diff options
Diffstat (limited to 'zh-cn')
| -rw-r--r-- | zh-cn/r-cn.html.markdown | 156 | 
1 files changed, 56 insertions, 100 deletions
| diff --git a/zh-cn/r-cn.html.markdown b/zh-cn/r-cn.html.markdown index d377703e..68867d92 100644 --- a/zh-cn/r-cn.html.markdown +++ b/zh-cn/r-cn.html.markdown @@ -18,8 +18,8 @@ head(rivers)	# 撇一眼数据集  length(rivers)	# 我们测量了多少条河流?
  # 141
  summary(rivers)
 -#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 -#  135.0   310.0   425.0   591.2   680.0  3710.0 
 +#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
 +#  135.0   310.0   425.0   591.2   680.0  3710.0
  stem(rivers)	# 茎叶图(一种类似于直方图的展现形式)
  #
  #  The decimal point is 2 digit(s) to the right of the |
 @@ -34,14 +34,14 @@ stem(rivers)	# 茎叶图(一种类似于直方图的展现形式)  #  14 | 56
  #  16 | 7
  #  18 | 9
 -#  20 | 
 +#  20 |
  #  22 | 25
  #  24 | 3
 -#  26 | 
 -#  28 | 
 -#  30 | 
 -#  32 | 
 -#  34 | 
 +#  26 |
 +#  28 |
 +#  30 |
 +#  32 |
 +#  34 |
  #  36 | 1
 @@ -50,7 +50,7 @@ stem(log(rivers))	# 查看数据集的方式既不是标准形式,也不是取  #  The decimal point is 1 digit(s) to the left of the |
  #
  #  48 | 1
 -#  50 | 
 +#  50 |
  #  52 | 15578
  #  54 | 44571222466689
  #  56 | 023334677000124455789
 @@ -65,7 +65,7 @@ stem(log(rivers))	# 查看数据集的方式既不是标准形式,也不是取  #  74 | 84
  #  76 | 56
  #  78 | 4
 -#  80 | 
 +#  80 |
  #  82 | 2
 @@ -101,15 +101,15 @@ stem(discoveries, scale=2) # 译者注:茎叶图(数据,放大系数)  #   8 | 0
  #   9 | 0
  #  10 | 0
 -#  11 | 
 +#  11 |
  #  12 | 0
  max(discoveries)
  # 12
  summary(discoveries)
 -#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 -#    0.0     2.0     3.0     3.1     4.0    12.0 
 +#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
 +#    0.0     2.0     3.0     3.1     4.0    12.0
 @@ -151,7 +151,7 @@ class(5)	# "numeric"  1.6e-35	# 布朗克长度
  # 长整数并用 L 结尾
 -5L	# 5  
 +5L	# 5
  #输出5L
  class(5L)	# "integer"
 @@ -178,7 +178,7 @@ class(NULL)	# NULL  # 简单列表
  c(6, 8, 7, 5, 3, 0, 9)	# 6 8 7 5 3 0 9
 -c('alef', 'bet', 'gimmel', 'dalet', 'he')	
 +c('alef', 'bet', 'gimmel', 'dalet', 'he')
  c('Z', 'o', 'r', 'o') == "Zoro"	# FALSE FALSE FALSE FALSE
  # 一些优雅的内置功能
 @@ -200,119 +200,80 @@ month.abb	# "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "D  letters[18]	# "r"
  LETTERS[13]	# "M"
  month.name[9]	# "September"
 -c(6, 8, 7, 5, 3, 0, 9)[3]	# 7 
 +c(6, 8, 7, 5, 3, 0, 9)[3]	# 7
 -# CHARACTERS
 -#特性
 -# There's no difference between strings and characters in R
 -# 字符串和字符在R语言中没有区别
 +# 字符串
 +
 +# 字符串和字符在 R 语言中没有区别
  "Horatio"	# "Horatio"
 -#字符输出"Horatio"
  class("Horatio") # "character"
 -#字符串输出("Horatio") # "character"
  substr("Fortuna multis dat nimis, nulli satis.", 9, 15)	# "multis "
 -#提取字符串("Fortuna multis dat nimis, nulli satis.", 第9个到15个之前并输出)	
  gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.")	# "Fortøna møltis dat nimis, nølli satis."
 -#替换字符春,用ø替换u
 -# LOGICALS
 -#逻辑值
 +# 逻辑值
 -# booleans
 -#布尔运算
 +# 布尔值
  class(TRUE)	# "logical"
 -#定义为真,逻辑型
  class(FALSE)	# "logical"
 -#定义为假,逻辑型
 -# Behavior is normal
 -#表现的标准形式
 +# 和我们预想的一样
  TRUE == TRUE	# TRUE
  TRUE == FALSE	# FALSE
  FALSE != FALSE	# FALSE
  FALSE != TRUE	# TRUE
 -# Missing data (NA) is logical, too
 -#缺失数据也是逻辑型的
 +# 缺失数据(NA)也是逻辑值
  class(NA)	# "logical"
  #定义NA为逻辑型
 -# FACTORS
 -#因子
 -# The factor class is for categorical data
 -#因子是分类数据的定义函数
 -# which can be ordered (like childrens' grade levels)
 -#可以使有序的(就像儿童的等级水平)
 -# or unordered (like gender)
 -#也可以是无序的(就像性别)
 -levels(factor(c("female", "male", "male", "female", "NA", "female")))	# "female" "male"   "NA" 
 -#c("female", "male", "male", "female", "NA", "female")向量,变量是字符型,levels factor()因子的等级水平
 +# 因子
 +# 因子是为数据分类排序设计的(像是排序小朋友们的年级或性别)
 +levels(factor(c("female", "male", "male", "female", "NA", "female")))	# "female" "male"   "NA"
 -factor(c("female", "female", "male", "NA", "female"))    
 +factor(c("female", "female", "male", "NA", "female"))
  #  female female male   NA     female
  # Levels: female male NA
 -data(infert)	#Infertility after Spontaneous and Induced Abortion
 -#数据集(感染) 自然以及引产导致的不育症
 +data(infert)	# 自然以及引产导致的不育症
  levels(infert$education)	# "0-5yrs"  "6-11yrs" "12+ yrs"
 -#等级(感染与教育程度) 输出
 -# VARIABLES
 -#变量
 +# 变量
 -# Lots of way to assign stuff
 -#许多种方式用来分配素材
 -x = 5 # this is possible
 -#x = 5可能的
 -y <- "1" # this is preferred
 -#y <- "1" 优先级的
 -TRUE -> z # this works but is weird
 -#输出真实的,存在一个超自然数满足条件
 +# 有许多种方式用来赋值
 +x = 5 # 这样可以
 +y <- "1" # 更推荐这样
 +TRUE -> z # 这样可行,但是很怪
 -# We can use coerce variables to different classes
 -#我们还可以使用枪支变量去进行不同的定义
 +#我们还可以使用强制转型
  as.numeric(y)	# 1
 -#定义数值型
  as.character(x)	# "5"
 -#字符型
 -
 -# LOOPS
 -#循环
 +# 循环
 -# We've got for loops
 -#循环语句
 +# for 循环语句
  for (i in 1:4) {
    print(i)
  }
 -#定义一个i,从1-4输出
 -# We've got while loops
 -#我们可以获取循环结构
 +# while 循环
  a <- 10
  while (a > 4) {
  	cat(a, "...", sep = "")
  	a <- a - 1
  }
 -#把10负值为a,a<4,输出文件(a,"...",sep="" ),跳出继续下一个循环取a=a-1,如此循环,直到a=10终止
 -# Keep in mind that for and while loops run slowly in R
 -#在R语言中牢记 for和它的循环结构
 -# Operations on entire vectors (i.e. a whole row, a whole column)
 -#牢记矢量中附带的操作(例如,整行和整列)
 -# or apply()-type functions (we'll discuss later) are preferred
 -#或者优先使用()-函数,稍后会进行讨论
 +
 +# 记住,在 R 语言中 for / while 循环都很慢
 +# 建议使用 apply()(我们一会介绍)来错做一串数据(比如一列或者一行数据)
  # IF/ELSE
 -#判断分支
 -# Again, pretty standard
 -#再一次,看这些优雅的标准
 +# 再来看这些优雅的标准
  if (4 > 3) {
  	print("Huzzah! It worked!")
  } else {
 @@ -322,30 +283,25 @@ if (4 > 3) {  # =>
  # [1] "Huzzah! It worked!"
 -# FUNCTIONS
 -#功能函数
 +# 函数
 -# Defined like so:
 -#定义如下
 +# 定义如下
  jiggle <- function(x) {
 -	x+ rnorm(x, sd=.1)	#add in a bit of (controlled) noise
 +	x + rnorm(x, sd=.1)	#add in a bit of (controlled) noise
  	return(x)
  }
 -#把功能函数x负值给jiggle,
 -# Called like any other R function:
 -jiggle(5)	# 5±ε. After set.seed(2716057), jiggle(5)==5.005043
 +# 和其他 R 语言函数一样调用
 +jiggle(5)	# 5±ε. 使用 set.seed(2716057) 后, jiggle(5)==5.005043
  #########################
 -# Fun with data: vectors, matrices, data frames, and arrays
 -# 数据参数:向量,矩阵,数据框,数组,
 +# 数据容器:vectors, matrices, data frames, and arrays
  #########################
 -# ONE-DIMENSIONAL
 -#单维度
 +# 单维度
  # You can vectorize anything, so long as all components have the same type
  #你可以将任何东西矢量化,因此所有的组分都有相同的类型
 -vec <- c(8, 9, 10, 11) 
 +vec <- c(8, 9, 10, 11)
  vec	#  8  9 10 11
  # The class of a vector is the class of its components
  #矢量class表示这一组分的类型
 @@ -423,10 +379,10 @@ t(mat)  mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog"))
  mat2
  # =>
 -#      [,1] [,2]   
 -# [1,] "1"  "dog"  
 -# [2,] "2"  "cat"  
 -# [3,] "3"  "bird" 
 +#      [,1] [,2]
 +# [1,] "1"  "dog"
 +# [2,] "2"  "cat"
 +# [3,] "3"  "bird"
  # [4,] "4"  "dog"
  class(mat2)	# matrix
  #定义mat2矩阵
 @@ -451,7 +407,7 @@ mat3  # TWO-DIMENSIONAL (DIFFERENT CLASSES)
  ##二维函数(不同的变量类型)
 -# For columns of different classes, use the data frame 
 +# For columns of different classes, use the data frame
  利用数组可以将不同类型放在一起
  dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
  #dat<-数据集(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
 @@ -484,7 +440,7 @@ dat[,"number"]	# 5 2 1 4  # You can make a two-dimensional table (sort of like a matrix)
  #你可以建立一个2维表格(类型和矩阵相似)
  array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4))
 -#数组(c(c(1,2,4,5),c(8,9,3,6)),有前两个向量组成,2行4列 
 +#数组(c(c(1,2,4,5),c(8,9,3,6)),有前两个向量组成,2行4列
  # =>
  #      [,1] [,2] [,3] [,4]
  # [1,]    1    4    8    3
 @@ -540,7 +496,7 @@ mat  #使用(X, MARGIN, FUN)将一个function功能函数根据其特征应用到矩阵x中
  # over rows (MAR = 1) or columns (MAR = 2)
  #规定行列,其边界分别为1,2
 -# That is, R does FUN to each row (or column) of X, much faster than a 
 +# That is, R does FUN to each row (or column) of X, much faster than a
  #即就是,R定义一个function使每一行/列的x快于一个for或者while循环
  # for or while loop would do
  apply(mat, MAR = 2, myFunc)
 | 
