diff options
Diffstat (limited to 'r.html.markdown')
| -rw-r--r-- | r.html.markdown | 104 | 
1 files changed, 101 insertions, 3 deletions
| diff --git a/r.html.markdown b/r.html.markdown index 8896c5b0..8539b10e 100644 --- a/r.html.markdown +++ b/r.html.markdown @@ -3,6 +3,7 @@ language: R  contributors:      - ["e99n09", "http://github.com/e99n09"]      - ["isomorphismes", "http://twitter.com/isomorphisms"] +    - ["kalinn", "http://github.com/kalinn"]  filename: learnr.r  --- @@ -197,6 +198,14 @@ class(NaN) # "numeric"  # You can do arithmetic on two vectors with length greater than 1,  # so long as the larger vector's length is an integer multiple of the smaller  c(1,2,3) + c(1,2,3) # 2 4 6 +# Since a single number is a vector of length one, scalars are applied  +# elementwise to vectors +(4 * c(1,2,3) - 2) / 2 # 1 3 5 +# Except for scalars, use caution when performing arithmetic on vectors with  +# different lengths. Although it can be done,  +c(1,2,3,1,2,3) * c(1,2) # 1 4 3 2 2 6 +# Matching lengths is better practice and easier to read +c(1,2,3,1,2,3) * c(1,2,1,2,1,2)   # CHARACTERS  # There's no difference between strings and characters in R @@ -235,6 +244,9 @@ class(NA)	# "logical"  TRUE | FALSE	# TRUE  # AND  TRUE & FALSE	# FALSE +# Applying | and & to vectors returns elementwise logic operations +c(TRUE,FALSE,FALSE) | c(FALSE,TRUE,FALSE) # TRUE TRUE FALSE +c(TRUE,FALSE,TRUE) & c(FALSE,TRUE,TRUE) # FALSE FALSE TRUE  # You can test if x is TRUE  isTRUE(TRUE)	# TRUE  # Here we get a logical vector with many elements: @@ -665,15 +677,101 @@ write.csv(pets, "pets2.csv") # to make a new .csv file  ######################### +# Statistical Analysis +######################### + +# Linear regression! +linearModel <- lm(price  ~ time, data = list1) +linearModel # outputs result of regression +# => +# Call: +# lm(formula = price ~ time, data = list1) +#  +# Coefficients: +# (Intercept)         time   +#      0.1453       0.4943   +summary(linearModel) # more verbose output from the regression +# => +# Call: +# lm(formula = price ~ time, data = list1) +# +# Residuals: +#     Min      1Q  Median      3Q     Max  +# -8.3134 -3.0131 -0.3606  2.8016 10.3992  +# +# Coefficients: +#             Estimate Std. Error t value Pr(>|t|)     +# (Intercept)  0.14527    1.50084   0.097    0.923     +# time         0.49435    0.06379   7.749 2.44e-09 *** +# --- +# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 +# +# Residual standard error: 4.657 on 38 degrees of freedom +# Multiple R-squared:  0.6124,	Adjusted R-squared:  0.6022  +# F-statistic: 60.05 on 1 and 38 DF,  p-value: 2.44e-09 +coef(linearModel) # extract estimated parameters +# => +# (Intercept)        time  +#   0.1452662   0.4943490  +summary(linearModel)$coefficients # another way to extract results +# => +#              Estimate Std. Error    t value     Pr(>|t|) +# (Intercept) 0.1452662 1.50084246 0.09678975 9.234021e-01 +# time        0.4943490 0.06379348 7.74920901 2.440008e-09 +summary(linearModel)$coefficients[,4] # the p-values  +# => +#  (Intercept)         time  +# 9.234021e-01 2.440008e-09  + +# GENERAL LINEAR MODELS +# Logistic regression +set.seed(1) +list1$success = rbinom(length(list1$time), 1, .5) # random binary +glModel <- glm(success  ~ time, data = list1,  +	family=binomial(link="logit")) +glModel # outputs result of logistic regression +# => +# Call:  glm(formula = success ~ time,  +#	family = binomial(link = "logit"), data = list1) +# +# Coefficients: +# (Intercept)         time   +#     0.17018     -0.01321   +#  +# Degrees of Freedom: 39 Total (i.e. Null);  38 Residual +# Null Deviance:	    55.35  +# Residual Deviance: 55.12 	 AIC: 59.12 +summary(glModel) # more verbose output from the regression +# => +# Call: +# glm(formula = success ~ time,  +#	family = binomial(link = "logit"), data = list1) + +# Deviance Residuals:  +#    Min      1Q  Median      3Q     Max   +# -1.245  -1.118  -1.035   1.202   1.327   +#  +# Coefficients: +#             Estimate Std. Error z value Pr(>|z|) +# (Intercept)  0.17018    0.64621   0.263    0.792 +# time        -0.01321    0.02757  -0.479    0.632 +#  +# (Dispersion parameter for binomial family taken to be 1) +# +#     Null deviance: 55.352  on 39  degrees of freedom +# Residual deviance: 55.121  on 38  degrees of freedom +# AIC: 59.121 +#  +# Number of Fisher Scoring iterations: 3 + + +#########################  # Plots  #########################  # BUILT-IN PLOTTING FUNCTIONS  # Scatterplots!  plot(list1$time, list1$price, main = "fake data") -# Regressions! -linearModel <- lm(price  ~ time, data = list1) -linearModel # outputs result of regression  # Plot regression line on existing plot  abline(linearModel, col = "red")  # Get a variety of nice diagnostics | 
