summaryrefslogtreecommitdiffhomepage
path: root/pt-br
diff options
context:
space:
mode:
Diffstat (limited to 'pt-br')
-rw-r--r--pt-br/c-pt.html.markdown71
-rw-r--r--pt-br/java-pt.html.markdown213
-rw-r--r--pt-br/json-pt.html.markdown15
3 files changed, 260 insertions, 39 deletions
diff --git a/pt-br/c-pt.html.markdown b/pt-br/c-pt.html.markdown
index 43688724..2c274f12 100644
--- a/pt-br/c-pt.html.markdown
+++ b/pt-br/c-pt.html.markdown
@@ -7,29 +7,30 @@ contributors:
translators:
- ["João Farias", "https://github.com/JoaoGFarias"]
- ["Elton Viana", "https://github.com/eltonvs"]
+ - ["Cássio Böck", "https://github.com/cassiobsilva"]
lang: pt-br
filename: c-pt.el
---
Ah, C. Ainda é **a** linguagem de computação de alta performance.
-C é a liguangem de mais baixo nível que a maioria dos programadores
-irão usar, e isso dá a ela uma grande velocidade bruta. Apenas fique
-antento que este manual de gerenciamento de memória e C vai levanter-te
-tão longe quanto você precisa.
+C é a linguagem de mais baixo nível que a maioria dos programadores
+utilizarão, e isso dá a ela uma grande velocidade bruta. Apenas fique
+atento se este manual de gerenciamento de memória e C vai te levar
+tão longe quanto precisa.
```c
// Comentários de uma linha iniciam-se com // - apenas disponível a partir do C99
/*
-Comentários de multiplas linhas se parecem com este.
+Comentários de múltiplas linhas se parecem com este.
Funcionam no C89 também.
*/
// Constantes: #define <palavra-chave>
#definie DAY_IN_YEAR 365
-//enumarações também são modos de definir constantes.
+//enumerações também são modos de definir constantes.
enum day {DOM = 1, SEG, TER, QUA, QUI, SEX, SAB};
// SEG recebe 2 automaticamente, TER recebe 3, etc.
@@ -54,13 +55,13 @@ int soma_dois_ints(int x1, int x2); // protótipo de função
// O ponto de entrada do teu programa é uma função
// chamada main, com tipo de retorno inteiro
int main() {
- // Usa-se printf para escrever na tela,
+ // Usa-se printf para escrever na tela,
// para "saída formatada"
// %d é um inteiro, \n é uma nova linha
printf("%d\n", 0); // => Imprime 0
// Todos as declarações devem acabar com
// ponto e vírgula
-
+
///////////////////////////////////////
// Tipos
///////////////////////////////////////
@@ -78,7 +79,7 @@ int main() {
// longs tem entre 4 e 8 bytes; longs long tem garantia
// de ter pelo menos 64 bits
long x_long = 0;
- long long x_long_long = 0;
+ long long x_long_long = 0;
// floats são normalmente números de ponto flutuante
// com 32 bits
@@ -93,7 +94,7 @@ int main() {
unsigned int ux_int;
unsigned long long ux_long_long;
- // caracteres dentro de aspas simples são inteiros
+ // caracteres dentro de aspas simples são inteiros
// no conjunto de caracteres da máquina.
'0' // => 48 na tabela ASCII.
'A' // => 65 na tabela ASCII.
@@ -104,7 +105,7 @@ int main() {
// Se o argumento do operador `sizeof` é uma expressão, então seus argumentos
// não são avaliados (exceto em VLAs (veja abaixo)).
- // O valor devolve, neste caso, é uma constante de tempo de compilação.
+ // O valor devolve, neste caso, é uma constante de tempo de compilação.
int a = 1;
// size_t é um inteiro sem sinal com pelo menos 2 bytes que representa
// o tamanho de um objeto.
@@ -120,7 +121,7 @@ int main() {
// Você pode inicializar um array com 0 desta forma:
char meu_array[20] = {0};
- // Indexar um array é semelhante a outras linguages
+ // Indexar um array é semelhante a outras linguagens
// Melhor dizendo, outras linguagens são semelhantes a C
meu_array[0]; // => 0
@@ -129,7 +130,7 @@ int main() {
printf("%d\n", meu_array[1]); // => 2
// No C99 (e como uma features opcional em C11), arrays de tamanho variável
- // VLA (do inglês), podem ser declarados também. O tamanho destes arrays
+ // VLA (do inglês), podem ser declarados também. O tamanho destes arrays
// não precisam ser uma constante de tempo de compilação:
printf("Entre o tamanho do array: "); // Pergunta ao usuário pelo tamanho
char buf[0x100];
@@ -144,14 +145,14 @@ int main() {
// > Entre o tamanho do array: 10
// > sizeof array = 40
- // String são apenas arrays de caracteres terminados por um
+ // String são apenas arrays de caracteres terminados por um
// byte nulo (0x00), representado em string pelo caracter especial '\0'.
// (Não precisamos incluir o byte nulo em literais de string; o compilador
// o insere ao final do array para nós.)
- char uma_string[20] = "Isto é uma string";
+ char uma_string[20] = "Isto é uma string";
// Observe que 'é' não está na tabela ASCII
// A string vai ser salva, mas a saída vai ser estranha
- // Porém, comentários podem conter acentos
+ // Porém, comentários podem conter acentos
printf("%s\n", uma_string); // %s formata a string
printf("%d\n", uma_string[17]); // => 0
@@ -175,7 +176,7 @@ int main() {
///////////////////////////////////////
// Atalho para multiplas declarações:
- int i1 = 1, i2 = 2;
+ int i1 = 1, i2 = 2;
float f1 = 1.0, f2 = 2.0;
int a, b, c;
@@ -206,7 +207,7 @@ int main() {
2 <= 2; // => 1
2 >= 2; // => 1
- // C não é Python - comparações não se encadeam.
+ // C não é Python - comparações não se encadeiam.
int a = 1;
// Errado:
int entre_0_e_2 = 0 < a < 2;
@@ -231,7 +232,7 @@ int main() {
char *s = "iLoveC";
int j = 0;
s[j++]; // => "i". Retorna o j-ésimo item de s E DEPOIS incrementa o valor de j.
- j = 0;
+ j = 0;
s[++j]; // => "L". Incrementa o valor de j. E DEPOIS retorna o j-ésimo item de s.
// o mesmo com j-- e --j
@@ -308,7 +309,7 @@ int main() {
exit(-1);
break;
}
-
+
///////////////////////////////////////
// Cast de tipos
@@ -327,8 +328,8 @@ int main() {
// Tipos irão ter overflow sem aviso
printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 se char tem 8 bits)
- // Para determinar o valor máximo de um `char`, de um `signed char` e de
- // um `unisigned char`, respectivamente, use as macros CHAR_MAX, SCHAR_MAX
+ // Para determinar o valor máximo de um `char`, de um `signed char` e de
+ // um `unisigned char`, respectivamente, use as macros CHAR_MAX, SCHAR_MAX
// e UCHAR_MAX de <limits.h>
// Tipos inteiros podem sofrer cast para pontos-flutuantes e vice-versa.
@@ -341,7 +342,7 @@ int main() {
///////////////////////////////////////
// Um ponteiro é uma variável declarada para armazenar um endereço de memória.
- // Seu declaração irá também dizer o tipo de dados para o qual ela aponta. Você
+ // Sua declaração irá também dizer o tipo de dados para o qual ela aponta. Você
// Pode usar o endereço de memória de suas variáveis, então, brincar com eles.
int x = 0;
@@ -363,13 +364,13 @@ int main() {
printf("%d\n", *px); // => Imprime 0, o valor de x
// Você também pode mudar o valor que o ponteiro está apontando.
- // Teremo que cercar a de-referência entre parenteses, pois
+ // Temos que cercar a de-referência entre parênteses, pois
// ++ tem uma precedência maior que *.
(*px)++; // Incrementa o valor que px está apontando por 1
printf("%d\n", *px); // => Imprime 1
printf("%d\n", x); // => Imprime 1
- // Arrays são um boa maneira de alocar um bloco contínuo de memória
+ // Arrays são uma boa maneira de alocar um bloco contínuo de memória
int x_array[20]; // Declara um array de tamanho 20 (não pode-se mudar o tamanho
int xx;
for (xx = 0; xx < 20; xx++) {
@@ -379,7 +380,7 @@ int main() {
// Declara um ponteiro do tipo int e inicialize ele para apontar para x_array
int* x_ptr = x_array;
// x_ptr agora aponta para o primeiro elemento do array (o inteiro 20).
- // Isto funciona porque arrays são apenas ponteiros para seu primeiros elementos.
+ // Isto funciona porque arrays são apenas ponteiros para seus primeiros elementos.
// Por exemplo, quando um array é passado para uma função ou é atribuído a um
// ponteiro, ele transforma-se (convertido implicitamente) em um ponteiro.
// Exceções: quando o array é o argumento de um operador `&` (endereço-de):
@@ -395,7 +396,7 @@ int main() {
printf("%zu, %zu\n", sizeof arr, sizeof ptr); // provavelmente imprime "40, 4" ou "40, 8"
// Ponteiros podem ser incrementados ou decrementados baseado no seu tipo
- // (isto é chamado aritimética de ponteiros
+ // (isto é chamado aritmética de ponteiros
printf("%d\n", *(x_ptr + 1)); // => Imprime 19
printf("%d\n", x_array[1]); // => Imprime 19
@@ -413,9 +414,9 @@ int main() {
// "resultados imprevisíveis" - o programa é dito ter um "comportamento indefinido"
printf("%d\n", *(my_ptr + 21)); // => Imprime quem-sabe-o-que? Talvez até quebre o programa.
- // Quando termina-se de usar um bloco de memória alocado, você pode liberá-lo,
+ // Quando se termina de usar um bloco de memória alocado, você pode liberá-lo,
// ou ninguém mais será capaz de usá-lo até o fim da execução
- // (Isto cham-se "memory leak"):
+ // (Isto chama-se "memory leak"):
free(my_ptr);
// Strings são arrays de char, mas elas geralmente são representadas
@@ -537,7 +538,7 @@ int area(retan r)
return r.largura * r.altura;
}
-// Se você tiver structus grande, você pode passá-las "por ponteiro"
+// Se você tiver structus grande, você pode passá-las "por ponteiro"
// para evitar cópia de toda a struct:
int area(const retan *r)
{
@@ -554,8 +555,8 @@ conhecidos. Ponteiros para funções são como qualquer outro ponteiro
diretamente e passá-las para por toda parte.
Entretanto, a sintaxe de definição por ser um pouco confusa.
-Exemplo: use str_reverso através de um ponteiro
-*/
+Exemplo: use str_reverso através de um ponteiro
+*/
void str_reverso_através_ponteiro(char *str_entrada) {
// Define uma variável de ponteiro para função, nomeada f.
void (*f)(char *); //Assinatura deve ser exatamente igual à função alvo.
@@ -575,7 +576,7 @@ typedef void (*minha_função_type)(char *);
// Declarando o ponteiro:
// ...
-// minha_função_type f;
+// minha_função_type f;
//Caracteres especiais:
'\a' // Alerta (sino)
@@ -586,7 +587,7 @@ typedef void (*minha_função_type)(char *);
'\r' // Retorno de carroça
'\b' // Backspace
'\0' // Caracter nulo. Geralmente colocado ao final de string em C.
- // oi\n\0. \0 é usado por convenção para marcar o fim da string.
+ // oi\n\0. \0 é usado por convenção para marcar o fim da string.
'\\' // Barra invertida
'\?' // Interrogação
'\'' // Aspas simples
@@ -606,7 +607,7 @@ typedef void (*minha_função_type)(char *);
"%p" // ponteiro
"%x" // hexadecimal
"%o" // octal
-"%%" // imprime %
+"%%" // imprime %
///////////////////////////////////////
// Ordem de avaliação
diff --git a/pt-br/java-pt.html.markdown b/pt-br/java-pt.html.markdown
index a884f273..3c9512aa 100644
--- a/pt-br/java-pt.html.markdown
+++ b/pt-br/java-pt.html.markdown
@@ -405,6 +405,219 @@ class Velocipede extends Bicicleta {
}
+// Interfaces
+// Sintaxe de declaração de Interface
+// <nível de acesso> Interface <nome-da-interface> extends <super-interfaces> {
+// // Constantes
+// // Declarações de método
+//}
+
+// Exemplo - Comida:
+public interface Comestivel {
+ public void comer(); // Qualquer classe que implementa essa interface, deve
+                        // Implementar este método.
+}
+
+public interface Digestivel {
+ public void digerir();
+}
+
+
+// Agora podemos criar uma classe que implementa ambas as interfaces.
+public class Fruta implements Comestivel, Digestivel {
+
+ @Override
+ public void comer() {
+ // ...
+ }
+
+ @Override
+ public void digerir() {
+ // ...
+ }
+}
+
+// Em Java, você pode estender somente uma classe, mas você pode implementar muitas
+// Interfaces. Por exemplo:
+public class ClasseExemplo extends ExemploClassePai implements InterfaceUm,
+ InterfaceDois {
+
+ @Override
+ public void InterfaceUmMetodo() {
+ }
+
+ @Override
+ public void InterfaceDoisMetodo() {
+ }
+
+}
+
+// Classes abstratas
+
+// Sintaxe de declaração de classe abstrata
+// <Nível de acesso> abstract <nome-da-classe-abstrata> extends <estende super-abstratas-classes> {
+// // Constantes e variáveis
+// // Declarações de método
+//}
+
+// Marcar uma classe como abstrata significa que ela contém métodos abstratos que devem
+// ser definido em uma classe filha. Semelhante às interfaces, classes abstratas não podem
+// ser instanciadas, ao invés disso devem ser extendidas e os métodos abstratos
+// definidos. Diferente de interfaces, classes abstratas podem conter uma mistura de
+// métodos concretos e abstratos. Métodos em uma interface não podem ter um corpo,
+// a menos que o método seja estático, e as variáveis sejam finais, por padrão, ao contrário de um
+// classe abstrata. Classes abstratas também PODEM ter o método "main".
+
+public abstract class Animal
+{
+ public abstract void fazerSom();
+
+ // Método pode ter um corpo
+ public void comer()
+ {
+ System.out.println("Eu sou um animal e estou comendo.");
+ //Nota: Nós podemos acessar variáveis privadas aqui.
+ idade = 30;
+ }
+
+ // Não há necessidade de inicializar, no entanto, em uma interface
+    // a variável é implicitamente final e, portanto, tem
+    // de ser inicializado.
+ protected int idade;
+
+ public void mostrarIdade()
+ {
+ System.out.println(idade);
+ }
+
+ //Classes abstratas podem ter o método main.
+ public static void main(String[] args)
+ {
+ System.out.println("Eu sou abstrata");
+ }
+}
+
+class Cachorro extends Animal
+{
+
+ // Nota: ainda precisamos substituir os métodos abstratos na
+    // classe abstrata
+ @Override
+ public void fazerSom()
+ {
+ System.out.println("Bark");
+ // idade = 30; ==> ERRO! idade é privada de Animal
+ }
+
+ // NOTA: Você receberá um erro se usou a
+    // anotação Override aqui, uma vez que java não permite
+    // sobrescrita de métodos estáticos.
+    // O que está acontecendo aqui é chamado de "esconder o método".
+    // Vejá também este impressionante SO post: http://stackoverflow.com/questions/16313649/
+ public static void main(String[] args)
+ {
+ Cachorro pluto = new Cachorro();
+ pluto.fazerSom();
+ pluto.comer();
+ pluto.mostrarIdade();
+ }
+}
+
+// Classes Finais
+
+// Sintaxe de declaração de classe final
+// <nível de acesso> final <nome-da-classe-final> {
+// // Constantes e variáveis
+// // Declarações de método
+//}
+
+// Classes finais são classes que não podem ser herdadas e são, portanto, um
+// filha final. De certa forma, as classes finais são o oposto de classes abstratas
+// Porque classes abstratas devem ser estendidas, mas as classes finais não pode ser
+// estendidas.
+public final class TigreDenteDeSabre extends Animal
+{
+ // Nota: Ainda precisamos substituir os métodos abstratos na
+     // classe abstrata.
+ @Override
+ public void fazerSom();
+ {
+ System.out.println("Roar");
+ }
+}
+
+// Métodos Finais
+public abstract class Mamifero()
+{
+ // Sintaxe de Métodos Finais:
+ // <modificador-de-acesso> final <tipo-de-retorno> <nome-do-método>(<argumentos>)
+
+ // Métodos finais, como, classes finais não podem ser substituídas por uma classe filha,
+    // e são, portanto, a implementação final do método.
+ public final boolean EImpulsivo()
+ {
+ return true;
+ }
+}
+
+
+// Tipo Enum
+//
+// Um tipo enum é um tipo de dado especial que permite a uma variável ser um conjunto de constantes predefinidas. A
+// variável deve ser igual a um dos valores que foram previamente definidos para ela.
+// Por serem constantes, os nomes dos campos de um tipo de enumeração estão em letras maiúsculas.
+// Na linguagem de programação Java, você define um tipo de enumeração usando a palavra-chave enum. Por exemplo, você poderia
+// especificar um tipo de enum dias-da-semana como:
+
+public enum Dia {
+ DOMINGO, SEGUNDA, TERÇA, QUARTA,
+ QUINTA, SEXTA, SABADO
+}
+
+// Nós podemos usar nosso enum Dia assim:
+
+public class EnumTeste {
+
+ // Variável Enum
+ Dia dia;
+
+ public EnumTeste(Dia dia) {
+ this.dia = dia;
+ }
+
+ public void digaComoE() {
+ switch (dia) {
+ case SEGUNDA:
+ System.out.println("Segundas são ruins.");
+ break;
+
+ case SEXTA:
+ System.out.println("Sextas são melhores.");
+ break;
+
+ case SABADO:
+ case DOMINGO:
+ System.out.println("Finais de semana são os melhores.");
+ break;
+
+ default:
+ System.out.println("Dias no meio da semana são mais ou menos.");
+ break;
+ }
+ }
+
+ public static void main(String[] args) {
+ EnumTeste primeiroDia = new EnumTeste(Dia.SEGUNDA);
+ primeiroDia.digaComoE(); // => Segundas-feiras são ruins.
+ EnumTeste terceiroDia = new EnumTeste(Dia.QUARTA);
+ terceiroDia.digaComoE(); // => Dias no meio da semana são mais ou menos.
+ }
+}
+
+// Tipos Enum são muito mais poderosos do que nós mostramos acima.
+// O corpo de um enum pode incluir métodos e outros campos.
+// Você pode ver mais em https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
+
```
## Leitura Recomendada
diff --git a/pt-br/json-pt.html.markdown b/pt-br/json-pt.html.markdown
index e4f10a61..fd822c03 100644
--- a/pt-br/json-pt.html.markdown
+++ b/pt-br/json-pt.html.markdown
@@ -3,6 +3,7 @@ language: json
contributors:
- ["Anna Harren", "https://github.com/iirelu"]
- ["Marco Scannadinari", "https://github.com/marcoms"]
+ - ["Francisco Marques", "https://github.com/ToFran"]
translators:
- ["Miguel Araújo", "https://github.com/miguelarauj1o"]
lang: pt-br
@@ -12,10 +13,16 @@ filename: learnjson-pt.json
Como JSON é um formato de intercâmbio de dados, este será, muito provavelmente, o
"Learn X in Y minutes" mais simples existente.
-JSON na sua forma mais pura não tem comentários em reais, mas a maioria dos analisadores
-aceitarão comentários no estilo C (//, /\* \*/). Para os fins do presente, no entanto,
-tudo o que é vai ser 100% JSON válido. Felizmente, isso meio que fala por si.
+JSON na sua forma mais pura não tem comentários, mas a maioria dos analisadores
+aceitarão comentários no estilo C (//, /\* \*/). No entanto estes devem ser evitados para otimizar a compatibilidade.
+Um valor JSON pode ser um numero, uma string, um array, um objeto, um booleano (true, false) ou null.
+
+Os browsers suportados são: Firefox 3.5+, Internet Explorer 8.0+, Chrome 1.0+, Opera 10.0+, e Safari 4.0+.
+
+A extensão dos ficheiros JSON é “.json” e o tipo de mídia de Internet (MIME) é “application/json”.
+
+Mais informação em: http://www.json.org/
```json
{
@@ -57,6 +64,6 @@ tudo o que é vai ser 100% JSON válido. Felizmente, isso meio que fala por si.
, "outro comentário": "que bom"
},
- "que foi curto": "E, você está feito. Você já sabe tudo que JSON tem para oferecer.".
+ "que foi curto": "E, você está feito. Você já sabe tudo que JSON tem para oferecer."
}
```