################
+
+# Para começar, vamos apenas criar uma variável
+alguma_var = 5
+
+# Aqui está uma expressão 'if'. Veja como a identação é importante em Python!
+# Esses comandos irão imprimir "alguma_var é menor que 10"
+if alguma_var > 10:
+ print "some_var é maior que 10."
+elif some_var < 10: # Esse 'elif' é opcional
+ print "some_var é menor que 10."
+else: # Esse 'else' também é opcional
+ print "some_var é igual a 10."
+
+
+"""
+Laços (ou loops) 'for' iteram em listas.
+Irá imprimir:
+ cachorro é um mamífero
+ gato é um mamífero
+ rato é um mamífero
+"""
+for animal in ["cachorro", "gato", "rato"]:
+ # Você pode usar % para interpolar strings formatadas
+ print "%s é um mamífero" % animal
+
+"""
+A função `range(um número)` retorna uma lista de números
+do zero até o número dado.
+Irá imprimir:
+ 0
+ 1
+ 2
+ 3
+"""
+for i in range(4):
+ print i
+
+"""
+Laços 'while' executam enquanto uma condição dada for verdadeira.
+Irá imprimir:
+ 0
+ 1
+ 2
+ 3
+"""
+x = 0
+while x < 4:
+ print x
+ x += 1 # Isso é um atalho para a expressão x = x + 1
+
+# Tratamos excessões usando o bloco try/except
+# Funciona em Python 2.6 e versões superiores:
+
+try:
+ # Use 'raise' para gerar um erro
+ raise IndexError("Isso é um erro de índice")
+except IndexError as e:
+ pass # Pass é um operador que não faz nada, deixa passar.
+ # Usualmente você iria tratar a exceção aqui...
+
+
+####################################################
+## 4. Funções
+####################################################
+
+# Use 'def' para definir novas funções
+def soma(x, y):
+ print "x é %s e y é %s" % (x, y)
+ return x + y # Retorne valores usando 'return'
+
+# Chamando funções com parâmetros
+soma(5, 6) #=> imprime "x é 5 e y é 6" e retorna o valor 11
+
+# Um outro jeito de chamar funções é especificando explicitamente os valores
+# de cada parâmetro com chaves
+soma(y=6, x=5) # Argumentos com chaves podem vir em qualquer ordem.
+
+# Você pode definir funções que recebem um número qualquer de argumentos
+# (respeitando a sua ordem)
+def varargs(*args):
+ return args
+
+varargs(1, 2, 3) #=> (1,2,3)
+
+
+# Você também pode definir funções que recebem um número qualquer de argumentos
+# com chaves
+def args_com_chaves(**ch_args):
+ return ch_args
+
+# Vamos chamar essa função para ver o que acontece
+args_com_chaves(pe="grande", lago="Ness") #=> {"pe": "grande", "lago": "Ness"}
+
+# Você pode fazer as duas coisas ao mesmo tempo, se desejar
+def todos_args(*args, **ch_wargs):
+ print args
+ print ch_args
+"""
+todos_args(1, 2, a=3, b=4) imprime:
+ (1, 2)
+ {"a": 3, "b": 4}
+"""
+
+# Quando você chamar funções, pode fazer o oposto do que fizemos até agora!
+# Podemos usar * para expandir tuplas de argumentos e ** para expandir
+# dicionários de argumentos com chave.
+args = (1, 2, 3, 4)
+ch_args = {"a": 3, "b": 4}
+todos_args(*args) # equivalente a todos_args(1, 2, 3, 4)
+todos_args(**ch_args) # equivalente a todos_args(a=3, b=4)
+todos_args(*args, **ch_args) # equivalente a todos_args(1, 2, 3, 4, a=3, b=4)
+
+# Em Python, funções são elementos de primeira ordem (são como objetos,
+# strings ou números)
+def cria_somador(x):
+ def somador(y):
+ return x + y
+ return somador
+
+soma_10 = cria_somador(10)
+soma_10(3) #=> 13
+
+# Desta forma, existem também funções anônimas
+(lambda x: x > 2)(3) #=> True
+
+# E existem funções de alta ordem por padrão
+map(soma_10, [1,2,3]) #=> [11, 12, 13]
+filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
+reduce(lambda x, y: x + y, [3, 4, 5, 6, 7]) #=> 25
+
+# Nós podemos usar compreensão de listas para mapear e filtrar também
+[soma_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
+[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]
+
+####################################################
+## 5. Classes
+####################################################
+
+# Para criar uma nova classe, devemos herdar de 'object'
+class Humano(object):
+
+ # Um atributo de classe. Ele é compartilhado por todas as instâncias dessa
+ # classe
+ especie = "H. sapiens"
+
+ # Definimos um inicializador básico
+ def __init__(self, nome):
+ # Atribui o valor de argumento dado a um atributo da instância
+ self.nome = nome
+
+ # Um método de instância. Todos os métodos levam 'self' como primeiro
+ # argumento
+ def diga(self, msg):
+ return "%s: %s" % (self.nome, msg)
+
+ # Um método de classe é compartilhado por todas as instâncias
+ # Eles são chamados passando o nome da classe como primeiro argumento
+ @classmethod
+ def get_especie(cls):
+ return cls.especie
+
+ # Um método estático é chamado sem uma referência a classe ou instância
+ @staticmethod
+ def ronca():
+ return "*arrrrrrr*"
+
+
+# Instancie uma classe
+i = Humano(nome="Ivone")
+print i.diga("oi") # imprime "Ivone: oi"
+
+j = Human("Joel")
+print j.say("olá") #prints out "Joel: olá"
+
+# Chame nosso método de classe
+i.get_especie() #=> "H. sapiens"
+
+# Modifique um atributo compartilhado
+Humano.especie = "H. neanderthalensis"
+i.get_especie() #=> "H. neanderthalensis"
+j.get_especie() #=> "H. neanderthalensis"
+
+# Chame o método estático
+Humano.ronca() #=> "*arrrrrrr*"
+
+
+####################################################
+## 6. Módulos
+####################################################
+
+# Você pode importar módulos
+import math
+print math.sqrt(16) #=> 4.0
+
+# Você pode importar funções específicas de um módulo
+from math import ceil, floor
+print ceil(3.7) #=> 4.0
+print floor(3.7) #=> 3.0
+
+# Você também pode importar todas as funções de um módulo
+# Atenção: isso não é recomendado!
+from math import *
+
+# Você pode usar apelidos para os módulos, encurtando seus nomes
+import math as m
+math.sqrt(16) == m.sqrt(16) #=> True
+
+# Módulos em Python são apenas arquivos Python. Você
+# pode escrever o seu próprio módulo e importá-lo. O nome do
+# módulo será o mesmo que o nome do arquivo.
+
+# Você pode descobrir quais funções e atributos
+# estão definidos em um módulo qualquer.
+import math
+dir(math)
+
+
+```
+
+## Pronto para mais?
+
+### Online e gratuito
+
+* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
+* [Dive Into Python](http://www.diveintopython.net/)
+* [The Official Docs](http://docs.python.org/2.6/)
+* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
+* [Python Module of the Week](http://pymotw.com/2/)
+
+### Livros impressos
+
+* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
+* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
+* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)
+
diff --git a/pt-br/stylus-pt.html.markdown b/pt-br/stylus-pt.html.markdown
index 804fa806..40c3c02c 100755
--- a/pt-br/stylus-pt.html.markdown
+++ b/pt-br/stylus-pt.html.markdown
@@ -132,7 +132,7 @@ body {
background-color: $primary-color
}
-/* ApoÅ› compilar ficaria assim: */
+/* Após compilar ficaria assim: */
div {
display: block;
margin-left: auto;
@@ -184,13 +184,13 @@ button
/* Funções
==============================*/
-/* Funções no Stylus permitem fazer uma variedade de tarefas, como por exemplo, menipular algum dado. */
+/* Funções no Stylus permitem fazer uma variedade de tarefas, como por exemplo, manipular algum dado. */
body {
background darken(#0088DD, 50%) // Escurece a cor #0088DD em 50%
}
-/** Criando sua própria função */
+/* Criando sua própria função */
somar(a, b)
a + b
@@ -221,7 +221,7 @@ for <val-name> [, <key-name>] in <expression>
for $item in (1..2) /* Repete o bloco 12 vezes */
.col-{$item}
- width ($item / 12) * 100% /* Calcula a largula pelo número da coluna*
+ width ($item / 12) * 100% /* Calcula a largura pelo número da coluna*
```
diff --git a/pt-br/typescript-pt.html.markdown b/pt-br/typescript-pt.html.markdown
index 077aa2cc..6ece02ff 100644
--- a/pt-br/typescript-pt.html.markdown
+++ b/pt-br/typescript-pt.html.markdown
@@ -10,7 +10,7 @@ lang: pt-br
Typescript é uma linguagem que visa facilitar o desenvolvimento de aplicações em grande escala escritos em JavaScript.
Typescript acrescenta conceitos comuns como classes, módulos, interfaces, genéricos e (opcional) tipagem estática para JavaScript.
-É um super conjunto de JavaScript: todo o código JavaScript é o código do texto dactilografado válido para que possa ser adicionados diretamente a qualquer projeto. O compilador emite typescript JavaScript.
+É um super conjunto de JavaScript: todo o código JavaScript é TypeScript válido então ele pode ser adicionado diretamente a qualquer projeto. O compilador emite typescript JavaScript.
Este artigo irá se concentrar apenas em texto datilografado sintaxe extra, ao contrário de [JavaScript](javascript-pt.html.markdown).
@@ -22,7 +22,7 @@ var isDone: boolean = false;
var lines: number = 42;
var name: string = "Anders";
-// Quando é impossível saber, há o "Qualquer" tipo
+// Quando é impossível saber, há o tipo "Qualquer"
var notSure: any = 4;
notSure = "maybe a string instead";
notSure = false; // Ok, definitivamente um boolean
@@ -65,7 +65,7 @@ interface Person {
move(): void;
}
-// Objeto que implementa a "Pessoa" Interface
+// Objeto que implementa a Interface "Pessoa"
// Pode ser tratado como uma pessoa desde que tem o nome e mover propriedades
var p: Person = { name: "Bobby", move: () => {} };
// Os objetos que têm a propriedade opcional:
diff --git a/pt-br/vim-pt.html.markdown b/pt-br/vim-pt.html.markdown
index d7617bbe..cc304381 100644
--- a/pt-br/vim-pt.html.markdown
+++ b/pt-br/vim-pt.html.markdown
@@ -5,6 +5,7 @@ contributors:
- ["RadhikaG", "https://github.com/RadhikaG"]
translators:
- ["David Lima", "https://github.com/davelima"]
+ - ["Raul Almeida", "https://github.com/almeidaraul"]
lang: pt-br
filename: LearnVim-pt.txt
---
@@ -24,6 +25,7 @@ para agilizar a navegação para pontos específicos no arquivo, além de ediçÃ
:w # Salva o arquivo atual
:wq # Salva o arquivo e fecha o vim
:q! # Fecha o vim e descarta as alterações no arquivo
+ # ! depois de qualquer comando força a sua execução
# ! *força* :q a executar, fechando o vim sem salvar antes
:x # Salva o arquivo e fecha o vim (atalho para :wq)
@@ -158,7 +160,15 @@ Alguns exemplos importantes de 'Verbos', 'Modificadores' e 'Nomes':
:earlier 15m # Reverte o documento para como ele estava há 15 minutos atrás
:later 15m # Reverte o comando acima
ddp # Troca linhas consecutivas de posição, dd e depois p
+ xp # Permuta caractere atual e o seguinte
+ Xp # Permuta caractere atual e o anterior
. # Repete a última ação
+
+ # Em geral, o usuário pode associar um comando em maísculas (exemplo: D) com
+ # "executar este comando até o final da linha"
+
+ # Usar a tecla de um comando duas vezes geralmente significa executar este
+ # comando sobre toda a linha (exemplo: dd apaga a linha inteira)
```
## Macros
@@ -172,6 +182,7 @@ exatamente a mesma sequencia de ações e comandos na seleção atual.
qa # Inicia a gravação de uma macro chamado 'a'
q # Para a gravação
@a # Executa a macro
+ @@ # Executa a última macro executada
```
### Configurando o ~/.vimrc
diff --git a/pt-br/whip-pt.html.markdown b/pt-br/whip-pt.html.markdown
index 7bdeec25..b11faf28 100644
--- a/pt-br/whip-pt.html.markdown
+++ b/pt-br/whip-pt.html.markdown
@@ -71,7 +71,7 @@ false
(= 1 1) ; => true
(equal 2 1) ; => false
-; Por exemplo, inigualdade pode ser verificada combinando as funções
+; Por exemplo, desigualdade pode ser verificada combinando as funções
;`not` e `equal`.
(! (= 2 1)) ; => true
diff --git a/pt-br/yaml-pt.html.markdown b/pt-br/yaml-pt.html.markdown
index 0b71877e..21e9b4bb 100644
--- a/pt-br/yaml-pt.html.markdown
+++ b/pt-br/yaml-pt.html.markdown
@@ -1,7 +1,7 @@
---
language: yaml
contributors:
- - ["Adam Brenecki", "https://github.com/adambrenecki"]
+ - ["Leigh Brenecki", "https://github.com/adambrenecki"]
translators:
- ["Rodrigo Russo", "https://github.com/rodrigozrusso"]
filename: learnyaml-pt.yaml
@@ -11,10 +11,10 @@ lang: pt-br
YAML é uma linguagem de serialização de dados projetado para ser diretamente gravável e
legível por seres humanos.
-É um superconjunto de JSON, com a adição de indentação e quebras de linhas sintaticamente significativas, como Python. Ao contrário de Python, entretanto, YAML não permite o caracter literal tab para identação.
+É um superconjunto de JSON, com a adição de identação e quebras de linhas sintaticamente significativas, como Python. Ao contrário de Python, entretanto, YAML não permite o caracter literal tab para identação.
```yaml
-# Commentários em YAML são como este.
+# Comentários em YAML são como este.
###################
# TIPOS ESCALARES #
@@ -33,7 +33,7 @@ chave com espaco: valor
porem: "Uma string, entre aspas."
"Chaves podem estar entre aspas tambem.": "É útil se você quiser colocar um ':' na sua chave."
-# Seqüências de várias linhas podem ser escritos como um 'bloco literal' (utilizando |),
+# Seqüências de várias linhas podem ser escritas como um 'bloco literal' (utilizando |),
# ou em um 'bloco compacto' (utilizando '>').
bloco_literal: |
Todo esse bloco de texto será o valor da chave 'bloco_literal',
@@ -76,7 +76,7 @@ um_mapa_aninhado:
# também permite tipos de coleção de chaves, mas muitas linguagens de programação
# vão reclamar.
-# Sequências (equivalente a listas ou arrays) semelhante à isso:
+# Sequências (equivalente a listas ou arrays) semelhante a isso:
uma_sequencia:
- Item 1
- Item 2
@@ -118,7 +118,7 @@ datetime: 2001-12-15T02: 59: 43.1Z
datetime_com_espacos 2001/12/14: 21: 59: 43.10 -5
Data: 2002/12/14
-# A tag !!binary indica que a string é na verdade um base64-encoded (condificado)
+# A tag !!binary indica que a string é na verdade um base64-encoded (codificado)
# representação de um blob binário.
gif_file: !!binary |
R0lGODlhDAAMAIQAAP//9/X17unp5WZmZgAAAOfn515eXvPz7Y6OjuDg4J+fn5