diff options
Diffstat (limited to 'ru-ru/python-ru.html.markdown')
-rw-r--r-- | ru-ru/python-ru.html.markdown | 344 |
1 files changed, 247 insertions, 97 deletions
diff --git a/ru-ru/python-ru.html.markdown b/ru-ru/python-ru.html.markdown index 204eb357..43142eff 100644 --- a/ru-ru/python-ru.html.markdown +++ b/ru-ru/python-ru.html.markdown @@ -5,25 +5,29 @@ contributors: - ["Louie Dinh", "http://ldinh.ca"] translators: - ["Yury Timofeev", "http://twitter.com/gagar1n"] + - ["Andre Polykanine", "https://github.com/Oire"] filename: learnpython-ru.py --- -Язык Python был создан Гвидо ван Россумом в начале 90-х. Сейчас это один из самых популярных -языков. Я люблю его за его понятный и доходчивый синтаксис - это почти что исполняемый псевдокод. +Язык Python был создан Гвидо ван Россумом в начале 90-х. Сейчас это один из +самых популярных языков. Я влюбился в Python за понятный и доходчивый синтаксис — это +почти исполняемый псевдокод. -С благодарностью жду ваших отзывов: [@louiedinh](http://twitter.com/louiedinh) или louiedinh [at] [google's email service] +С благодарностью жду ваших отзывов: [@louiedinh](http://twitter.com/louiedinh) +или louiedinh [at] [почтовый сервис Google] -Замечание: Эта статья относится к Python 2.7, но должно работать и в Python 2.x. Скоро будет версия и для Python 3! +Замечание: Эта статья относится к Python 2.7, но должно работать и в других версиях Python 2.x. +Чтобы изучить Python 3.x, обратитесь к статье по Python 3. ```python -# Однострочные комментарии начинаются с hash-символа. +# Однострочные комментарии начинаются с символа решётки. """ Многострочный текст может быть записан, используя 3 знака " и обычно используется - в качестве комментария + в качестве встроенной документации """ #################################################### -## 1. Примитивные типы данных и операторов +## 1. Примитивные типы данных и операторы #################################################### # У вас есть числа @@ -36,39 +40,61 @@ filename: learnpython-ru.py 35 / 5 #=> 7 # А вот деление немного сложнее. В этом случае происходит деление -# целых чисел и результат автоматически округляется в меньшую сторону. +# целых чисел, и результат автоматически округляется в меньшую сторону. 5 / 2 #=> 2 -# Чтобы научиться делить, сначала нужно немного узнать о дробных числах. -2.0 # Это дробное число +# Чтобы делить правильно, сначала нужно немного узнать о числах +# с плавающей запятой. +2.0 # Это число с плавающей запятой 11.0 / 4.0 #=> 2.75 Вооот... Так гораздо лучше +# Результат целочисленного деления округляется в меньшую сторону +# как для положительных, так и для отрицательных чисел. +5 // 3 # => 1 +5.0 // 3.0 # => 1.0 # работает и для чисел с плавающей запятой +-5 // 3 # => -2 +-5.0 // 3.0 # => -2.0 + +# Остаток от деления +7 % 3 # => 1 + +# Возведение в степень +2**4 # => 16 + # Приоритет операций указывается скобками (1 + 3) * 2 #=> 8 -# Логические значения являются примитивами -True -False +# Логические операторы +# Обратите внимание: ключевые слова «and» и «or» чувствительны к регистру букв +True and False #=> False +False or True #=> True + +# Обратите внимание, что логические операторы используются и с целыми числами +0 and 2 #=> 0 +-5 or 0 #=> -5 +0 == False #=> True +2 == True #=> False +1 == True #=> True # Для отрицания используется ключевое слово not not True #=> False not False #=> True -# Равенство это == +# Равенство — это == 1 == 1 #=> True 2 == 1 #=> False -# Неравенство это != +# Неравенство — это != 1 != 1 #=> False 2 != 1 #=> True -# Еще немного сравнений +# Ещё немного сравнений 1 < 10 #=> True 1 > 10 #=> False 2 <= 2 #=> True 2 >= 2 #=> True -# Сравнения могут быть соединены в цепь! +# Сравнения могут быть записаны цепочкой! 1 < 2 < 3 #=> True 2 < 3 < 2 #=> False @@ -76,18 +102,22 @@ not False #=> True "Это строка." 'Это тоже строка.' -# И строки тоже могут складываться! +# И строки тоже можно складывать! "Привет " + "мир!" #=> "Привет мир!" +# ... или умножать +"Привет" * 3 # => "ПриветПриветПривет" + # Со строкой можно работать, как со списком символов "Это строка"[0] #=> 'Э' # Символ % используется для форматирования строк, например: "%s могут быть %s" % ("строки", "интерполированы") -# Новый метод форматирования строк - использование метода format. +# Новый способ форматирования строк — использование метода format. # Это предпочитаемый способ. "{0} могут быть {1}".format("строки", "форматированы") + # Если вы не хотите считать, можете использовать ключевые слова. "{name} хочет есть {food}".format(name="Боб", food="лазанью") @@ -95,7 +125,7 @@ not False #=> True None #=> None # Не используйте оператор равенства '=='' для сравнения -# объектов с None. Используйте для этого 'is' +# объектов с None. Используйте для этого «is» "etc" is None #=> False None is None #=> True @@ -103,7 +133,7 @@ None is None #=> True # очень полезен при работе с примитивными типами, но # зато просто незаменим при работе с объектами. -# None, 0, и пустые строки/списки равны False. +# None, 0 и пустые строки/списки равны False. # Все остальные значения равны True 0 == False #=> True "" == False #=> True @@ -113,17 +143,20 @@ None is None #=> True ## 2. Переменные и коллекции #################################################### -# Печатать довольно просто +# В Python есть оператор print, доступный в версиях 2.x, но удалённый в версии 3 print "Я Python. Приятно познакомиться!" +# В Python также есть функция print(), доступная в версиях 2.7 и 3, +# Но для версии 2.7 нужно добавить следующий импорт модуля (раскомментируйте)): +# from __future__ import print_function +print("Я тоже Python! ") - -# Необязательно объявлять переменные перед их инициализацией. -some_var = 5 # По соглашению используется нижний_регистр_с_подчеркиваниями +# Объявлять переменные перед инициализацией не нужно. +some_var = 5 # По соглашению используется нижний_регистр_с_подчёркиваниями some_var #=> 5 -# При попытке доступа к неинициализированной переменной, +# При попытке доступа к неинициализированной переменной # выбрасывается исключение. -# См. раздел "Поток управления" для информации об исключениях. +# См. раздел «Поток управления» для информации об исключениях. some_other_var # Выбрасывает ошибку именования # if может быть использован как выражение @@ -131,9 +164,13 @@ some_other_var # Выбрасывает ошибку именования # Списки хранят последовательности li = [] -# Можно сразу начать с заполненным списком +# Можно сразу начать с заполненного списка other_li = [4, 5, 6] +# строка разделена в список +a="adambard" +list(a) #=> ['a','d','a','m','b','a','r','d'] + # Объекты добавляются в конец списка методом append li.append(1) # [1] li.append(2) # [1, 2] @@ -146,27 +183,38 @@ li.append(3) # [1, 2, 4, 3]. # Обращайтесь со списком, как с обычным массивом li[0] #=> 1 +# Присваивайте новые значения уже инициализированным индексам с помощью = +li[0] = 42 +li[0] # => 42 +li[0] = 1 # Обратите внимание: возвращаемся на исходное значение # Обратимся к последнему элементу li[-1] #=> 3 -# Попытка выйти за границы массива приведет к IndexError -li[4] # Выдает IndexError +# Попытка выйти за границы массива приведёт к ошибке индекса +li[4] # Выдаёт IndexError -# Можно обращаться к диапазону, используя "кусочный синтаксис" (slice syntax) -# (Для тех, кто любит математику, это называется замкнуто/открытый интервал.) +# Можно обращаться к диапазону, используя так называемые срезы +# (Для тех, кто любит математику, это называется замкнуто-открытый интервал). li[1:3] #=> [2, 4] # Опускаем начало li[2:] #=> [4, 3] # Опускаем конец li[:3] #=> [1, 2, 4] +# Выбираем каждый второй элемент +li[::2] # =>[1, 4] +# Переворачиваем список +li[::-1] # => [3, 4, 2, 1] +# Используйте сочетания всего вышеназванного для выделения более сложных срезов +# li[начало:конец:шаг] # Удаляем произвольные элементы из списка оператором del -del li[2] # [1, 2, 3] +del li[2] # li теперь [1, 2, 3] -# Вы можете складывать списки -li + other_li #=> [1, 2, 3, 4, 5, 6] - Замечание: li и other_li остаются нетронутыми +# Вы можете складывать, или, как ещё говорят, конкатенировать списки +li + other_li #=> [1, 2, 3, 4, 5, 6] — Замечание: li и other_li не изменяются +# Обратите внимание: значения li и other_li при этом не изменились. -# Конкатенировать списки можно методом extend +# Объединять списки можно методом extend li.extend(other_li) # Теперь li содержит [1, 2, 3, 4, 5, 6] # Проверить элемент на вхождение в список можно оператором in @@ -176,12 +224,12 @@ li.extend(other_li) # Теперь li содержит [1, 2, 3, 4, 5, 6] len(li) #=> 6 -# Кортежи - это такие списки, только неизменяемые +# Кортежи — это такие списки, только неизменяемые tup = (1, 2, 3) tup[0] #=> 1 -tup[0] = 3 # Выдает TypeError +tup[0] = 3 # Выдаёт TypeError -# Все то же самое можно делать и с кортежами +# Всё то же самое можно делать и с кортежами len(tup) #=> 3 tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6) tup[:2] #=> (1, 2) @@ -194,51 +242,60 @@ d, e, f = 4, 5, 6 # Обратите внимание, как легко поменять местами значения двух переменных e, d = d, e # теперь d == 5, а e == 4 - # Словари содержат ассоциативные массивы empty_dict = {} # Вот так описывается предзаполненный словарь filled_dict = {"one": 1, "two": 2, "three": 3} -# Значения ищутся по ключу с помощью оператора [] +# Значения извлекаются так же, как из списка, с той лишь разницей, +# что индекс — у словарей он называется ключом — не обязан быть числом filled_dict["one"] #=> 1 -# Можно получить все ключи в виде списка +# Можно получить все ключи в виде списка с помощью метода keys filled_dict.keys() #=> ["three", "two", "one"] -# Замечание - сохранение порядка ключей в словаре не гарантируется +# Замечание: сохранение порядка ключей в словаре не гарантируется # Ваши результаты могут не совпадать с этими. -# Можно получить и все значения в виде списка +# Можно получить и все значения в виде списка, используйте метод values filled_dict.values() #=> [3, 2, 1] -# То же самое замечание насчет порядка ключей справедливо и здесь +# То же самое замечание насчёт порядка ключей справедливо и здесь # При помощи оператора in можно проверять ключи на вхождение в словарь "one" in filled_dict #=> True 1 in filled_dict #=> False -# Попытка получить значение по несуществующему ключу выбросит KeyError +# Попытка получить значение по несуществующему ключу выбросит ошибку ключа filled_dict["four"] # KeyError -# Чтобы избежать этого, используйте метод get +# Чтобы избежать этого, используйте метод get() filled_dict.get("one") #=> 1 filled_dict.get("four") #=> None -# Метод get также принимает аргумент default, значение которого будет +# Метод get также принимает аргумент по умолчанию, значение которого будет # возвращено при отсутствии указанного ключа filled_dict.get("one", 4) #=> 1 filled_dict.get("four", 4) #=> 4 +# Обратите внимание, что filled_dict.get("four") всё ещё => None +# (get не устанавливает значение элемента словаря) -# Метод setdefault - это безопасный способ добавить новую пару ключ-значение в словарь +# Присваивайте значение ключам так же, как и в списках +filled_dict["four"] = 4 # теперь filled_dict["four"] => 4 + +# Метод setdefault() вставляет пару ключ-значение, только если такого ключа нет filled_dict.setdefault("five", 5) #filled_dict["five"] возвращает 5 -filled_dict.setdefault("five", 6) #filled_dict["five"] по прежнему возвращает 5 +filled_dict.setdefault("five", 6) #filled_dict["five"] по-прежнему возвращает 5 # Множества содержат... ну, в общем, множества +# (которые похожи на списки, только в них не может быть дублирующихся элементов) empty_set = set() # Инициализация множества набором значений some_set = set([1,2,2,3,4]) # some_set теперь равно set([1, 2, 3, 4]) -# Начиная с Python 2.7, вы можете использовать {} чтобы обьявить множество -filled_set = {1, 2, 2, 3, 4} # => {1 2 3 4} +# Порядок сортировки не гарантируется, хотя иногда они выглядят отсортированными +another_set = set([4, 3, 2, 2, 1]) # another_set теперь set([1, 2, 3, 4]) + +# Начиная с Python 2.7, вы можете использовать {}, чтобы объявить множество +filled_set = {1, 2, 2, 3, 4} # => {1, 2, 3, 4} # Добавление новых элементов в множество filled_set.add(5) # filled_set равно {1, 2, 3, 4, 5} @@ -262,33 +319,33 @@ filled_set | other_set #=> {1, 2, 3, 4, 5, 6} ## 3. Поток управления #################################################### -# Для начала заведем переменную +# Для начала заведём переменную some_var = 5 # Так выглядит выражение if. Отступы в python очень важны! -# результат: "some_var меньше, чем 10" +# результат: «some_var меньше, чем 10» if some_var > 10: - print "some_var намного больше, чем 10." + print("some_var намного больше, чем 10.") elif some_var < 10: # Выражение elif необязательно. - print "some_var меньше, чем 10." + print("some_var меньше, чем 10.") else: # Это тоже необязательно. - print "some_var равно 10." + print("some_var равно 10.") """ Циклы For проходят по спискам Результат: - собака это млекопитающее - кошка это млекопитающее - мышь это млекопитающее + собака — это млекопитающее + кошка — это млекопитающее + мышь — это млекопитающее """ for animal in ["собака", "кошка", "мышь"]: # Можете использовать оператор % для интерполяции форматированных строк - print "%s это млекопитающее" % animal + print("%s — это млекопитающее" % animal) """ -`range(number)` возвращает список чисел +«range(число)» возвращает список чисел от нуля до заданного числа Результат: 0 @@ -297,7 +354,7 @@ for animal in ["собака", "кошка", "мышь"]: 3 """ for i in range(4): - print i + print(i) """ Циклы while продолжаются до тех пор, пока указанное условие не станет ложным. @@ -309,19 +366,24 @@ for i in range(4): """ x = 0 while x < 4: - print x - x += 1 # То же самое, что x = x + 1 + print(x) + x += 1 # Краткая запись для x = x + 1 -# Обрабывайте исключения блоками try/except +# Обрабатывайте исключения блоками try/except # Работает в Python 2.6 и выше: try: - # Для выбора ошибки используется raise - raise IndexError("Это IndexError") + # Чтобы выбросить ошибку, используется raise + raise IndexError("Это ошибка индекса") except IndexError as e: - # pass это просто отсутствие оператора. Обычно здесь происходит - # восстановление от ошибки. + # pass — это просто отсутствие оператора. Обычно здесь происходит + # восстановление после ошибки. pass +except (TypeError, NameError): + pass # Несколько исключений можно обработать вместе, если нужно. +else: # Необязательное выражение. Должно следовать за последним блоком except + print("Всё хорошо!") # Выполнится, только если не было никаких исключений + #################################################### @@ -330,24 +392,26 @@ except IndexError as e: # Используйте def для создания новых функций def add(x, y): - print "x равен %s, а y равен %s" % (x, y) - return x + y # Возвращайте результат выражением return + print("x равен %s, а y равен %s" % (x, y)) + return x + y # Возвращайте результат с помощью ключевого слова return # Вызов функции с аргументами -add(5, 6) #=> prints out "x равен 5, а y равен 6" и возвращает 11 +add(5, 6) #=> выводит «x равен 5, а y равен 6» и возвращает 11 -# Другой способ вызова функции с аргументами +# Другой способ вызова функции — вызов с именованными аргументами add(y=6, x=5) # Именованные аргументы можно указывать в любом порядке. -# Вы можете определить функцию, принимающую неизвестное количество аргументов +# Вы можете определить функцию, принимающую переменное число аргументов, +# которые будут интерпретированы как кортеж, если вы не используете * def varargs(*args): return args varargs(1, 2, 3) #=> (1,2,3) -# А также можете определить функцию, принимающую изменяющееся количество -# именованных аргументов +# А также можете определить функцию, принимающую переменное число +# именованных аргументов, которые будут интерпретированы как словарь, +# если вы не используете ** def keyword_args(**kwargs): return kwargs @@ -356,8 +420,8 @@ keyword_args(big="foot", loch="ness") #=> {"big": "foot", "loch": "ness"} # Если хотите, можете использовать оба способа одновременно def all_the_args(*args, **kwargs): - print args - print kwargs + print(args) + print(kwargs) """ all_the_args(1, 2, a=3, b=4) выводит: (1, 2) @@ -365,14 +429,39 @@ all_the_args(1, 2, a=3, b=4) выводит: """ # Вызывая функции, можете сделать наоборот! -# Используйте символ * для передачи кортежей и ** для передачи словарей +# Используйте символ * для распаковки кортежей и ** для распаковки словарей args = (1, 2, 3, 4) kwargs = {"a": 3, "b": 4} -all_the_args(*args) # эквивалент foo(1, 2, 3, 4) -all_the_args(**kwargs) # эквивалент foo(a=3, b=4) -all_the_args(*args, **kwargs) # эквивалент foo(1, 2, 3, 4, a=3, b=4) +all_the_args(*args) # эквивалентно foo(1, 2, 3, 4) +all_the_args(**kwargs) # эквивалентно foo(a=3, b=4) +all_the_args(*args, **kwargs) # эквивалентно foo(1, 2, 3, 4, a=3, b=4) + +# вы можете передавать переменное число позиционных или именованных аргументов +# другим функциям, которые их принимают, распаковывая их с помощью +# * или ** соответственно +def pass_all_the_args(*args, **kwargs): + all_the_args(*args, **kwargs) + print varargs(*args) + print keyword_args(**kwargs) + +# Область определения функций +x = 5 + +def setX(num): + # Локальная переменная x — это не то же самое, что глобальная переменная x + x = num # => 43 + print (x) # => 43 + +def setGlobalX(num): + global x + print (x) # => 5 + x = num # Глобальная переменная x теперь равна 6 + print (x) # => 6 + +setX(43) +setGlobalX(6) -# Python имеет функции первого класса +# В Python функции — «объекты первого класса» def create_adder(x): def adder(y): return x + y @@ -388,7 +477,7 @@ add_10(3) #=> 13 map(add_10, [1,2,3]) #=> [11, 12, 13] filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7] -# Мы можем использовать списки для удобного отображения и фильтрации +# Для удобного отображения и фильтрации можно использовать списочные включения [add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13] [x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7] @@ -402,7 +491,11 @@ class Human(object): # Атрибут класса. Он разделяется всеми экземплярами этого класса species = "H. sapiens" - # Обычный конструктор + # Обычный конструктор, вызывается при инициализации экземпляра класса + # Обратите внимание, что двойное подчёркивание в начале и в конце имени + # означает объекты и атрибуты, которые используются Python, но находятся + # в пространствах имён, управляемых пользователем. + # Не придумывайте им имена самостоятельно. def __init__(self, name): # Присваивание значения аргумента атрибуту класса name self.name = name @@ -423,17 +516,17 @@ class Human(object): return "*grunt*" -# Инстанцирование класса +# Инициализация экземпляра класса i = Human(name="Иван") -print i.say("привет") # "Иван: привет" +print(i.say("привет")) # Выводит: «Иван: привет» -j = Human("Петр") -print j.say("Привет") # "Петр: привет" +j = Human("Пётр") +print(j.say("Привет")) # Выводит: «Пётр: привет» # Вызов метода класса i.get_species() #=> "H. sapiens" -# Присвоение разделяемому атрибуту +# Изменение разделяемого атрибута Human.species = "H. neanderthalensis" i.get_species() #=> "H. neanderthalensis" j.get_species() #=> "H. neanderthalensis" @@ -448,12 +541,12 @@ Human.grunt() #=> "*grunt*" # Вы можете импортировать модули import math -print math.sqrt(16) #=> 4 +print(math.sqrt(16)) #=> 4 # Вы можете импортировать отдельные функции модуля from math import ceil, floor -print ceil(3.7) #=> 4.0 -print floor(3.7) #=> 3.0 +print(ceil(3.7)) #=> 4.0 +print(floor(3.7)) #=> 3.0 # Можете импортировать все функции модуля. # (Хотя это и не рекомендуется) @@ -462,8 +555,11 @@ from math import * # Можете сокращать имена модулей import math as m math.sqrt(16) == m.sqrt(16) #=> True +# Вы также можете убедиться, что функции эквивалентны +from math import sqrt +math.sqrt == m.sqrt == sqrt # => True -# Модули в Python это обычные файлы с кодом python. Вы +# Модули в Python — это обычные Python-файлы. Вы # можете писать свои модули и импортировать их. Название # модуля совпадает с названием файла. @@ -472,18 +568,72 @@ math.sqrt(16) == m.sqrt(16) #=> True import math dir(math) +#################################################### +## 7. Дополнительно +#################################################### + +# Генераторы помогут выполнить ленивые вычисления +def double_numbers(iterable): + for i in iterable: + yield i + i + +# Генератор создаёт значения на лету. +# Он не возвращает все значения разом, а создаёт каждое из них при каждой +# итерации. Это значит, что значения больше 15 в double_numbers +# обработаны не будут. +# Обратите внимание: xrange — это генератор, который делает то же, что и range. +# Создание списка чисел от 1 до 900000000 требует много места и времени. +# xrange создаёт объект генератора, а не список сразу, как это делает range. +# Если нам нужно имя переменной, совпадающее с ключевым словом Python, +# мы используем подчёркивание в конце +xrange_ = xrange(1, 900000000) + +# Будет удваивать все числа, пока результат не превысит 30 +for i in double_numbers(xrange_): + print(i) + if i >= 30: + break + + +# Декораторы +# В этом примере beg оборачивает say +# Метод beg вызовет say. Если say_please равно True, +# он изменит возвращаемое сообщение +from functools import wraps + + +def beg(target_function): + @wraps(target_function) + def wrapper(*args, **kwargs): + msg, say_please = target_function(*args, **kwargs) + if say_please: + return "{} {}".format(msg, " Пожалуйста! У меня нет денег :(") + return msg + + return wrapper + + +@beg +def say(say_please=False): + msg = "Вы не купите мне пива?" + return msg, say_please + + +print(say()) # Вы не купите мне пива? +print(say(say_please=True)) # Вы не купите мне пива? Пожалуйста! У меня нет денег :( ``` -## Хотите еще? +## Хотите ещё? ### Бесплатные онлайн-материалы * [Learn Python The Hard Way](http://learnpythonthehardway.org/book/) * [Dive Into Python](http://www.diveintopython.net/) -* [The Official Docs](http://docs.python.org/2.6/) +* [Официальная документация](http://docs.python.org/2.6/) * [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/) * [Python Module of the Week](http://pymotw.com/2/) +* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182) ### Платные |