summaryrefslogtreecommitdiffhomepage
path: root/zh-cn/c++-cn.html.markdown
diff options
context:
space:
mode:
Diffstat (limited to 'zh-cn/c++-cn.html.markdown')
-rw-r--r--zh-cn/c++-cn.html.markdown1144
1 files changed, 572 insertions, 572 deletions
diff --git a/zh-cn/c++-cn.html.markdown b/zh-cn/c++-cn.html.markdown
index e0d6b6fe..db36ebc4 100644
--- a/zh-cn/c++-cn.html.markdown
+++ b/zh-cn/c++-cn.html.markdown
@@ -1,572 +1,572 @@
----
-language: c++
-filename: learncpp-cn.cpp
-contributors:
- - ["Steven Basart", "http://github.com/xksteven"]
- - ["Matt Kline", "https://github.com/mrkline"]
-translators:
- - ["Arnie97", "https://github.com/Arnie97"]
-lang: zh-cn
----
-
-C++是一种系统编程语言。用它的发明者,
-[Bjarne Stroustrup的话](http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2014/Keynote)来说,C++的设计目标是:
-
-- 成为“更好的C语言”
-- 支持数据的抽象与封装
-- 支持面向对象编程
-- 支持泛型编程
-
-C++提供了对硬件的紧密控制(正如C语言一样),
-能够编译为机器语言,由处理器直接执行。
-与此同时,它也提供了泛型、异常和类等高层功能。
-虽然C++的语法可能比某些出现较晚的语言更复杂,它仍然得到了人们的青睞——
-功能与速度的平衡使C++成为了目前应用最广泛的系统编程语言之一。
-
-```c++
-////////////////
-// 与C语言的比较
-////////////////
-
-// C++_几乎_是C语言的一个超集,它与C语言的基本语法有许多相同之处,
-// 例如变量和函数的声明,原生数据类型等等。
-
-// 和C语言一样,在C++中,你的程序会从main()开始执行,
-// 该函数的返回值应当为int型,这个返回值会作为程序的退出状态值。
-// 不过,大多数的编译器(gcc,clang等)也接受 void main() 的函数原型。
-// (参见 http://en.wikipedia.org/wiki/Exit_status 来获取更多信息)
-int main(int argc, char** argv)
-{
- // 和C语言一样,命令行参数通过argc和argv传递。
- // argc代表命令行参数的数量,
- // 而argv是一个包含“C语言风格字符串”(char *)的数组,
- // 其中每个字符串代表一个命令行参数的内容,
- // 首个命令行参数是调用该程序时所使用的名称。
- // 如果你不关心命令行参数的值,argc和argv可以被忽略。
- // 此时,你可以用int main()作为函数原型。
-
- // 退出状态值为0时,表示程序执行成功
- return 0;
-}
-
-// 然而,C++和C语言也有一些区别:
-
-// 在C++中,字符字面量的大小是一个字节。
-sizeof('c') == 1
-
-// 在C语言中,字符字面量的大小与int相同。
-sizeof('c') == sizeof(10)
-
-
-// C++的函数原型与函数定义是严格匹配的
-void func(); // 这个函数不能接受任何参数
-
-// 而在C语言中
-void func(); // 这个函数能接受任意数量的参数
-
-// 在C++中,用nullptr代替C语言中的NULL
-int* ip = nullptr;
-
-// C++也可以使用C语言的标准头文件,
-// 但是需要加上前缀“c”并去掉末尾的“.h”。
-#include <cstdio>
-
-int main()
-{
- printf("Hello, world!\n");
- return 0;
-}
-
-///////////
-// 函数重载
-///////////
-
-// C++支持函数重载,你可以定义一组名称相同而参数不同的函数。
-
-void print(char const* myString)
-{
- printf("String %s\n", myString);
-}
-
-void print(int myInt)
-{
- printf("My int is %d", myInt);
-}
-
-int main()
-{
- print("Hello"); // 解析为 void print(const char*)
- print(15); // 解析为 void print(int)
-}
-
-///////////////////
-// 函数参数的默认值
-///////////////////
-
-// 你可以为函数的参数指定默认值,
-// 它们将会在调用者没有提供相应参数时被使用。
-
-void doSomethingWithInts(int a = 1, int b = 4)
-{
- // 对两个参数进行一些操作
-}
-
-int main()
-{
- doSomethingWithInts(); // a = 1, b = 4
- doSomethingWithInts(20); // a = 20, b = 4
- doSomethingWithInts(20, 5); // a = 20, b = 5
-}
-
-// 默认参数必须放在所有的常规参数之后。
-
-void invalidDeclaration(int a = 1, int b) // 这是错误的!
-{
-}
-
-
-///////////
-// 命名空间
-///////////
-
-// 命名空间为变量、函数和其他声明提供了分离的的作用域。
-// 命名空间可以嵌套使用。
-
-namespace First {
- namespace Nested {
- void foo()
- {
- printf("This is First::Nested::foo\n");
- }
- } // 结束嵌套的命名空间Nested
-} // 结束命名空间First
-
-namespace Second {
- void foo()
- {
- printf("This is Second::foo\n")
- }
-}
-
-void foo()
-{
- printf("This is global foo\n");
-}
-
-int main()
-{
- // 如果没有特别指定,就从“Second”中取得所需的内容。
- using namespace Second;
-
- foo(); // 显示“This is Second::foo”
- First::Nested::foo(); // 显示“This is First::Nested::foo”
- ::foo(); // 显示“This is global foo”
-}
-
-////////////
-// 输入/输出
-////////////
-
-// C++使用“流”来输入输出。<<是流的插入运算符,>>是流提取运算符。
-// cin、cout、和cerr分别代表
-// stdin(标准输入)、stdout(标准输出)和stderr(标准错误)。
-
-#include <iostream> // 引入包含输入/输出流的头文件
-
-using namespace std; // 输入输出流在std命名空间(也就是标准库)中。
-
-int main()
-{
- int myInt;
-
- // 在标准输出(终端/显示器)中显示
- cout << "Enter your favorite number:\n";
- // 从标准输入(键盘)获得一个值
- cin >> myInt;
-
- // cout也提供了格式化功能
- cout << "Your favorite number is " << myInt << "\n";
- // 显示“Your favorite number is <myInt>”
-
- cerr << "Used for error messages";
-}
-
-/////////
-// 字符串
-/////////
-
-// C++中的字符串是对象,它们有很多成员函数
-#include <string>
-
-using namespace std; // 字符串也在std命名空间(标准库)中。
-
-string myString = "Hello";
-string myOtherString = " World";
-
-// + 可以用于连接字符串。
-cout << myString + myOtherString; // "Hello World"
-
-cout << myString + " You"; // "Hello You"
-
-// C++中的字符串是可变的,具有“值语义”。
-myString.append(" Dog");
-cout << myString; // "Hello Dog"
-
-
-/////////////
-// 引用
-/////////////
-
-// 除了支持C语言中的指针类型以外,C++还提供了_引用_。
-// 引用是一种特殊的指针类型,一旦被定义就不能重新赋值,并且不能被设置为空值。
-// 使用引用时的语法与原变量相同:
-// 也就是说,对引用类型进行解引用时,不需要使用*;
-// 赋值时也不需要用&来取地址。
-
-using namespace std;
-
-string foo = "I am foo";
-string bar = "I am bar";
-
-
-string& fooRef = foo; // 建立了一个对foo的引用。
-fooRef += ". Hi!"; // 通过引用来修改foo的值
-cout << fooRef; // "I am foo. Hi!"
-
-// 这句话的并不会改变fooRef的指向,其效果与“foo = bar”相同。
-// 也就是说,在执行这条语句之后,foo == "I am bar"。
-fooRef = bar;
-
-const string& barRef = bar; // 建立指向bar的常量引用。
-// 和C语言中一样,(指针和引用)声明为常量时,对应的值不能被修改。
-barRef += ". Hi!"; // 这是错误的,不能修改一个常量引用的值。
-
-///////////////////
-// 类与面向对象编程
-///////////////////
-
-// 有关类的第一个示例
-#include <iostream>
-
-// 声明一个类。
-// 类通常在头文件(.h或.hpp)中声明。
-class Dog {
- // 成员变量和成员函数默认情况下是私有(private)的。
- std::string name;
- int weight;
-
-// 在这个标签之后,所有声明都是公有(public)的,
-// 直到重新指定“private:”(私有继承)或“protected:”(保护继承)为止
-public:
-
- // 默认的构造器
- Dog();
-
- // 这里是成员函数声明的一个例子。
- // 可以注意到,我们在此处使用了std::string,而不是using namespace std
- // 语句using namespace绝不应当出现在头文件当中。
- void setName(const std::string& dogsName);
-
- void setWeight(int dogsWeight);
-
- // 如果一个函数不对对象的状态进行修改,
- // 应当在声明中加上const。
- // 这样,你就可以对一个以常量方式引用的对象执行该操作。
- // 同时可以注意到,当父类的成员函数需要被子类重写时,
- // 父类中的函数必须被显式声明为_虚函数(virtual)_。
- // 考虑到性能方面的因素,函数默认情况下不会被声明为虚函数。
- virtual void print() const;
-
- // 函数也可以在class body内部定义。
- // 这样定义的函数会自动成为内联函数。
- void bark() const { std::cout << name << " barks!\n" }
-
- // 除了构造器以外,C++还提供了析构器。
- // 当一个对象被删除或者脱离其定义域时,它的析构函数会被调用。
- // 这使得RAII这样的强大范式(参见下文)成为可能。
- // 为了衍生出子类来,基类的析构函数必须定义为虚函数。
- virtual ~Dog();
-
-}; // 在类的定义之后,要加一个分号
-
-// 类的成员函数通常在.cpp文件中实现。
-void Dog::Dog()
-{
- std::cout << "A dog has been constructed\n";
-}
-
-// 对象(例如字符串)应当以引用的形式传递,
-// 对于不需要修改的对象,最好使用常量引用。
-void Dog::setName(const std::string& dogsName)
-{
- name = dogsName;
-}
-
-void Dog::setWeight(int dogsWeight)
-{
- weight = dogsWeight;
-}
-
-// 虚函数的virtual关键字只需要在声明时使用,不需要在定义时重复
-void Dog::print() const
-{
- std::cout << "Dog is " << name << " and weighs " << weight << "kg\n";
-}
-
-void Dog::~Dog()
-{
- std::cout << "Goodbye " << name << "\n";
-}
-
-int main() {
- Dog myDog; // 此时显示“A dog has been constructed”
- myDog.setName("Barkley");
- myDog.setWeight(10);
- myDog.print(); // 显示“Dog is Barkley and weighs 10 kg”
- return 0;
-} // 显示“Goodbye Barkley”
-
-// 继承:
-
-// 这个类继承了Dog类中的公有(public)和保护(protected)对象
-class OwnedDog : public Dog {
-
- void setOwner(const std::string& dogsOwner)
-
- // 重写OwnedDogs类的print方法。
- // 如果你不熟悉子类多态的话,可以参考这个页面中的概述:
- // http://zh.wikipedia.org/wiki/%E5%AD%90%E7%B1%BB%E5%9E%8B
-
- // override关键字是可选的,它确保你所重写的是基类中的方法。
- void print() const override;
-
-private:
- std::string owner;
-};
-
-// 与此同时,在对应的.cpp文件里:
-
-void OwnedDog::setOwner(const std::string& dogsOwner)
-{
- owner = dogsOwner;
-}
-
-void OwnedDog::print() const
-{
- Dog::print(); // 调用基类Dog中的print方法
- // "Dog is <name> and weights <weight>"
-
- std::cout << "Dog is owned by " << owner << "\n";
- // "Dog is owned by <owner>"
-}
-
-/////////////////////
-// 初始化与运算符重载
-/////////////////////
-
-// 在C++中,通过定义一些特殊名称的函数,
-// 你可以重载+、-、*、/等运算符的行为。
-// 当运算符被使用时,这些特殊函数会被调用,从而实现运算符重载。
-
-#include <iostream>
-using namespace std;
-
-class Point {
-public:
- // 可以以这样的方式为成员变量设置默认值。
- double x = 0;
- double y = 0;
-
- // 定义一个默认的构造器。
- // 除了将Point初始化为(0, 0)以外,这个函数什么都不做。
- Point() { };
-
- // 下面使用的语法称为初始化列表,
- // 这是初始化类中成员变量的正确方式。
- Point (double a, double b) :
- x(a),
- y(b)
- { /* 除了初始化成员变量外,什么都不做 */ }
-
- // 重载 + 运算符
- Point operator+(const Point& rhs) const;
-
- // 重载 += 运算符
- Point& operator+=(const Point& rhs);
-
- // 增加 - 和 -= 运算符也是有意义的,但这里不再赘述。
-};
-
-Point Point::operator+(const Point& rhs) const
-{
- // 创建一个新的点,
- // 其横纵坐标分别为这个点与另一点在对应方向上的坐标之和。
- return Point(x + rhs.x, y + rhs.y);
-}
-
-Point& Point::operator+=(const Point& rhs)
-{
- x += rhs.x;
- y += rhs.y;
- return *this;
-}
-
-int main () {
- Point up (0,1);
- Point right (1,0);
- // 这里使用了Point类型的运算符“+”
- // 调用up(Point类型)的“+”方法,并以right作为函数的参数
- Point result = up + right;
- // 显示“Result is upright (1,1)”
- cout << "Result is upright (" << result.x << ',' << result.y << ")\n";
- return 0;
-}
-
-///////////
-// 异常处理
-///////////
-
-// 标准库中提供了一些基本的异常类型
-// (参见http://en.cppreference.com/w/cpp/error/exception)
-// 但是,其他任何类型也可以作为一个异常被拋出
-#include <exception>
-
-// 在_try_代码块中拋出的异常可以被随后的_catch_捕获。
-try {
- // 不要用 _new_关键字在堆上为异常分配空间。
- throw std::exception("A problem occurred");
-}
-// 如果拋出的异常是一个对象,可以用常量引用来捕获它
-catch (const std::exception& ex)
-{
- std::cout << ex.what();
-// 捕获尚未被_catch_处理的所有错误
-} catch (...)
-{
- std::cout << "Unknown exception caught";
- throw; // 重新拋出异常
-}
-
-///////
-// RAII
-///////
-
-// RAII指的是“资源获取就是初始化”(Resource Allocation Is Initialization),
-// 它被视作C++中最强大的编程范式之一。
-// 简单说来,它指的是,用构造函数来获取一个对象的资源,
-// 相应的,借助析构函数来释放对象的资源。
-
-// 为了理解这一范式的用处,让我们考虑某个函数使用文件句柄时的情况:
-void doSomethingWithAFile(const char* filename)
-{
- // 首先,让我们假设一切都会顺利进行。
-
- FILE* fh = fopen(filename, "r"); // 以只读模式打开文件
-
- doSomethingWithTheFile(fh);
- doSomethingElseWithIt(fh);
-
- fclose(fh); // 关闭文件句柄
-}
-
-// 不幸的是,随着错误处理机制的引入,事情会变得复杂。
-// 假设fopen函数有可能执行失败,
-// 而doSomethingWithTheFile和doSomethingElseWithIt会在失败时返回错误代码。
-// (虽然异常是C++中处理错误的推荐方式,
-// 但是某些程序员,尤其是有C语言背景的,并不认可异常捕获机制的作用)。
-// 现在,我们必须检查每个函数调用是否成功执行,并在问题发生的时候关闭文件句柄。
-bool doSomethingWithAFile(const char* filename)
-{
- FILE* fh = fopen(filename, "r"); // 以只读模式打开文件
- if (fh == nullptr) // 当执行失败是,返回的指针是nullptr
- return false; // 向调用者汇报错误
-
- // 假设每个函数会在执行失败时返回false
- if (!doSomethingWithTheFile(fh)) {
- fclose(fh); // 关闭文件句柄,避免造成内存泄漏。
- return false; // 反馈错误
- }
- if (!doSomethingElseWithIt(fh)) {
- fclose(fh); // 关闭文件句柄
- return false; // 反馈错误
- }
-
- fclose(fh); // 关闭文件句柄
- return true; // 指示函数已成功执行
-}
-
-// C语言的程序员通常会借助goto语句简化上面的代码:
-bool doSomethingWithAFile(const char* filename)
-{
- FILE* fh = fopen(filename, "r");
- if (fh == nullptr)
- return false;
-
- if (!doSomethingWithTheFile(fh))
- goto failure;
-
- if (!doSomethingElseWithIt(fh))
- goto failure;
-
- fclose(fh); // 关闭文件
- return true; // 执行成功
-
-failure:
- fclose(fh);
- return false; // 反馈错误
-}
-
-// 如果用异常捕获机制来指示错误的话,
-// 代码会变得清晰一些,但是仍然有优化的余地。
-void doSomethingWithAFile(const char* filename)
-{
- FILE* fh = fopen(filename, "r"); // 以只读模式打开文件
- if (fh == nullptr)
- throw std::exception("Could not open the file.");
-
- try {
- doSomethingWithTheFile(fh);
- doSomethingElseWithIt(fh);
- }
- catch (...) {
- fclose(fh); // 保证出错的时候文件被正确关闭
- throw; // 之后,重新抛出这个异常
- }
-
- fclose(fh); // 关闭文件
- // 所有工作顺利完成
-}
-
-// 相比之下,使用C++中的文件流类(fstream)时,
-// fstream会利用自己的析构器来关闭文件句柄。
-// 只要离开了某一对象的定义域,它的析构函数就会被自动调用。
-void doSomethingWithAFile(const std::string& filename)
-{
- // ifstream是输入文件流(input file stream)的简称
- std::ifstream fh(filename); // 打开一个文件
-
- // 对文件进行一些操作
- doSomethingWithTheFile(fh);
- doSomethingElseWithIt(fh);
-
-} // 文件已经被析构器自动关闭
-
-// 与上面几种方式相比,这种方式有着_明显_的优势:
-// 1. 无论发生了什么情况,资源(此例当中是文件句柄)都会被正确关闭。
-// 只要你正确使用了析构器,就_不会_因为忘记关闭句柄,造成资源的泄漏。
-// 2. 可以注意到,通过这种方式写出来的代码十分简洁。
-// 析构器会在后台关闭文件句柄,不再需要你来操心这些琐事。
-// 3. 这种方式的代码具有异常安全性。
-// 无论在函数中的何处拋出异常,都不会阻碍对文件资源的释放。
-
-// 地道的C++代码应当把RAII的使用扩展到各种类型的资源上,包括:
-// - 用unique_ptr和shared_ptr管理的内存
-// - 各种数据容器,例如标准库中的链表、向量(容量自动扩展的数组)、散列表等;
-// 当它们脱离作用域时,析构器会自动释放其中储存的内容。
-// - 用lock_guard和unique_lock实现的互斥
-```
-扩展阅读:
-
-* [CPP Reference](http://cppreference.com/w/cpp) 提供了最新的语法参考。
-* 可以在 [CPlusPlus](http://cplusplus.com) 找到一些补充资料。
-* 可以在 [TheChernoProject - C ++](https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb)上找到涵盖语言基础和设置编码环境的教程。
+---
+language: C++
+filename: learncpp-cn.cpp
+contributors:
+ - ["Steven Basart", "http://github.com/xksteven"]
+ - ["Matt Kline", "https://github.com/mrkline"]
+translators:
+ - ["Arnie97", "https://github.com/Arnie97"]
+lang: zh-cn
+---
+
+C++是一种系统编程语言。用它的发明者,
+[Bjarne Stroustrup的话](http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2014/Keynote)来说,C++的设计目标是:
+
+- 成为“更好的C语言”
+- 支持数据的抽象与封装
+- 支持面向对象编程
+- 支持泛型编程
+
+C++提供了对硬件的紧密控制(正如C语言一样),
+能够编译为机器语言,由处理器直接执行。
+与此同时,它也提供了泛型、异常和类等高层功能。
+虽然C++的语法可能比某些出现较晚的语言更复杂,它仍然得到了人们的青睞——
+功能与速度的平衡使C++成为了目前应用最广泛的系统编程语言之一。
+
+```c++
+////////////////
+// 与C语言的比较
+////////////////
+
+// C++_几乎_是C语言的一个超集,它与C语言的基本语法有许多相同之处,
+// 例如变量和函数的声明,原生数据类型等等。
+
+// 和C语言一样,在C++中,你的程序会从main()开始执行,
+// 该函数的返回值应当为int型,这个返回值会作为程序的退出状态值。
+// 不过,大多数的编译器(gcc,clang等)也接受 void main() 的函数原型。
+// (参见 http://en.wikipedia.org/wiki/Exit_status 来获取更多信息)
+int main(int argc, char** argv)
+{
+ // 和C语言一样,命令行参数通过argc和argv传递。
+ // argc代表命令行参数的数量,
+ // 而argv是一个包含“C语言风格字符串”(char *)的数组,
+ // 其中每个字符串代表一个命令行参数的内容,
+ // 首个命令行参数是调用该程序时所使用的名称。
+ // 如果你不关心命令行参数的值,argc和argv可以被忽略。
+ // 此时,你可以用int main()作为函数原型。
+
+ // 退出状态值为0时,表示程序执行成功
+ return 0;
+}
+
+// 然而,C++和C语言也有一些区别:
+
+// 在C++中,字符字面量的大小是一个字节。
+sizeof('c') == 1
+
+// 在C语言中,字符字面量的大小与int相同。
+sizeof('c') == sizeof(10)
+
+
+// C++的函数原型与函数定义是严格匹配的
+void func(); // 这个函数不能接受任何参数
+
+// 而在C语言中
+void func(); // 这个函数能接受任意数量的参数
+
+// 在C++中,用nullptr代替C语言中的NULL
+int* ip = nullptr;
+
+// C++也可以使用C语言的标准头文件,
+// 但是需要加上前缀“c”并去掉末尾的“.h”。
+#include <cstdio>
+
+int main()
+{
+ printf("Hello, world!\n");
+ return 0;
+}
+
+///////////
+// 函数重载
+///////////
+
+// C++支持函数重载,你可以定义一组名称相同而参数不同的函数。
+
+void print(char const* myString)
+{
+ printf("String %s\n", myString);
+}
+
+void print(int myInt)
+{
+ printf("My int is %d", myInt);
+}
+
+int main()
+{
+ print("Hello"); // 解析为 void print(const char*)
+ print(15); // 解析为 void print(int)
+}
+
+///////////////////
+// 函数参数的默认值
+///////////////////
+
+// 你可以为函数的参数指定默认值,
+// 它们将会在调用者没有提供相应参数时被使用。
+
+void doSomethingWithInts(int a = 1, int b = 4)
+{
+ // 对两个参数进行一些操作
+}
+
+int main()
+{
+ doSomethingWithInts(); // a = 1, b = 4
+ doSomethingWithInts(20); // a = 20, b = 4
+ doSomethingWithInts(20, 5); // a = 20, b = 5
+}
+
+// 默认参数必须放在所有的常规参数之后。
+
+void invalidDeclaration(int a = 1, int b) // 这是错误的!
+{
+}
+
+
+///////////
+// 命名空间
+///////////
+
+// 命名空间为变量、函数和其他声明提供了分离的的作用域。
+// 命名空间可以嵌套使用。
+
+namespace First {
+ namespace Nested {
+ void foo()
+ {
+ printf("This is First::Nested::foo\n");
+ }
+ } // 结束嵌套的命名空间Nested
+} // 结束命名空间First
+
+namespace Second {
+ void foo()
+ {
+ printf("This is Second::foo\n")
+ }
+}
+
+void foo()
+{
+ printf("This is global foo\n");
+}
+
+int main()
+{
+ // 如果没有特别指定,就从“Second”中取得所需的内容。
+ using namespace Second;
+
+ foo(); // 显示“This is Second::foo”
+ First::Nested::foo(); // 显示“This is First::Nested::foo”
+ ::foo(); // 显示“This is global foo”
+}
+
+////////////
+// 输入/输出
+////////////
+
+// C++使用“流”来输入输出。<<是流的插入运算符,>>是流提取运算符。
+// cin、cout、和cerr分别代表
+// stdin(标准输入)、stdout(标准输出)和stderr(标准错误)。
+
+#include <iostream> // 引入包含输入/输出流的头文件
+
+using namespace std; // 输入输出流在std命名空间(也就是标准库)中。
+
+int main()
+{
+ int myInt;
+
+ // 在标准输出(终端/显示器)中显示
+ cout << "Enter your favorite number:\n";
+ // 从标准输入(键盘)获得一个值
+ cin >> myInt;
+
+ // cout也提供了格式化功能
+ cout << "Your favorite number is " << myInt << "\n";
+ // 显示“Your favorite number is <myInt>”
+
+ cerr << "Used for error messages";
+}
+
+/////////
+// 字符串
+/////////
+
+// C++中的字符串是对象,它们有很多成员函数
+#include <string>
+
+using namespace std; // 字符串也在std命名空间(标准库)中。
+
+string myString = "Hello";
+string myOtherString = " World";
+
+// + 可以用于连接字符串。
+cout << myString + myOtherString; // "Hello World"
+
+cout << myString + " You"; // "Hello You"
+
+// C++中的字符串是可变的,具有“值语义”。
+myString.append(" Dog");
+cout << myString; // "Hello Dog"
+
+
+/////////////
+// 引用
+/////////////
+
+// 除了支持C语言中的指针类型以外,C++还提供了_引用_。
+// 引用是一种特殊的指针类型,一旦被定义就不能重新赋值,并且不能被设置为空值。
+// 使用引用时的语法与原变量相同:
+// 也就是说,对引用类型进行解引用时,不需要使用*;
+// 赋值时也不需要用&来取地址。
+
+using namespace std;
+
+string foo = "I am foo";
+string bar = "I am bar";
+
+
+string& fooRef = foo; // 建立了一个对foo的引用。
+fooRef += ". Hi!"; // 通过引用来修改foo的值
+cout << fooRef; // "I am foo. Hi!"
+
+// 这句话的并不会改变fooRef的指向,其效果与“foo = bar”相同。
+// 也就是说,在执行这条语句之后,foo == "I am bar"。
+fooRef = bar;
+
+const string& barRef = bar; // 建立指向bar的常量引用。
+// 和C语言中一样,(指针和引用)声明为常量时,对应的值不能被修改。
+barRef += ". Hi!"; // 这是错误的,不能修改一个常量引用的值。
+
+///////////////////
+// 类与面向对象编程
+///////////////////
+
+// 有关类的第一个示例
+#include <iostream>
+
+// 声明一个类。
+// 类通常在头文件(.h或.hpp)中声明。
+class Dog {
+ // 成员变量和成员函数默认情况下是私有(private)的。
+ std::string name;
+ int weight;
+
+// 在这个标签之后,所有声明都是公有(public)的,
+// 直到重新指定“private:”(私有继承)或“protected:”(保护继承)为止
+public:
+
+ // 默认的构造器
+ Dog();
+
+ // 这里是成员函数声明的一个例子。
+ // 可以注意到,我们在此处使用了std::string,而不是using namespace std
+ // 语句using namespace绝不应当出现在头文件当中。
+ void setName(const std::string& dogsName);
+
+ void setWeight(int dogsWeight);
+
+ // 如果一个函数不对对象的状态进行修改,
+ // 应当在声明中加上const。
+ // 这样,你就可以对一个以常量方式引用的对象执行该操作。
+ // 同时可以注意到,当父类的成员函数需要被子类重写时,
+ // 父类中的函数必须被显式声明为_虚函数(virtual)_。
+ // 考虑到性能方面的因素,函数默认情况下不会被声明为虚函数。
+ virtual void print() const;
+
+ // 函数也可以在class body内部定义。
+ // 这样定义的函数会自动成为内联函数。
+ void bark() const { std::cout << name << " barks!\n" }
+
+ // 除了构造器以外,C++还提供了析构器。
+ // 当一个对象被删除或者脱离其定义域时,它的析构函数会被调用。
+ // 这使得RAII这样的强大范式(参见下文)成为可能。
+ // 为了衍生出子类来,基类的析构函数必须定义为虚函数。
+ virtual ~Dog();
+
+}; // 在类的定义之后,要加一个分号
+
+// 类的成员函数通常在.cpp文件中实现。
+void Dog::Dog()
+{
+ std::cout << "A dog has been constructed\n";
+}
+
+// 对象(例如字符串)应当以引用的形式传递,
+// 对于不需要修改的对象,最好使用常量引用。
+void Dog::setName(const std::string& dogsName)
+{
+ name = dogsName;
+}
+
+void Dog::setWeight(int dogsWeight)
+{
+ weight = dogsWeight;
+}
+
+// 虚函数的virtual关键字只需要在声明时使用,不需要在定义时重复
+void Dog::print() const
+{
+ std::cout << "Dog is " << name << " and weighs " << weight << "kg\n";
+}
+
+void Dog::~Dog()
+{
+ std::cout << "Goodbye " << name << "\n";
+}
+
+int main() {
+ Dog myDog; // 此时显示“A dog has been constructed”
+ myDog.setName("Barkley");
+ myDog.setWeight(10);
+ myDog.print(); // 显示“Dog is Barkley and weighs 10 kg”
+ return 0;
+} // 显示“Goodbye Barkley”
+
+// 继承:
+
+// 这个类继承了Dog类中的公有(public)和保护(protected)对象
+class OwnedDog : public Dog {
+
+ void setOwner(const std::string& dogsOwner)
+
+ // 重写OwnedDogs类的print方法。
+ // 如果你不熟悉子类多态的话,可以参考这个页面中的概述:
+ // http://zh.wikipedia.org/wiki/%E5%AD%90%E7%B1%BB%E5%9E%8B
+
+ // override关键字是可选的,它确保你所重写的是基类中的方法。
+ void print() const override;
+
+private:
+ std::string owner;
+};
+
+// 与此同时,在对应的.cpp文件里:
+
+void OwnedDog::setOwner(const std::string& dogsOwner)
+{
+ owner = dogsOwner;
+}
+
+void OwnedDog::print() const
+{
+ Dog::print(); // 调用基类Dog中的print方法
+ // "Dog is <name> and weights <weight>"
+
+ std::cout << "Dog is owned by " << owner << "\n";
+ // "Dog is owned by <owner>"
+}
+
+/////////////////////
+// 初始化与运算符重载
+/////////////////////
+
+// 在C++中,通过定义一些特殊名称的函数,
+// 你可以重载+、-、*、/等运算符的行为。
+// 当运算符被使用时,这些特殊函数会被调用,从而实现运算符重载。
+
+#include <iostream>
+using namespace std;
+
+class Point {
+public:
+ // 可以以这样的方式为成员变量设置默认值。
+ double x = 0;
+ double y = 0;
+
+ // 定义一个默认的构造器。
+ // 除了将Point初始化为(0, 0)以外,这个函数什么都不做。
+ Point() { };
+
+ // 下面使用的语法称为初始化列表,
+ // 这是初始化类中成员变量的正确方式。
+ Point (double a, double b) :
+ x(a),
+ y(b)
+ { /* 除了初始化成员变量外,什么都不做 */ }
+
+ // 重载 + 运算符
+ Point operator+(const Point& rhs) const;
+
+ // 重载 += 运算符
+ Point& operator+=(const Point& rhs);
+
+ // 增加 - 和 -= 运算符也是有意义的,但这里不再赘述。
+};
+
+Point Point::operator+(const Point& rhs) const
+{
+ // 创建一个新的点,
+ // 其横纵坐标分别为这个点与另一点在对应方向上的坐标之和。
+ return Point(x + rhs.x, y + rhs.y);
+}
+
+Point& Point::operator+=(const Point& rhs)
+{
+ x += rhs.x;
+ y += rhs.y;
+ return *this;
+}
+
+int main () {
+ Point up (0,1);
+ Point right (1,0);
+ // 这里使用了Point类型的运算符“+”
+ // 调用up(Point类型)的“+”方法,并以right作为函数的参数
+ Point result = up + right;
+ // 显示“Result is upright (1,1)”
+ cout << "Result is upright (" << result.x << ',' << result.y << ")\n";
+ return 0;
+}
+
+///////////
+// 异常处理
+///////////
+
+// 标准库中提供了一些基本的异常类型
+// (参见http://en.cppreference.com/w/cpp/error/exception)
+// 但是,其他任何类型也可以作为一个异常被拋出
+#include <exception>
+
+// 在_try_代码块中拋出的异常可以被随后的_catch_捕获。
+try {
+ // 不要用 _new_关键字在堆上为异常分配空间。
+ throw std::exception("A problem occurred");
+}
+// 如果拋出的异常是一个对象,可以用常量引用来捕获它
+catch (const std::exception& ex)
+{
+ std::cout << ex.what();
+// 捕获尚未被_catch_处理的所有错误
+} catch (...)
+{
+ std::cout << "Unknown exception caught";
+ throw; // 重新拋出异常
+}
+
+///////
+// RAII
+///////
+
+// RAII指的是“资源获取就是初始化”(Resource Allocation Is Initialization),
+// 它被视作C++中最强大的编程范式之一。
+// 简单说来,它指的是,用构造函数来获取一个对象的资源,
+// 相应的,借助析构函数来释放对象的资源。
+
+// 为了理解这一范式的用处,让我们考虑某个函数使用文件句柄时的情况:
+void doSomethingWithAFile(const char* filename)
+{
+ // 首先,让我们假设一切都会顺利进行。
+
+ FILE* fh = fopen(filename, "r"); // 以只读模式打开文件
+
+ doSomethingWithTheFile(fh);
+ doSomethingElseWithIt(fh);
+
+ fclose(fh); // 关闭文件句柄
+}
+
+// 不幸的是,随着错误处理机制的引入,事情会变得复杂。
+// 假设fopen函数有可能执行失败,
+// 而doSomethingWithTheFile和doSomethingElseWithIt会在失败时返回错误代码。
+// (虽然异常是C++中处理错误的推荐方式,
+// 但是某些程序员,尤其是有C语言背景的,并不认可异常捕获机制的作用)。
+// 现在,我们必须检查每个函数调用是否成功执行,并在问题发生的时候关闭文件句柄。
+bool doSomethingWithAFile(const char* filename)
+{
+ FILE* fh = fopen(filename, "r"); // 以只读模式打开文件
+ if (fh == nullptr) // 当执行失败是,返回的指针是nullptr
+ return false; // 向调用者汇报错误
+
+ // 假设每个函数会在执行失败时返回false
+ if (!doSomethingWithTheFile(fh)) {
+ fclose(fh); // 关闭文件句柄,避免造成内存泄漏。
+ return false; // 反馈错误
+ }
+ if (!doSomethingElseWithIt(fh)) {
+ fclose(fh); // 关闭文件句柄
+ return false; // 反馈错误
+ }
+
+ fclose(fh); // 关闭文件句柄
+ return true; // 指示函数已成功执行
+}
+
+// C语言的程序员通常会借助goto语句简化上面的代码:
+bool doSomethingWithAFile(const char* filename)
+{
+ FILE* fh = fopen(filename, "r");
+ if (fh == nullptr)
+ return false;
+
+ if (!doSomethingWithTheFile(fh))
+ goto failure;
+
+ if (!doSomethingElseWithIt(fh))
+ goto failure;
+
+ fclose(fh); // 关闭文件
+ return true; // 执行成功
+
+failure:
+ fclose(fh);
+ return false; // 反馈错误
+}
+
+// 如果用异常捕获机制来指示错误的话,
+// 代码会变得清晰一些,但是仍然有优化的余地。
+void doSomethingWithAFile(const char* filename)
+{
+ FILE* fh = fopen(filename, "r"); // 以只读模式打开文件
+ if (fh == nullptr)
+ throw std::exception("Could not open the file.");
+
+ try {
+ doSomethingWithTheFile(fh);
+ doSomethingElseWithIt(fh);
+ }
+ catch (...) {
+ fclose(fh); // 保证出错的时候文件被正确关闭
+ throw; // 之后,重新抛出这个异常
+ }
+
+ fclose(fh); // 关闭文件
+ // 所有工作顺利完成
+}
+
+// 相比之下,使用C++中的文件流类(fstream)时,
+// fstream会利用自己的析构器来关闭文件句柄。
+// 只要离开了某一对象的定义域,它的析构函数就会被自动调用。
+void doSomethingWithAFile(const std::string& filename)
+{
+ // ifstream是输入文件流(input file stream)的简称
+ std::ifstream fh(filename); // 打开一个文件
+
+ // 对文件进行一些操作
+ doSomethingWithTheFile(fh);
+ doSomethingElseWithIt(fh);
+
+} // 文件已经被析构器自动关闭
+
+// 与上面几种方式相比,这种方式有着_明显_的优势:
+// 1. 无论发生了什么情况,资源(此例当中是文件句柄)都会被正确关闭。
+// 只要你正确使用了析构器,就_不会_因为忘记关闭句柄,造成资源的泄漏。
+// 2. 可以注意到,通过这种方式写出来的代码十分简洁。
+// 析构器会在后台关闭文件句柄,不再需要你来操心这些琐事。
+// 3. 这种方式的代码具有异常安全性。
+// 无论在函数中的何处拋出异常,都不会阻碍对文件资源的释放。
+
+// 地道的C++代码应当把RAII的使用扩展到各种类型的资源上,包括:
+// - 用unique_ptr和shared_ptr管理的内存
+// - 各种数据容器,例如标准库中的链表、向量(容量自动扩展的数组)、散列表等;
+// 当它们脱离作用域时,析构器会自动释放其中储存的内容。
+// - 用lock_guard和unique_lock实现的互斥
+```
+扩展阅读:
+
+* [CPP Reference](http://cppreference.com/w/cpp) 提供了最新的语法参考。
+* 可以在 [CPlusPlus](http://cplusplus.com) 找到一些补充资料。
+* 可以在 [TheChernoProject - C ++](https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb)上找到涵盖语言基础和设置编码环境的教程。