diff options
Diffstat (limited to 'zh-cn/c++-cn.html.markdown')
| -rw-r--r-- | zh-cn/c++-cn.html.markdown | 590 | 
1 files changed, 590 insertions, 0 deletions
| diff --git a/zh-cn/c++-cn.html.markdown b/zh-cn/c++-cn.html.markdown new file mode 100644 index 00000000..eed20721 --- /dev/null +++ b/zh-cn/c++-cn.html.markdown @@ -0,0 +1,590 @@ +---
 +language: c++
 +filename: learncpp-cn.cpp
 +contributors:
 +    - ["Steven Basart", "http://github.com/xksteven"]
 +    - ["Matt Kline", "https://github.com/mrkline"]
 +translators:
 +    - ["Arnie97", "https://github.com/Arnie97"]
 +lang: zh-cn
 +---
 +
 +C++是一种系统编程语言。用它的发明者,
 +[Bjarne Stroustrup的话](http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2014/Keynote)来说,C++的设计目标是:
 +
 +- 成为“更好的C语言”
 +- 支持数据的抽象与封装
 +- 支持面向对象编程
 +- 支持泛型编程
 +
 +C++提供了对硬件的紧密控制(正如C语言一样),
 +能够编译为机器语言,由处理器直接执行。
 +与此同时,它也提供了泛型、异常和类等高层功能。
 +虽然C++的语法可能比某些出现较晚的语言更复杂,它仍然得到了人们的青睞——
 +功能与速度的平衡使C++成为了目前应用最广泛的系统编程语言之一。
 +
 +```c++
 +////////////////
 +// 与C语言的比较
 +////////////////
 +
 +// C++_几乎_是C语言的一个超集,它与C语言的基本语法有许多相同之处,
 +// 例如变量和函数的声明,原生数据类型等等。
 +
 +// 和C语言一样,在C++中,你的程序会从main()开始执行,
 +// 该函数的返回值应当为int型,这个返回值会作为程序的退出状态值。
 +// 不过,大多数的编译器(gcc,clang等)也接受 void main() 的函数原型。
 +// (参见 http://en.wikipedia.org/wiki/Exit_status 来获取更多信息)
 +int main(int argc, char** argv)
 +{
 +    // 和C语言一样,命令行参数通过argc和argv传递。
 +    // argc代表命令行参数的数量,
 +    // 而argv是一个包含“C语言风格字符串”(char *)的数组,
 +    // 其中每个字符串代表一个命令行参数的内容,
 +    // 首个命令行参数是调用该程序时所使用的名称。
 +    // 如果你不关心命令行参数的值,argc和argv可以被忽略。
 +    // 此时,你可以用int main()作为函数原型。
 +
 +    // 退出状态值为0时,表示程序执行成功
 +    return 0;
 +}
 +
 +// 然而,C++和C语言也有一些区别:
 +
 +// 在C++中,字符字面量的大小是一个字节。
 +sizeof('c') == 1
 +
 +// 在C语言中,字符字面量的大小与int相同。
 +sizeof('c') == sizeof(10)
 +
 +
 +// C++的函数原型与函数定义是严格匹配的
 +void func(); // 这个函数不能接受任何参数
 +
 +// 而在C语言中
 +void func(); // 这个函数能接受任意数量的参数
 +
 +// 在C++中,用nullptr代替C语言中的NULL
 +int* ip = nullptr;
 +
 +// C++也可以使用C语言的标准头文件,
 +// 但是需要加上前缀“c”并去掉末尾的“.h”。
 +#include <cstdio>
 +
 +int main()
 +{
 +    printf("Hello, world!\n");
 +    return 0;
 +}
 +
 +///////////
 +// 函数重载
 +///////////
 +
 +// C++支持函数重载,你可以定义一组名称相同而参数不同的函数。
 +
 +void print(char const* myString)
 +{
 +    printf("String %s\n", myString);
 +}
 +
 +void print(int myInt)
 +{
 +    printf("My int is %d", myInt);
 +}
 +
 +int main()
 +{
 +    print("Hello"); // 解析为 void print(const char*)
 +    print(15); // 解析为 void print(int)
 +}
 +
 +///////////////////
 +// 函数参数的默认值
 +///////////////////
 +
 +// 你可以为函数的参数指定默认值,
 +// 它们将会在调用者没有提供相应参数时被使用。
 +
 +void doSomethingWithInts(int a = 1, int b = 4)
 +{
 +    // 对两个参数进行一些操作
 +}
 +
 +int main()
 +{
 +    doSomethingWithInts();      // a = 1,  b = 4
 +    doSomethingWithInts(20);    // a = 20, b = 4
 +    doSomethingWithInts(20, 5); // a = 20, b = 5
 +}
 +
 +// 默认参数必须放在所有的常规参数之后。
 +
 +void invalidDeclaration(int a = 1, int b) // 这是错误的!
 +{
 +}
 +
 +
 +///////////
 +// 命名空间
 +///////////
 +
 +// 命名空间为变量、函数和其他声明提供了分离的的作用域。
 +// 命名空间可以嵌套使用。
 +
 +namespace First {
 +    namespace Nested {
 +        void foo()
 +        {
 +            printf("This is First::Nested::foo\n");
 +        }
 +    } // 结束嵌套的命名空间Nested
 +} // 结束命名空间First
 +
 +namespace Second {
 +    void foo()
 +    {
 +        printf("This is Second::foo\n")
 +    }
 +}
 +
 +void foo()
 +{
 +    printf("This is global foo\n");
 +}
 +
 +int main()
 +{
 +    // 如果没有特别指定,就从“Second”中取得所需的内容。
 +    using namespace Second;
 +
 +    foo(); // 显示“This is Second::foo”
 +    First::Nested::foo(); // 显示“This is First::Nested::foo”
 +    ::foo(); // 显示“This is global foo”
 +}
 +
 +////////////
 +// 输入/输出
 +////////////
 +
 +// C++使用“流”来输入输出。<<是流的插入运算符,>>是流提取运算符。
 +// cin、cout、和cerr分别代表
 +// stdin(标准输入)、stdout(标准输出)和stderr(标准错误)。
 +
 +#include <iostream> // 引入包含输入/输出流的头文件
 +
 +using namespace std; // 输入输出流在std命名空间(也就是标准库)中。
 +
 +int main()
 +{
 +   int myInt;
 +
 +   // 在标准输出(终端/显示器)中显示
 +   cout << "Enter your favorite number:\n";
 +   // 从标准输入(键盘)获得一个值
 +   cin >> myInt;
 +
 +   // cout也提供了格式化功能
 +   cout << "Your favorite number is " << myInt << "\n";
 +   // 显示“Your favorite number is <myInt>”
 +
 +    cerr << "Used for error messages";
 +}
 +
 +/////////
 +// 字符串
 +/////////
 +
 +// C++中的字符串是对象,它们有很多成员函数
 +#include <string>
 +
 +using namespace std; // 字符串也在std命名空间(标准库)中。
 +
 +string myString = "Hello";
 +string myOtherString = " World";
 +
 +// + 可以用于连接字符串。
 +cout << myString + myOtherString; // "Hello World"
 +
 +cout << myString + " You"; // "Hello You"
 +
 +// C++中的字符串是可变的,具有“值语义”。
 +myString.append(" Dog");
 +cout << myString; // "Hello Dog"
 +
 +
 +/////////////
 +// 引用
 +/////////////
 +
 +// 除了支持C语言中的指针类型以外,C++还提供了_引用_。
 +// 引用是一种特殊的指针类型,一旦被定义就不能重新赋值,并且不能被设置为空值。
 +// 使用引用时的语法与原变量相同:
 +// 也就是说,对引用类型进行解引用时,不需要使用*;
 +// 赋值时也不需要用&来取地址。
 +
 +using namespace std;
 +
 +string foo = "I am foo";
 +string bar = "I am bar";
 +
 +
 +string& fooRef = foo; // 建立了一个对foo的引用。
 +fooRef += ". Hi!"; // 通过引用来修改foo的值
 +cout << fooRef; // "I am foo. Hi!"
 +
 +// 这句话的并不会改变fooRef的指向,其效果与“foo = bar”相同。
 +// 也就是说,在执行这条语句之后,foo == "I am bar"。
 +fooRef = bar;
 +
 +const string& barRef = bar; // 建立指向bar的常量引用。
 +// 和C语言中一样,(指针和引用)声明为常量时,对应的值不能被修改。
 +barRef += ". Hi!"; // 这是错误的,不能修改一个常量引用的值。
 +
 +///////////////////
 +// 类与面向对象编程
 +///////////////////
 +
 +// 有关类的第一个示例
 +#include <iostream>
 +
 +// 声明一个类。
 +// 类通常在头文件(.h或.hpp)中声明。
 +class Dog {
 +    // 成员变量和成员函数默认情况下是私有(private)的。
 +    std::string name;
 +    int weight;
 +
 +// 在这个标签之后,所有声明都是公有(public)的,
 +// 直到重新指定“private:”(私有继承)或“protected:”(保护继承)为止
 +public:
 +
 +    // 默认的构造器
 +    Dog();
 +
 +    // 这里是成员函数声明的一个例子。
 +    // 可以注意到,我们在此处使用了std::string,而不是using namespace std
 +    // 语句using namespace绝不应当出现在头文件当中。
 +    void setName(const std::string& dogsName);
 +
 +    void setWeight(int dogsWeight);
 +
 +    // 如果一个函数不对对象的状态进行修改,
 +    // 应当在声明中加上const。
 +    // 这样,你就可以对一个以常量方式引用的对象执行该操作。
 +    // 同时可以注意到,当父类的成员函数需要被子类重写时,
 +    // 父类中的函数必须被显式声明为_虚函数(virtual)_。
 +    // 考虑到性能方面的因素,函数默认情况下不会被声明为虚函数。
 +    virtual void print() const;
 +
 +    // 函数也可以在class body内部定义。
 +    // 这样定义的函数会自动成为内联函数。
 +    void bark() const { std::cout << name << " barks!\n" }
 +
 +    // 除了构造器以外,C++还提供了析构器。
 +    // 当一个对象被删除或者脱离其定义域时时,它的析构函数会被调用。
 +    // 这使得RAII这样的强大范式(参见下文)成为可能。
 +    // 为了衍生出子类来,基类的析构函数必须定义为虚函数。
 +    virtual ~Dog();
 +
 +}; // 在类的定义之后,要加一个分号
 +
 +}; // 记住,在类的定义之后,要加一个分号!
 +
 +// 类的成员函数通常在.cpp文件中实现。
 +void Dog::Dog()
 +{
 +    std::cout << "A dog has been constructed\n";
 +}
 +
 +// 对象(例如字符串)应当以引用的形式传递,
 +// 对于不需要修改的对象,最好使用常量引用。
 +void Dog::setName(const std::string& dogsName)
 +{
 +    name = dogsName;
 +}
 +
 +void Dog::setWeight(int dogsWeight)
 +{
 +    weight = dogsWeight;
 +}
 +
 +// 虚函数的virtual关键字只需要在声明时使用,不需要在定义时出现
 +void Dog::print() const
 +{
 +    std::cout << "Dog is " << name << " and weighs " << weight << "kg\n";
 +}
 +
 +void Dog::~Dog()
 +{
 +    cout << "Goodbye " << name << "\n";
 +}
 +
 +void Dog::setWeight(int dogsWeight)
 +{
 +    weight = dogsWeight;
 +}
 +
 +// 虚函数的virtual关键字只需要在声明时使用,不需要在定义时重复
 +void Dog::print() const
 +{
 +    std::cout << "Dog is " << name << " and weighs " << weight << "kg\n";
 +}
 +
 +void Dog::~Dog()
 +{
 +    cout << "Goodbye " << name << "\n";
 +}
 +
 +int main() {
 +    Dog myDog; // 此时显示“A dog has been constructed”
 +    myDog.setName("Barkley");
 +    myDog.setWeight(10);
 +    myDog.printDog(); // 显示“Dog is Barkley and weighs 10 kg”
 +    return 0;
 +} // 显示“Goodbye Barkley”
 +
 +// 继承:
 +
 +// 这个类继承了Dog类中的公有(public)和保护(protected)对象
 +class OwnedDog : public Dog {
 +
 +    void setOwner(const std::string& dogsOwner)
 +
 +    // 重写OwnedDogs类的print方法。
 +    // 如果你不熟悉子类多态的话,可以参考这个页面中的概述:
 +    // http://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Subtyping
 +
 +    // override关键字是可选的,它确保你所重写的是基类中的方法。
 +    void print() const override;
 +
 +private:
 +    std::string owner;
 +};
 +
 +// 与此同时,在对应的.cpp文件里:
 +
 +void OwnedDog::setOwner(const std::string& dogsOwner)
 +{
 +    owner = dogsOwner;
 +}
 +
 +void OwnedDog::print() const
 +{
 +    Dog::print(); // 调用基类Dog中的print方法
 +    // "Dog is <name> and weights <weight>"
 +
 +    std::cout << "Dog is owned by " << owner << "\n";
 +    // "Dog is owned by <owner>"
 +}
 +
 +/////////////////////
 +// 初始化与运算符重载
 +/////////////////////
 +
 +// 在C++中,通过定义一些特殊名称的函数,
 +// 你可以重载+、-、*、/等运算符的行为。
 +// 当运算符被使用时,这些特殊函数会被调用,从而实现运算符重载。
 +
 +#include <iostream>
 +using namespace std;
 +
 +class Point {
 +public:
 +    // 可以以这样的方式为成员变量设置默认值。
 +    double x = 0;
 +    double y = 0;
 +
 +    // 定义一个默认的构造器。
 +    // 除了将Point初始化为(0, 0)以外,这个函数什么都不做。
 +    Point() { };
 +
 +    // 下面使用的语法称为初始化列表,
 +    // 这是初始化类中成员变量的正确方式。
 +    Point (double a, double b) :
 +        x(a),
 +        y(b)
 +    { /* 除了初始化成员变量外,什么都不做 */ }
 +
 +    // 重载 + 运算符
 +    Point operator+(const Point& rhs) const;
 +
 +    // 重载 += 运算符
 +    Point& operator+=(const Point& rhs);
 +
 +    // 增加 - 和 -= 运算符也是有意义的,但这里不再赘述。
 +};
 +
 +Point Point::operator+(const Point& rhs) const
 +{
 +    // 创建一个新的点,
 +    // 其横纵坐标分别为这个点与另一点在对应方向上的坐标之和。
 +    return Point(x + rhs.x, y + rhs.y);
 +}
 +
 +Point& Point::operator+=(const Point& rhs)
 +{
 +    x += rhs.x;
 +    y += rhs.y;
 +    return *this;
 +}
 +
 +int main () {
 +    Point up (0,1);
 +    Point right (1,0);
 +    // 这里使用了Point类型的运算符“+”
 +    // 调用up(Point类型)的“+”方法,并以right作为函数的参数
 +    Point result = up + right;
 +    // 显示“Result is upright (1,1)”
 +    cout << "Result is upright (" << result.x << ',' << result.y << ")\n";
 +    return 0;
 +}
 +
 +///////////
 +// 异常处理
 +///////////
 +
 +// 标准库中提供了一些基本的异常类型
 +// (参见http://en.cppreference.com/w/cpp/error/exception)
 +// 但是,其他任何类型也可以作为一个异常被拋出
 +#include <exception>
 +
 +// 在_try_代码块中拋出的异常可以被随后的_catch_捕获。
 +try {
 +    // 不要用 _new_关键字在堆上为异常分配空间。
 +    throw std::exception("A problem occurred");
 +}
 +// 如果拋出的异常是一个对象,可以用常量引用来捕获它
 +catch (const std::exception& ex)
 +{
 +  std::cout << ex.what();
 +// 捕获尚未被_catch_处理的所有错误
 +} catch (...)
 +{
 +    std::cout << "Unknown exception caught";
 +    throw; // 重新拋出异常
 +}
 +
 +///////
 +// RAII
 +///////
 +
 +// RAII指的是“资源获取就是初始化”(Resource Allocation Is Initialization),
 +// 它被视作C++中最强大的编程范式之一。
 +// 简单说来,它指的是,用构造函数来获取一个对象的资源,
 +// 相应的,借助析构函数来释放对象的资源。
 +
 +// 为了理解这一范式的用处,让我们考虑某个函数使用文件句柄时的情况:
 +void doSomethingWithAFile(const char* filename)
 +{
 +    // 首先,让我们假设一切都会顺利进行。
 +
 +    FILE* fh = fopen(filename, "r"); // 以只读模式打开文件
 +
 +    doSomethingWithTheFile(fh);
 +    doSomethingElseWithIt(fh);
 +
 +    fclose(fh); // 关闭文件句柄
 +}
 +
 +// 不幸的是,随着错误处理机制的引入,事情会变得复杂。
 +// 假设fopen函数有可能执行失败,
 +// 而doSomethingWithTheFile和doSomethingElseWithIt会在失败时返回错误代码。
 +// (虽然异常是C++中处理错误的推荐方式,
 +// 但是某些程序员,尤其是有C语言背景的,并不认可异常捕获机制的作用)。
 +// 现在,我们必须检查每个函数调用是否成功执行,并在问题发生的时候关闭文件句柄。
 +bool doSomethingWithAFile(const char* filename)
 +{
 +    FILE* fh = fopen(filename, "r"); // 以只读模式打开文件
 +    if (fh == nullptr) // 当执行失败是,返回的指针是nullptr
 +        return false; // 向调用者汇报错误
 +
 +    // 假设每个函数会在执行失败时返回false
 +    if (!doSomethingWithTheFile(fh)) {
 +        fclose(fh); // 关闭文件句柄,避免造成内存泄漏。
 +        return false; // 反馈错误
 +    }
 +    if (!doSomethingElseWithIt(fh)) {
 +        fclose(fh); // 关闭文件句柄
 +        return false; // 反馈错误
 +    }
 +
 +    fclose(fh); // 关闭文件句柄
 +    return true; // 指示函数已成功执行
 +}
 +
 +// C语言的程序员通常会借助goto语句简化上面的代码:
 +bool doSomethingWithAFile(const char* filename)
 +{
 +    FILE* fh = fopen(filename, "r");
 +    if (fh == nullptr)
 +        return false;
 +
 +    if (!doSomethingWithTheFile(fh))
 +        goto failure;
 +
 +    if (!doSomethingElseWithIt(fh))
 +        goto failure;
 +
 +    fclose(fh); // 关闭文件
 +    return true; // 执行成功
 +
 +failure:
 +    fclose(fh);
 +    return false; // 反馈错误
 +}
 +
 +// 如果用异常捕获机制来指示错误的话,
 +// 代码会变得清晰一些,但是仍然有优化的餘地。
 +void doSomethingWithAFile(const char* filename)
 +{
 +    FILE* fh = fopen(filename, "r"); // 以只读模式打开文件
 +    if (fh == nullptr)
 +        throw std::exception("Could not open the file.");
 +
 +    try {
 +        doSomethingWithTheFile(fh);
 +        doSomethingElseWithIt(fh);
 +    }
 +    catch (...) {
 +        fclose(fh); // 保证出错的时候文件被正确关闭
 +        throw; // Then re-throw the exception.
 +    }
 +
 +    fclose(fh); // 关闭文件
 +    // 所有工作顺利完成
 +}
 +
 +// 相比之下,使用C++中的文件流类(fstream)时,
 +// fstream会利用自己的析构器来关闭文件句柄。
 +// 只要离开了某一对象的定义域,它的析构函数就会被自动调用。
 +void doSomethingWithAFile(const std::string& filename)
 +{
 +    // ifstream是输入文件流(input file stream)的简称
 +    std::ifstream fh(filename); // 打开一个文件
 +
 +    // 对文件进行一些操作
 +    doSomethingWithTheFile(fh);
 +    doSomethingElseWithIt(fh);
 +
 +} // 文件已经被析构器自动关闭
 +
 +// 与上面几种方式相比,这种方式有着_明显_的优势:
 +// 1. 无论发生了什么情况,资源(此例当中是文件句柄)都会被正确关闭。
 +//    只要你正确使用了析构器,就_不会_因为忘记关闭句柄,造成资源的泄漏。
 +// 2. 可以注意到,通过这种方式写出来的代码十分简洁。
 +//    析构器会在后臺关闭文件句柄,不再需要你来操心这些琐事。
 +// 3. 这种方式的代码具有异常安全性。
 +//    无论在函数中的何处拋出异常,都不会阻碍对文件资源的释放。
 +
 +// 地道的C++代码应当把RAII的使用扩展到各种类型的资源上,包括:
 +// - 用unique_ptr和shared_ptr管理的内存
 +// - 各种数据容器,例如标准库中的链表、向量(容量自动扩展的数组)、散列表等;
 +//   当它们脱离作用域时,析构器会自动释放其中储存的内容。
 +// - 用lock_guard和unique_lock实现的互斥
 +```
 +扩展阅读:
 +
 +<http://cppreference.com/w/cpp> 提供了最新的语法参考。
 +
 +可以在 <http://cplusplus.com> 找到一些补充资料。
 | 
